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A vortex placed at a density interface winds it into an ever-tighter spiral. We show
that this results in a combination of a centrifugal Rayleigh-Taylor (CRT) instability
and a spiral Kelvin—Helmholtz (SKH) type of instability. The SKH instability arises
because the density interface is not exactly circular, and dominates at large times.
Our analytical study of an inviscid idealized problem illustrates the origin and nature
of the instabilities. In particular, the SKH is shown to grow slightly faster than
exponentially. The predicted form lends itself for checking by a large computation.
From a viscous stability analysis using a finite-cored vortex, it is found that the
dominant azimuthal wavenumber is smaller for lower Reynolds number. At higher
Reynolds numbers, disturbances subject to the combined CRT and SKH instabilities
grow rapidly, on the inertial time scale, while the flow stabilizes at low Reynolds
numbers. Our direct numerical simulations are in good agreement with these studies
in the initial stages, after which nonlinearities take over. At Atwood numbers of
0.1 or more, and a Reynolds number of 6000 or greater, both stability analysis and
simulations show a rapid destabilization. The result is an erosion of the core, and
breakdown into a turbulence-like state. In studies at low Atwood numbers, the effect
of density on the inertial terms is often ignored, and the density field behaves like a
passive scalar in the absence of gravity. The present study shows that such treatment
is unjustified in the vicinity of a vortex, even for small changes in density when
the density stratification is across a thin layer. The study would have relevance to
any high-Péclet-number flow where a vortex is in the vicinity of a density-stratified
interface.

1. Introduction

Vortical structures are subject to instabilities of various kinds, a common cause for
the instability being the existence of other vortical structures in the neighbourhood.
The Crow instability (Crow 1970) for a counter-rotating vortex pair of small core
is well known. Vortices of finite core, rendered non-axisymmetric (often elliptic)
by the strain field of their neighbours, are then unstable to shorter wavelength
disturbances (see e.g. Kerswell 2002). Miyazaki & Fukumoto (1992) and Itano (2004)
studied the effect of stratification of density perpendicular to the vortex axis on
these elliptical instabilities. Both found that stratification suppresses the elliptical
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instability. When placed in a density-stratified fluid with the stratification parallel to
their axes, systems of two or more vortices display the zigzag instability (Billant &
Chomaz 2000). An important effect of density stratification, acting through such
instabilities or otherwise, is to flatten out the structures and make the flow quasi two-
dimensional. This property, and the variety of applications, has made the dynamics of
vortical structures in a density-stratified environment a subject of much interest. The
instabilities mentioned above are all three-dimensional, and involve more than one
vortex. Under the Boussinesq approximation, a perpendicular density stratification
has been studied in two dimensions by Brandt & Nomura (2007) in the context of
vortex merger. It is shown that at a Prandtl number of 1 and Reynolds numbers
above 2500, a stable density stratification aids vortex merger by speeding up their
approach towards each other.

The present study is of a lone vortex with its axis perpendicular to the plane of
density stratification, with no gravity. For this geometry the dominant effects are again
expected to be of two-dimensional nature. An initially flat density interface is wound
up into an increasingly tightened spiral by the vortex, similar to how it would advect
a patch of passive scalar (see e.g. Moffatt & Kamkar 1983; Flohr & Vassilicos 1997).
It is shown that two kinds of instabilities, of a Rayleigh-Taylor (RT) and Kelvin—
Helmholtz (KH) types are then triggered. The former arises from a mechanism similar
to the centrifugal-acceleration driven RT instability of a vortex with a heavy core,
as studied by Greenspan (1968), Saunders (1973), Fung & Kurzweg (1975), Fung
(1983), Sipp et al. (2005) and Joly, Fontane & Chassaing (2005). The latter arises
purely from the fact that the density interface, being spiral, is not quite circular. Both
instabilities would be missed upon neglecting inertial effects due to density variations,
i.e. we need to include non-Boussinesq effects. Gravity is unnecessary in this process,
and if it existed, would only act to aid the instability in some regions and slow it
down in others. Here, and in the following, by the term ‘non-Boussinesq’, we mean
the inclusion of density stratification effects in inertial terms. Note that for simplicity
we neglect variations in the transport coefficients.

A work of relevance that must be discussed here is that of a stratified mixing
layer of Reinaud, Joly & Chassaing (2000). By an inviscid simulation, it is shown
that this flow disintegrates into turbulence. The process begins with the creation of
vorticity braids by the traditional KH mechanism. Subsequently, baroclinic torque
enhances the vorticity in portions of the braid and decreases it in others. The vorticity-
enhanced regions are further susceptible to a secondary instability, which speeds up
the disintegration of the mixing layer. An extension of this study to three-dimensional
viscous situations by Fontane & Joly (2008) showed an increase in the growth of the
instability. Importantly the mechanism of vorticity enhancement, due to centrifugal
forces, is similar to that of the vorticity creation we shall see in the spiral interfaces
below. The present work however addresses a different flow situation, of density
interfaces in the vicinity of vortices. We show that the density interfaces that initially
respond passively to the vortex, can ultimately be the cause for the destruction of
the main vortex itself. The simplicity of the model configuration allows the analytical
treatment of §2, showing the density interfaces to form Lituus spirals, where the
baroclinic vorticity may be estimated as a function of distance from the central vortex
core, and time. The instability of the model basic flow is studied, and the effect
of various parameters, including viscosity, evaluated. We show that sharp density
interfaces can lead to non-Boussinesq effects even at low Atwood numbers. It is also
seen that the net effect of alternately placed stabilizing and destabilizing density jumps
is one of rapid destabilization.
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FiGUre 1. Evolution with time of an initially horizontal density interface due to a point vortex
at the origin. The dotted line is at a later time than the dashed line, which in turn has evolved
from the solid line. At finite Péclet number, the density would be homogeneous within a radius
of r, ~ Pe'3(kt)!/?, indicated by the grey circle.

We begin in §2.1 with the simplest model, of a point vortex at a sharp density
interface. The flow is taken to be inviscid with zero-density diffusion. We discuss the
formation and evolution of the spiral, and a scale for the density homogenized region
close to the core. For studying the instabilities, the density jumps are first modelled
as circular, and then in §2.2 as spirals. With the replacement of a point vortex by a
Rankine vortex (§2.3), conditional stabilization is obtained at the edge of the vortex
core, while in the interior, the growth rate is constant. In the above, analytical solutions
were obtained using step changes in density and vorticity. In § 3, the effect of viscosity,
and of smooth vorticity and density profiles are considered. The eigenvalue problem
is solved using Chebyshev collocation, and the dominant azimuthal wavenumber and
growth rates are obtained for various conditions. Section 4 consists of direct numerical
simulations, of inviscid flow, and of viscous flow at finite diffusivity, by a spectral
method. The inviscid simulations include a small hyperviscosity and hyperdiffusivity
which cutoff numerical (and other) contributions to high wavenumbers. Linear effects
are displayed up to some time, with good qualitative agreement with the predictions
of §§ 2 and 3. Afterwards vortex roll-up and other nonlinear effects are seen, including
the appearance of a turbulence-like state at later times.

The predictions made here have relevance whenever a vortex and a relatively
sudden density change coexist in the same neighbourhood. A cyclone close to a
coastline, moving towards it with a velocity component parallel to it, could be one
such situation. The actual contribution of the present instability in weakening the
cyclone are unclear, since a cyclone is a complicated entity with barriers which protect
it from annihilation, but it would be revealing to examine this problem using the
non-Boussinesq equations. Other situations where this mechanism could apply would
be in modifying submarine signatures or in an aircraft trailing vortex descending in
a stratified atmosphere.

2. Inviscid stability analysis
2.1. A point vortex and a sharp density interface

Consider a point vortex of circulation I" located at an initially straight density
interface, with a jump Ap in density across it. The flow is taken to be inviscid, and
with zero diffusivity (« =0) of the density field. The initial interface is represented
as a horizontal line in figure 1 but, since we do not take gravity into consideration,
its orientation does not matter. The point vortex causes a spiralling of the density
interface, whose evolution is shown in the same figure. Note that each point on the
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FIGURE 2. An instantaneous radial cross-section of the density profile showing the 3 scaling
of the spacing 1 between neighbouring density jumps. If the diffusivity were to be finite, the
density would be homogenized to its average value at radial distances below r,. Both the
homogenized front and the location r; of the largest spiral move radially outward with time
as t'/2. For large Pe, ry > ry.

interface moves in a circular path at an azimuthal velocity U = I"/(2nr), where r is
its radial distance from the vortex. In the initial phase of the dynamics, the interface
advects passively, until its configuration allows instabilities to set in. This will be
confirmed in the numerical simulations of the full equations in §4.

At a given time ¢, let r, be the radial location where the interface has completed
n full rotations as shown in figure 2. Then n = I't/4n’r2, and the spacing 4, between

n’

two zero crossings for density jumps of same sign is given by

Tt I
Iy =Fa = g1 = | e — | . 1
e Ve S | P T ) 2D

To obtain the spacing between jumps of opposite sign, n + 1 must be replaced by
(n+1/2) in the above formula. For large n, the spacing between successive turns of
the spiral thus scales as

3

Iy ~ —. .
I't (22)

Figure 2 shows an instantaneous density profile at time ¢ in a radial cross-section across
the spiral structure. The density jumps alternately to the values p; and p, = p; + Ap of
the light and heavy fluid, respectively. In accordance with (2.2), the spacing between
successive jumps rapidly increases away from the origin with an r* scaling. If for
a moment we take the diffusivity « to be small but non-zero, corresponding to a
finite Péclet number Pe=I"/k and a diffusion length scale I, ~ (kt)!/?, we see that for
A <1y, diffusion would have erased the jumps, and homogenized the density to its
average value o4, = (0; + p1)/2. The radius r, of this homogenized front would scale,
given (2.2), as

Th L pels3, (2.3)
La

while inertia would dictate that the spiral extend up to a radial distance

ry ~ 1y Pe'?. (2.4)



Vortex-induced instabilities due to density stratification 419

The instantaneous size r,; of the spiral may be taken, for example, to be equal to the
location where the interface has completed one rotation. For a Péclet number tending
to infinity, we expect many density jumps to exist between r, and r,. By different
and more general approaches, Moffatt & Kamkar (1983), Rhines & Young (1983),
Flohr & Vassilicos (1997) and Bajer, Bassom & Gilbert (2001) had obtained scaling
equivalent to (2.3) for the accelerated diffusion of passive scalars near a vortex, due
to the accumulation of discontinuities. Incidentally, Gilbert (1988) showed how spiral
structures forming around coherent vortices affect the spectrum of two-dimensional
turbulence.

We now study the linear stability of an instantaneous snapshot of the flow, taking
the base flow to be slowly varying in time. The assumption is akin to the parallel flow
approximation in space for spatially developing flows such as in boundary layers,
and is valid when the change in the structure is much slower than the frequency
of the dominant disturbance, which we shall see to be the case for disturbances of
high azimuthal wavenumber. We first appproximate the spiral density interface by
concentric circles of radii r;, j=1,2,3,...n which are spaced as r; —r;_; ~rj3. The
fact that the spiral is different from a series of circles is also important, and instructive
to study separately. This is done in § 2.2. Here n step changes in density are under
consideration, and the density (for r > r;,) is given by

(=1
2

The density of the innermost layer, just beyond r,, hops between p, and p, with time,
and subsequent jumps alternate in sign. The vorticity and density balance equations
are given in the inviscid, infinite Péclet number limit by

P = Pave £ Ap, rion <r<rj. (2.5)

DR Du

D2 o Du 2.6

Por = VP X o (26)
Dp
=P _y 2.7
Dt ’ 27

where D/Dt=09/0t +u-V,and u =(u,e,, ugey), 2 and p denote the velocity vector (of
radial and azimuthal components), the vorticity and the density respectively. The flow
is taken to be incompressible, so V-u =0. If the density in (2.6) were to be replaced
by its average value, that would constitute a neglect of non-Boussinesq effects. The
right-hand side would then be zero, and the flow would remain irrotational forever
except at the origin. For small Atwood number

Ap
on+ o
this approximation is made most often, but we shall see that not making this
approximation is crucial to obtaining the correct, and dramatic, dynamics of this
flow.

Linearizing (2.6) about the base flow, assuming the perturbations to be of normal
mode form, e.g. i, =u,(r)expli(mé — wt)], and eliminating uy, we get

2 = — !/
{r,;)(w_ml]) (u',+ur>+r'0<U’+U>u,} —,E(a)—mU>u,
m r r m r r

2U u ~U?p
—p—(u.+—")=—-—""—u,. (29
- (u’+ r) r(a)—mU/r)u 29)

(2.8)
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Around a point vortex, the mean azimuthal velocity U =1TI/(2nr), and the
primes denote differentiation with respect to the radial coordinate r. The step
changes in density shown in (2.5) correspond to delta functions in its derivative,
o' =(—1)"Aps(r — r;). Away from the discontinuities, (2.9) may be simplified to

U
SJu, = (a) — m) [r*u) + 3ru, — (m* — Vu,| + mr'u, = 0. (2.10)
r

For a point vortex, the gradient of the vorticity £2'=0 for r >0 (but 2’ assumes
non-zero values in §2.3). The solutions are of the form

u, = Pir" 4+ Qir j=0,1,...n. (2.11)

Since u, is a linear eigenfunction, one of the constants P;, Q; may be fixed arbitrarily.
The remaining 2n + 1 constants and the unknown eigenvalue w may be resolved as
follows. The perturbed density interfaces are located at r =(r; +1;), j=1,2,3,...n.
Integrating (2.9) between n; — € and n; 4+ € for ¢ — 0 we get n jump conditions

rp mU 7S rp (., U —U%u, _
An{mz (“") (w5 + (U +r> ”’}‘ (r(w—mU/r))nA"(p)’
(2.12)
where

An{f} = f|rj+rzj+0 - f‘rj‘Fnj*O' (2.13)
Recognizing that u, is continuous at each interface, and decays to zero both at r =0
and as r — oo, gives n + 2 more conditions. The system may then be simplified into
a dispersion relation for w in the form of a polynomial of degree 2n.
For a single circular density jump at r =r; the dispersion relation is

_ n11"+\/_m1"2 (Po — p1)

w = L ’
ri ri (po+ p1)

(2.14)

and the frequency and growth rate of the perturbation are given respectively by
the real and imaginary parts of w. The flow is unstable to perturbations of any
azimuthal wavenumber when py > p;, i.e. when there is heavy fluid inside and light
fluid surrounding it. This result is perfectly analogous to a planar RT instability (see
e.g. Drazin & Reid 1981), with gravity replaced by the centrifugal acceleration at a
given radius. We shall return to this in §2.3. It may also be derived from Rayleigh’s
criterion for centrifugal instability, modified to account for density. In this context,
von Karman (see Lin 1955) proposed that d(pU?*r?)/dr =0 for stability. Yih (1961)
showed that the above criterion is neither necessary nor sufficient, and that dp/dr =0
and d(U%r?)/dr >0 are required separately, for stability. Other stability criteria have
been formulated, notably by Howard & Gupta (1962) and Leibovich (1969) for
axisymmetric and non-axisymmetric disturbances. A comprehensive review is given in
Sipp et al. (2005). Fung & Kurzweg (1975) and Fung (1983) wrote down expressions
similar to ours above for simple artificially prescribed circular RT+KH situations.

In the present flow, 4m>U?r? = I'? is constant for r > 0, while Yih’s first criterion (Yih
1961) is violated when light fluid surrounds heavy. The perturbation eigenfunction
describes a circular vortex sheet at r; of strength

Aug = —2iu,,

which is independent of the density difference. When the density difference Ap goes
to zero, the system would support a neutral mode with the above eigenfunction, one
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FIGURE 3. Maximum growth rate of disturbance as a function of the number of density
jumps. The solid lines correspond to m =5 and the dashed lines to m =2. The circles show
the growth rate with the innermost fluid layer being heavy, at p, = 1.05, while squares are for
this layer being light, at p;, =0.95. The first two jumps are located at (a) r{ =0.1,r, =0.102
(b) 1 =0.1,r, =0.105, with the remaining jumps spaced out as 3. The growth rate has been
normalized by I'/r}.

among the continuous spectrum of non-Kelvin modes (A. Roy & G. Subramanian,
personal communication). Just as a disturbance of small wavelength in a boundary
layer does not perceive the downstream growth of the boundary layer, a disturbance
of large azimuthal wavenumber riding on the interface at a certain radial location
does not perceive the time variation in the spiral structure of the interface. At low
wavenumbers too, our results shown in figure 3 indicate that the growth rate of
the instability is insensitive to the spacing between the jumps, so a frozen interface
approximation appears to be valid here too. However, for completeness, a global
instability analysis accounting for the time variation of the spiral would be warranted.

Figure 3 shows the growth rate w; of the instability with multiple density jumps
of size Ap = 1 0.1, obtained using Mathematica. The single jump (n=1) result is as
in (2.14). In the two jump case, the second jump, being of opposite sign, partially
neutralizes the first. When the initial jumps are very closely spaced, the growth rate
oscillates with the addition of jumps as shown in figure (3a), but when they are not
too close (figure 3b), the growth rate after the first few jumps is insensitive to further
addition of either a stabilizing or a destabilizing jump. Note that the growth rate of
the instability is substantial, of the same order of magnitude as the inverse of the
inertial time scale, whether the first jump is positive or negative. In other words, the
flow is quite unstable irrespective of whether the central region is light or heavy. This
result is different from the requirement of a heavy core in earlier work on a single
stratified layer (Joly et al. 2005; Sipp et al. 2005). The eigenfunctions in the radial and
azimuthal direction corresponding to five jumps with a heavy inner layer are shown
in figure 4, the behaviour is as expected.

2.2. Deviation of a spiral density interface from a circular interface
We have so far assumed the density interface to be in the form of several concentric
circles, while it actually is two continuous spirals originating from the flat interface
on either side of the vortex. At a given time ¢, the spiral interface created by a point
vortex is described in cylindrical polar coordinates by

I't
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FIGURE 4. (a) Radial and (b) azimuthal eigenfunctions for a point vortex with 5 density jumps
placed with an r® spacing, corresponding to the point marked X in figure 3(b). The solid and
dashed lines show the real and imaginary parts, respectively.

FIGURE 5. A Lituus spiral describing the instantaneous shape of one side of the density
interface. The dashed lines describe circles. It is seen that the assumption of a circular jump
made hitherto is better at smaller radii, or at later times at a given radius.

The instantaneous interface is thus a pair of Lituus spirals (one among the
Archimedean class of spirals), one of which is shown in figure 5. From (2.15) we
may obtain the angle o between the spiral and a circle sharing the same origin and

radius as
2

tana = 2, (2.16)
I't

so the assumption of a circular interface is better at smaller radii or late times.

Returning to the vorticity (2.6) and assuming that the effect of the circulation I" of
the point vortex is far greater on the basic flow than of that which is newly created,
we may write

(2.17)

Dt o
Under this approximation, the streamlines remain circular. In §4 this approximation
is shown to be valid even up to the nonlinear regime at later times (figure 18a). We
see that vorticity is created whenever the gradient of the density is not strictly radial,
i.e. for any deviation from a circular interface. Note that this too is a non-Boussinesq
effect. Since Vo= + Apé(ré — ré,)n, where n is a unit vector in the direction normal

D2 % [V,

—e,
r
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j  Ap (AUp); ; (CRT alone) o; (CRT + SKH)
1 0.1 —0.805 0.5 0.6469
2 —01 0.720 0.4783 0.5364
3 0.1 —0.634 0.4795 0.5568
4 —0.1 0.547 0.4789 0.5407

TaBLE 1. Rates of instability growth for a purely centrifugal RT instability and a combined
CRT and SKH instability with multiple jumps. Larger growth rates are obtained for the
combined instability. The number of jumps is denoted by j. The size of the density jump Ap
and that of the last velocity jump (AUpy); across the interface are fixed arbitrarily. At later
times or lower radius, AU, would be much higher, so the SKH can give rise to extremely large
disturbance growth rates. Here r{ =0.1, r, =0.105 and m =5. Column 4 corresponds to the
uppermost curve in figure 3(b).

to the spiral, using (2.16) we may write
DR - +Ap Ui2 1 5
Dt pue r (1+462)172

The above equation may be integrated in time at a given r, i.e. moving with the
interface on its circular path, to give

(r6 —roy). (2.18)

Q2(r,1) = TAU log (26, + (1+462)*)5(r0 — r6,) = AUS(r0 —r6,).  (2.19)

At high 6;, i.e. at large time at a given radius, we have

or
AU, ~ Fo4U log (n;) . (2.20)
r

At every unstable density jump, negative vorticity is created and vice versa, resulting
in heavier fluid travelling faster and lighter fluid slower. A spiral Kelvin—-Helmholtz
(SKH) instability thus ensues, and combines with the centrifugal Rayleigh—Taylor
(CRT) instability. We shall see in figure 18(b), §4 that such jumps in the azimuthal
velocity are obtained in the full numerical solution as well. For a single jump,
approximating it to be circular for the purpose of studying the instability, we now
have the dispersion relation

(p1Uf — poUg)(po + p1)
;OoU0+/01U1i\/ Sl Omo o popi (U — Uy,

_m
ri(po + p1)

(2.21)
where Uy=U and U; =U + AU,. The first term under the square root sign would
reduce to a radial gravity term if we set the velocity difference to zero. The second
term under the square root sign is responsible for the SKH instability. At short times,
AUy is small, so the instability reduces to the Rayleigh—Taylor one of (2.14). At large
times or at low Atwood number, instability growth would be dictated by the velocity
jump AU,. Given that AU, increases logarithmically in time, we have a spiral KH
instability with a slightly faster than exponential growth rate, i.e. u, ~¢'.

Table 1 compares disturbance growth rates between a purely CRT instability and a
combined CRT and SKH instability. Depending on the time chosen, the growth rates
for the combined instability can become extremely large. In any case, the combined
instability has a larger growth rate than the CRT alone. Note that the interface is
unstable everywhere, irrespective of the local sign of the density jump.
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FIGURE 6. (a) Comparison of the growth rates due to a Rankine vortex with r.=1 and a
point vortex for .7 =0.005 with m =2 and (b) stability domain in the ./ —m plane for various
jump locations. The region above each curve is unstable, and solid lines between integer values
of m are only to guide the eye.

In the work of Reinaud et al. (2000), the flow is of mixing layer type, and therefore
already unstable. Baroclinic torque in that case serves to increase the vorticity in one
part of the mixing layer allowing a secondary instability to set in, thus contributing to
a speeding up of the breakup process. In contrast, the SKH is a primary instability,
with the vortex sheets entirely generated by baroclinic torque. In combination, the
SKH and CRT instabilities rapidly destabilize a flow which would otherwise survive
for an extremely long time.

2.3. Rankine vortex

The point vortex is replaced by a Rankine vortex, with a core of radius r. and
constant vorticity £29. The vorticity outside is zero. As will be seen in the numerical
simulations in §4, the exact form of the vorticity does not affect the results much so
long as it is concentrated within a small core. The approach for obtaining disturbance
growth rates is as before, except that we obtain a polynomial equation for w which is
one order higher, e.g. a cubic for a single jump in the place of the quadratic (defined
in (2.14)).

As expected, a jump far away from the core responds exactly as to a point vortex,
so the primary effect of a finite core is in the case where a jump is placed in the
vicinity of the core. As can be seen in figure 6(a) the instability growth rate is constant
and has a large value when the density jump is placed inside the core. This could
ultimately lead to the destruction of the core. Configurations similar to the one in this
subsection, i.e. instabilities due to heavy-cored vortices, were studied by Sipp et al.
(2005) and Joly et al. (2005). In both, Gaussian vorticity and density profiles were used
instead of the discontinuous profiles used here. Due to this, quantitative comparisons
with their results cannot be made. Qualitatively, in their case too, instability with
large growth rate was found. For density jumps inside the core, growth rate saturates
at a large value as the location of the density jump approaches the origin. A similar
feature was observed by Joly et al. (2005) (see their figure 6a) when the density core
was made very small.

When the density jump is placed close to the edge of the core, figure 6(a) shows
that the instability vanishes suddenly. This result is in qualitative agreement with Sipp
et al. (2005), who found stabilization when the density-stratified layer overlapped with
the region of high shear. A similar observation was made indirectly by Joly et al.
(2005). This stabilization may be seen explicitly in the simplest case when the density
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jump is exactly placed at the edge of the Rankine core. There the growth rate is
described by a quadratic rather than a cubic equation in w, and written as

w=m — lﬁos(li\/l—m(l—sz)) , (2.22)

where s = p;/pj. This puts a condition m > 1/(1—s2) for instability. The cubic equation
in w, when the two discontinuities are near each other but do not coincide, gives
solutions consistent with this condition. From these solutions, we may say a little more
about the neutral region seen in figure 6(a). As Ap — 0, we recover the neutral Kelvin
mode, and a mode with w =mU/r in the continuous spectrum. When Ap # 0, apart
from this Kelvin mode with modified frequency, two neutral waves are supported,
which travel in a direction opposite to the previous continuous-spectrum mode. These
additional waves are analogous to internal gravity waves in a planar problem with
gravity. On either increasing .&/ or m, these waves destabilize. Density variations
within the vortex core and near the edge often give rise to interesting features, such
as a destabilization of a lighter core in some cases. These are being studied, and are
not discussed further here to avoid diversion from our present focus.

In this idealized model, the instability grows indefinitely for any .o/ as w; ~ \/;71
In reality, at high Péclet number, a mode with azimuthal wavelength comparable to
the thickness of the density-stratified layer will grow faster than the others, similar
to what would happen in a planar situation (Drazin & Reid 1981). Diffusivity and
viscosity would further affect the results, as shown in the next section.

3. Viscous stability analysis

Rather than a parametric study, which is very tedious given the number of
parameters involved in the viscous problem, the purpose of this section is to present
characteristic results, some of which will serve for comparison with the numerical
simulations of §4. We restrict ourselves to Atwood numbers between 0.05 and 0.2,
and the relevant Reynolds numbers are 2000 and above. We present results for (i)
the effects of viscosity on the CRT instability with one and two density jumps, and
(i) the effect of viscosity, interface thickness, and Atwood number separately on the
combined CRT and SKH instability for two jumps. This is deemed sufficient since it
has been demonstrated in §2 that the result for multiple jumps is well approximated
by that for two jumps in either order. We again assume that the density interface is
circular, and introduce vortex sheets at the density interface as described. The edge
of the Rankine vortex, and the density profile within each density interface are made
smooth by specifying £2/$2o = (1—tanh((r —r.)/d))/2 and p/p, = 1 £/ tanh((r —r;)/d)
in the neighbourhood. For simplicity the smoothing parameter d is kept the same
for vorticity and for each density interface. The equations are non-dimensionlized
by the vortex core size r. as the characteristic length scale, and the velocity at
the edge of the core U, as the characteristic velocity scale. The Reynolds number
is defined as Re=1I"/v, the Péclet number as Pe=1I/k where v and « are the
kinematic viscosity and scalar diffusivity respectively, and the circulation I" =2nU.r..
The Atwood number is defined as .o/ = Ap/(p, + p;). The densities are scaled by
the average density o, = (o, + 0:)/2, pn and p; being the heavy and light densities
respectively. In this study the Schmidt number Sc = v/« is held constant at 10. Higher
values of Sc are expected to show similar behaviour. The stability equations in the
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non-dimensional form may now be written as

U d . i
pridu, +p'r’ Ka)— mr> <r + 1) —i—mﬂ} u, +im*ru*p = RieJVu,, (3.1)

dr

(a) - mU) r’p = —iu,r’p + L,/%,o, (3.2)

r Pe

where the operator .# is as defined in (2.10), and
d* d? d? d
L 34 224 N 2432 .
Ji r dr4+6r dr3+(5 2m”)r 92 (142m )rdr+(m 1)7, (3.3)
d? d
_ (29 a o

/%_<r dr2+rdr m> (3.4)

The boundary conditions are u, =u, =0 at r =0 and r — oo, as valid for m = 2.
Note that since we are restricted to two dimensions, the m =0 mode is unphysical, and
m =1 is only a translational mode causing no change in the structure of the vortex.
Equations (3.1-3.4) are solved as an eigenvalue problem by a Chebyshev collocation
method, with a grid stretching in the density-stratified layer as used in a different
context in Khorrami, Malik & Ash (1989). A typical computational domain size
was 25r. and good accuracy was obtained with 800 collocation points. The stability
calculations were validated by repeating some of the cases of Joly et al. (2005), and
very good agreement was obtained.

In instabilities of this kind, the azimuthal wavenumber m,,,, at which the growth
rate is maximum is usually the most noticeable feature even after the flow becomes
nonlinear (Saunders 1973; Coquart, Sipp & Jacquin 2005; Joly et al. 2005). We
therefore devote some attention to this parameter, and first examine how it varies with
Reynolds (or equivalently, Péclet) number for a single density jump in CRT instability.
In planar RT instability, increasing viscosity progressively stabilizes short wavelength
perturbations, and therefore reduces the wavenumber of the ‘most dangerous’ mode
(see Chandrasekhar 1961; Duff, Harlow & Hirt 1962). The same physics may be
expected in CRT, and figure 7 shows that m,,,, increases with Reynolds number for a
fixed base flow. There was no surprise in the qualitative dependence of the single jump
CRT instability on the interface thickness d. The maximum growth rate (not shown)
occurs for the thinnest profile, and with an increase in d the instability saturated at
a smaller wavenumber, roughly as d*> ~ 1/m, the reason for this scaling is unclear at
his point.

We now examine the effect of introducing a second density jump, with the inner
jump destabilizing and the outer one stabilizing. The thickness of the jumps is fixed
at d =0.02r.. Figure 8 shows the frequency and growth rate of the CRT instability as
functions of m and Re. The highest Reynolds number shown is close to the inviscid
result (not shown). The growth rate, the m,,, and the range of unstable modes
all increase as the Reynolds number increases, as is to be expected. The frequency
on the other hand remains similar to the inviscid predictions, showing a very weak
dependence on Reynolds number.

So far, only the effects of density have been considered. We now allow both CRT
and SKH instabilities to operate in combination. As a suitable base state, we chose the
flow field at a non-dimensional time, which is 30 for the results presented. Choosing
the location of the first jump then dictates that of the second, using (2.1) and noting
that (n + 1/2) should be used in place of (n + 1), since the second jump, belongs to the
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FiGure 7. Effect of Reynolds number on a single density-jump CRT instability. The azimuthal
wavenumber corresponding to maximum disturbance growth rate is shown, with d =0.02r,,
rj =2r., o/ =0.05. A schematic of the base flow profile is shown in the inset.
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FIGURE 8. Frequency and growth rate of the most unstable CRT mode for a smooth vortex
with two circular density jumps at r; =2r. and r; =2.5r.. o/ =0.05, and d =0.02r.. The first
jump is from heavy to light and the second jump from light to heavy. A schematic of the base
flow profile is shown in the inset.

spiral sheet originating from the opposite side. The vorticity generated at the density
interfaces due to the baroclinic torque is in the form of thin spiral shear layers. Since
the spectral collocation method requires smooth profiles to produce reliable results,
we approximate them to be circular steep Gaussians of the sign of the density jump.
The idealized base flow vorticity is therefore prescribed to be

go=;<1—tanh [(r rC)})—i—ZP exp[ r]) ] (3.5)

For simplicity, the same base flow vorticity and density profiles are used to study
the effects of viscosity. Though in reality, such an initial condition would relax on the
viscous time-scale to a Gaussian distribution. Studying diffusive effects with jump-like
profiles has been carried out in the past by Villermaux (1998), Chandrasekhar (1961)
and Duff et al. (1962). Hence only a qualitative comparison of these viscous results
can be made with experiments or DNS. Figures 10(a) and 10(b) show growth rates
from inviscid and viscous stability analysis, respectively. The Atwood numbers used in
the two cases are 0.2 and 0.1 respectively, which enable comparisons with simulations.
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FIGURE 9. Azimuthal velocity profile outside the vortex core at t=30 (in the simulations
shown in figure 12). The initial velocity profile used in the numerical simulations has been
shown for reference, along with the profile used in the stability analysis. A similar profile
would also be obtained at t=40 (shown in figure 12).

The first jump is located at 1.3r, and the location of the second is obtained to be
1.57r. from (2.1), which is rounded off to 1.6r.. For simplicity we use = — P, =1
in (3.5), the value chosen to roughly agree with the sheet strengths in the simulations
at + =30 (see §4, figure 12). The constructed stability profiles are compared with
the actual numerical simulation profiles shown in figure 9. Also shown is the initial
velocity profile in the simulations. To show that the jump sizes are indeed in good
agreement, a slightly shifted stability profile is shown.

For the smallest thickness considered, d =0.01r,, the inviscid instability peaks at a
very large value of m. For larger d, there is a non-monotonic variation of w; with
m, which can be explained as follows. When the interfaces are thin, the dominant
wavenumber is selected by their thickness, hence a large wavenumber instability is
obtained. However, as the interface thickness becomes comparable to the distance
between them, the fact that each interface contains a diffused vortex sheet makes the
small wavenumber modes respond as to a wake-like base flow, and so the fastest
growing azimuthal wavelengths are comparable to the interface spacing rather than
the thickness. Very large wavenumbers again display increasing growth. A similar
study with two density jumps was carried out (not shown) on the CRT instability
alone, and no such behaviour was obtained in that case. The nonmonotonic variation
of the growth rate with m is thus a feature of the inviscid, combined CRT and SKH
instability.

The major effect of viscosity (figure 10b) is that the dominant wavenumbers are
now much smaller, in the range of 3-5, and decreasing with Reynolds number. Also
with a decrease in Reynolds number, the growth rate drops considerably. These results
will be seen below to be in agreement with simulations. A critical Reynolds number
R., is very difficult to define in this case since there are many parameters. An example
each of stabilization due to decreasing Atwood number and increasing thickness are
given by the dashed line and the filled circle in the figure, respectively. Note that the
growth rates in figure 10(b) are lower than in figure 10(a) in large part because of
the lower Atwood number.

The KH instability is not studied here in isolation, since it is not relevant to our
flow, but we remark that planar shear layers are insensitive to viscous effects at high
Reynolds numbers Villermaux (1998).
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FIGURE 10. Growth rate for the combined CRT and SKH instability with a smooth vortex
and two circular density and velocity jumps of same size at r{=1.3r. and r, =1.6r, (a)
for varying thickness with inviscid analysis, .27 =0.2, circles: d =0.01r,, solid: d =0.02r,,
squares: d =0.03r.. The base flow is shown schematically in the inset. (b) Viscous analysis
at various Reynolds numbers for .o =0.1,d =0.05r.. The dashed line is for Re=2000 but
with o7 =0.05,d =0.05r.. The lone black filled circle shows the highest growth rate for
Re=2000, o =0.1,d =0.2r., r, = 1.4r,.

4. Direct numerical simulations

The complete problem including non-Boussinesq effects is now solved by direct
simulations. Again gravity is not considered. Both inviscid and viscous simulations
are carried out, in Cartesian coordinates in a doubly periodic domain using the Fourier
pseudospectral method. In all the results presented here, we use 1536 collocation points
in each direction without dealiazing. No visible difference was found with dealiazing.
Results did not vary significantly for grid sizes of 1024 and 2048. The computational
domain is 15nr,. for the inviscid simulations and 20mr,. for the viscous simulations,
which is large compared to most numerical simulations found in literature. Varying
it did not alter the features of the instability. In all the figures below, x and y shown
corresponds to the actual domain size scaled by a factor of m. The effects of using
periodic boundary conditions for problems involving an isolated vortex is discussed
in Joly et al. (2005) and Josserand & Rossi (2007). The residual vorticity produced
because of the imposition of the periodic boundary conditions is about 800 times
smaller than the vorticity of the central core at early times. With the production
of baroclinic vorticity, this residual vorticity becomes 3800 times smaller than the
peak value of the vorticity in the flow field. Therefore, the results of our numerical
simulations can be considered to be a faithful representation of an isolated vortex.

The time discretization is done through an Adams—Bashforth scheme. We split the
total density field as p=p;(y)+ p(x, y, 1), where p; is the initial density field and
p has information of the time evolution of the density. This allows p to remain
a spatially periodic function, with a period equal to the domain size. As in §2.3,
we non-dimensionalize the governing equations using the vortex core size, r. as the
characteristic length scale, §2; as the characteristic scale for vorticity such that the
circulation I' = 2ymr2. In Cartesian coordinates, the equations in velocity-vorticity
formulation in the non-dimensional form are

D2 1 (dp,- 8;)) Du 1dpDv 1

Dr ~p\dy T9y)Dr pdxDr | Re

Vi, (4.1)

Dp 1,
_ ~ 42
Dr ~ pe’ P (42)
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FIGURE 11. Density field forming a Lituus spiral around a Rankine vortex in an inviscid
simulation treating the density field like a passive scalar. The vorticity field (not shown) is
unchanged from its initial value. The black and white regions correspond to light and heavy
fluid respectively. This image is formed at r =100, by which time the flow will be seen to
undergo a complete breakdown in the full simulations including non-Boussinesq effects. The
time ¢ is scaled by nr2/T.

du  dv
o + By 0, (4.3)
where ¢ is the order of the diffusion term used, and densities are scaled by the
average density. In the viscous case, g =2 and Re=1I/v and Pe=1I/k are the
Reynolds and Peéclet numbers, respectively. In the inviscid simulations, hyperviscous
diffusion of the vorticity and density fields is included by setting ¢ =6, and Re and
Pe, defined respectively in this case as I'r?/v, and I'r#/k;,. The hyperviscous Re
and Pe were nearly 2 x 10!, Using twice or half of these values did not change
the results qualitatively. A similar approach was used, for example, by Neilsen et al.
(1996) for studying inviscid vortex merger. The purpose of the hyperviscosity is
to damp out spurious numerical modes of large wavenumber, and the diffusion
it causes is found to be very weak, so these simulations are referred to here as
inviscid. An initial vorticity in the form of a smoothed Rankine vortex, as in §3 is
used for the inviscid simulations. A Lamb-Oseen vortex with 2 = 2y exp[—r2/r?]
defines the initial vorticity in the viscous simulations. A range of Reynolds numbers
from Re=500-10000 were studied, and three of them are shown here as being
representative. For Re larger than the range studied, the resolution was found to be
insufficient at later times to capture the thin spiral structures. And for Re smaller than
2000, dissipation was too rapid for the density gradients to play any significant role.
The Atwood number was also varied from 0.05 to 0.4, and it was found that lower
Atwood numbers required thinner interface thickness to display the instability. At
o/ < 0.05 this could lead to difficulties in numerical resolution. In each case, the vortex
is placed at a horizontal interface separating fluids of different densities. The interface
is in the form of a thin layer within which density varies in the vertical coordinate as
a hyperbolic tangent. The straight interface is in contrast to the axisymmetric initial
density profile with a heavy core in the numerical simulations of Joly et al. (2005).
The nonlinear terms on the right-hand side of (4.1) are computed in physical space.
For comparison, we first carry out an inviscid simulation without any inertial effects
due to density stratification. The density field is advected passively into Lituus spirals
as is evident in figure 11. The vorticity field is not shown, but is practically unchanged
from its initial configuration even at the final time. This also shows that for the
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simulations considered in this paper, hyperviscous simulations suffice to reproduce
inviscid behaviour.

We contrast this result with that from a full simulation including non-Boussinesq
effects, shown in figure 12. It is immediately evident that density in this situation is
not a ‘passive’ scalar, even though the Atwood number is low and there is no gravity.
The vorticity profile is completely different from the simulation shown in figure 11.
Vorticity of alternating sign is now produced in the form of two interwound spirals,
i.e. along the density interfaces, consistent with (2.19). The vorticity across an unstable
density jump is negatively signed, while positive vorticity is produced across every
stable density jump. The two spiral vortex sheets we now have are unstable in the KH
sense. The combined action of this and the density jumps is evident in the instability
displayed at later times. The instability, once visible, grows rapidly. The spiral vortex
sheet then rolls up into blobs, indicative of the dominance of the SKH instability. A
final breakdown soon follows. The Atwood number in this simulation was 0.2. Note
that the time ¢ =30 of the stability analysis is well before the onset of instability as
can be seen in figure (12). At this time, the first visible jump in the simulations is
located close to the value 1.3r. used in figure 10(a). Consistent with (2.1) and the
same figure, the second jump was found to occur at 1.57r.. The width of the vortex
sheet was found to lie between 0.035r, and 0.05r, which is comparable to the largest
value d =0.03r, used in the stability analysis. The azimuthal wavenumber of about
11 as seen in the simulations corresponds to a wavelength of the same order of
magnitude as the thickness of the interface. It compares well with a wavenumber of
8—12 obtained from the inviscid stability analysis for comparable interface thickness
in figure 10(a).

A viscous simulation at Re =8000 is shown in figure 13. Snapshots of the density
field are also given for Re=6000 and Re =2000 in figure 14. The Schmidt number
is fixed at 10 as in §3, and the Atwood number is 0.1. The trend in figure 13 is
very similar to that in the inviscid simulation. Note that the main vortex used here
is Lamb—Oseen while the stability analysis is carried out with a Rankine vortex. We
therefore make only qualitative comparisons in the viscous case. A direct comparison
with the viscous stability results of figure 10(h) cannot be made owing to differences
in the base flow profiles. The original vortex is no longer discernible at the end of the
simulation. This is in contrast to what happens when the density field is treated like a
passive scalar at this Reynolds number, where the original vortex is slightly diffused
but otherwise undisturbed. The inertial effects of density stratification thus act in
accelerating the collapse of the vortex. Note that non-Boussinesq effects are strong
even at low .7 because it is the size of the gradient of density which is important, not
the density difference alone.

The instability is less clearly defined for Re=6000, but one may discern that
the selected wavenumber is even smaller, at about 5. No instability is visible at
Re=2000. A quantitative comparison of this result with the stability predictions is
not straightforward due to the number of parameters involved which are sometimes
difficult to estimate. The effective core becomes smaller in the simulations than the one
we begin with, as discussed below, so the location of the jumps with respect to the core
is difficult to estimate. The effective Atwood number in the central region decreases
progressively due to the centrifugal forces making the core lighter. The thickness of
the diffused layer is difficult to estimate from numerical results. Given the differences
between the simulations and the idealizations made for stability analysis, both in
viscous and in inviscid flow, we may conclude that a good qualitative agreement is
achieved.
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FIGURE 12. Evolution of the vorticity (a, c, e, g, i) and density (b, d, f; h, j) fields in the inviscid
simulations. The time ¢, non-dimensionalized with respect to the period of rotation of the
vortex core nr2 /I, is 0 (a, b), 40 (c, d), 45 (e, f), 50 (g, h) and 55 (i, j). Note that the scale for
(a, b) is different from others. The Atwood number is 0.2.
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FiGure 13. Evolution of the vorticity (a, ¢, e) and density (b, d, f) fields in the viscous
simulations. The picture at the initial time is the same as that in figure 12, except that a
Lamb-Oseen vortex is used here instead of a Rankine. The time ¢, non-dimensionalized as
before, is 40.7 (a, b), 76.4 (c, d), 96.76 (e, f). The Reynolds number is 8000, the Peclet number
is 80000 and the Atwood number is 0.1.

In order to compare the growth rate with stability analysis, the amplitude of
oscillation of the interface was manually extracted from the numerical data. This
was possible to do relatively reliably only for the inviscid simulations, and so we
present results for only this case. The instability becomes visible after a time 7 > 44.
The amplitude 5 of a given undulation was measured by hand at various times, after
t =44 when the instability becomes visible, till nonlinear effects become important at
t ~53. The superimposition of two such measurements at different phases is shown
in figure 15. A exponential fit gives growth as exp(0.32¢). At the time and innermost
radius of onset of instability, it was estimated that the thickness of the spiral interface
was approximately 0.05r.. In the instability predictions of figure 10(a), w; for this case
is approximately 0.37. The jump in velocity in the stability analysis was prescribed to
match the simulations, but there are still many differences between direct simulations
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FIGURE 14. Snapshot of the density field in a viscous simulations with (a) Re= 6000,
Pe=60000 and (b) Re=2000, Pe=20000. The instability in (a) is qualitatively similar
to figure 13, whereas there is no instability in (b) owing to smaller centrifugal forces and more
rapid homogenization.
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FIGURE 15. Growth rate extracted from the numerical simulation of figure 12. The straight
line is an exponential fit. The stability analysis of figure 10(a) predicted a growth as
exp(0.37¢).

and the stability analysis of a simplified problem. This comparison may thus be
considered quite good. In §1 the SKH disturbance amplitude was predicted to grow
as t”'. Given the small duration of the numerical instability is is difficult to differentiate
between this and a pure exponential growth. A fit of this form is also shown in figure
15, with b ~ w; /t.,, Where t,,, = 50.

In the simulations, since we have a density interface of finite thickness, two points
on the interface initially separated by a small distance [, are stretched apart due to
the spiralling. We have from (2.15),

I(r, t)

lo
Due to this steepening of the density gradient, Gibbs oscillations were encountered
at the later stages of these simulations which prevented the study of the complete
breakdown of the vortex cores. Secondly, in the viscous simulations, at the Reynolds

numbers considered, the grid is not sufficient to resolve all the scales up to the
Kolmogorov scale. Hence, a correct fully turbulent state cannot be achieved in these

= 0. (4.4)
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FIGURE 16. The energy spectrum for the (a) inviscid and (b) viscous simulations at Re = 8000.

simulations. Nevertheless, an examination of the energy spectrum is a useful indicator
of the cascade effects. Figures 16(a) and 16(b) show the kinetic energy spectrum
for the inviscid and the viscous simulations respectively, plotted against the scale
k= (k; 4 k;)'/*. The difference between the inviscid and viscous spectra at the initial
time is because in the latter we use a Lamb—Oseen vortex, while in the former, a
Rankine vortex is used, which includes sharp changes in the velocity derivative at the
edge of the vortex core. This produces a signal with sharp dips at the zeros of the Bessel
function J; (Neilsen et al. 1996). This is because the energy spectrum for an axisym-
metric vortex is given by E(k)=n/k [ £2(r)Jo(kr)dr (Gilbert 1988), so for a Rankine
vortex we get E(k) oc Ji(kr), and a steep tanh vorticity profile behaves similarly.

As time progresses, both spectra broaden and flatten, corresponding to the
emergence of smaller scales. The final state is turbulence-like, but the simulations
are insufficient to make more quantitative statements. In the case of gravity driven
flows, an exchange takes place between the kinetic and potential energies, often with
one growing at the expense of the other. It is instructive to construct an analogy to
this process in the present system. The total energy, given by E, = [ [ p/2(u*+v?)dV,
is a conserved quantity in the absence of viscosity. Writing 5 = p,,. + 0 Where 04, is
constant, we have

E,=E+E,, (4.5)

where E = pg fOL fOL(u2 +v?)/2 dxdy is the kinetic energy based on a constant density,
i.e. the integrand is just the kinetic energy per unit mass, a useful quantity in
stratified flows (Gill 1982). The second term E,= [ [ p/2(u* 4+ v*)dV is analogous to
a potential energy in a system with radial (centrifugal) gravity (~ I"?/r3), and arises
solely due to inhomogeneity in the density field. Such a splitting of the total energy
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FIGURE 17. (a) Variation of E (kinetic energy based on a constant density) with time for the
inviscid and viscous simulations. (b) Variation of total enstrophy with time. Solid line: inviscid
simulations; dashed line: viscous simulations at Re =8000. Symbols: predictions based on
§2.2.

E; highlights the contribution of the density variations, since the quantity E increases
or decreases at the expense of E,. Figures 17(a) and 17(b) show the evolution of

E and enstrophy (Z = fOL fOL £2dxdy) with time, normalized by their initial value.
The residual vorticity is first subtracted from the total vorticity field, from which the
velocity field is calculated. Both the energy and the enstrophy here are calculated
in the physical space. The slight increase in E visible in the inviscid case is due to
density variations acting as a source. In the viscous case this increase is offset by
the dissipation. The net enstrophy in the inviscid case increases continuously since
vorticity is generated continuously at the density interface. The viscous case shows a
small increase at short times and a decay at long times. The difference in enstrophy
production could arise from increased diffusion of the interface, and from the different
initial vorticity distribution. From Kelvin’s law, for a given strength AUy of the vortex
sheet, the vorticity created in the spiral (defined in (2.21)) would increase due to the
stretching of the density interface by the factor given in (4.4). With this taken into
account, the prediction of the total enstrophy is seen in figure 17(b) to agree well with
the inviscid simulations up to some time. The prediction, being for a point vortex, is
of arbitrarily scale so the scales are chosen to match the simulations.

The reduction in instability at large r is easily expected from our analysis, but it
remains to be explained why the instability first begins at a specific radial location,
as observed in figures 12 and 13. From (2.3) the homogenized region around a
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FIGURE 18. (a) Nearly axisymmetric streamlines near the onset of instability for a Rankine
vortex. The time is 50, and the corresponding vorticity and density profiles are shown in figures
12(g) and 12(h) respectively. (b) Azimuthal velocity for a Rankine vortex at the initial time
(symbols) and at t=50 (solid line).

point vortex scales as r;, ~k'/° for a diffusive flow. In the hyperdiffusive case, similar
arguments lead us to r, ~/<2/ '8 The prefactor in these scalings is difficult to estimate,
but we may appreciate that the homogenization in the two simulations is comparable,
and not too small by the time the instability becomes visible. The instability thus
appears just outside r,, at the first surviving jump. In §2.2, we assumed that the
dominant effect on the base flow was from a central vortex, and that the streamlines
would remain circular. The assumption is validated by the streamlines of the inviscid
simulations plotted in figure 18(a). The radial variation of azimuthal velocity at
t =50, seen in figure 18(b), is also consistent with predictions. It is also noticed that
the central vortex becomes significantly smaller and stronger at early times, while
more or less maintaining its circulation constant. The reason for this is that the
simulations begin with a straight density interface within the vortex core, which is
rotated around at early times like a solid object. This results in the production of
opposite-signed vorticity on two halves of the interface within the core, so one part of
the core becomes stronger and the other weaker. The weaker part is then entrained
by the stronger part to give a smaller and stronger core slightly shifted away from
the original centre. A similar drift due to an asymmetric vorticity distribution was
seen by Bajer, Bassom & Gilbert (2004).

5. Discussion

It emerges from this study that the neglect of inertial effects of density stratification
is often not valid in the vicinity of a vortex in density-stratified flows. This is the case
even when the difference of density is small, so long as the interface is thin, making the
density gradient significant, and even when gravity is absent. Non-Boussinesq effects
are especially large in high-Péclet-number flows, and where density changes over a thin
layer. This has been demonstrated by following the evolution of a system consisting
of a lone vortex at an initially flat density interface. The evolution of this system
into a spiral density interface at first, followed by vorticity generation everywhere on
the spiral interface, giving rise to instability and breakdown is predicted by stability
theory and shown to be in qualitative agreement with direct numerical simulations,
both inviscid and viscous. The density field, which would merely have advected as a
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passive scalar if non-Boussinesq effects were neglected, now causes an instability of a
combined centrifugal RT and spiral KH type. The centrifugal term takes the place of
gravity to cause the RT instability. Unlike earlier work on CRT instability, the present
flow is unstable in the RT sense whether the innermost region is light or heavy. This
is because the tightly wound spirals give rise to density jumps of alternating sign. The
small deviation of the spiral from a perfectly circular shape means that the density
gradient is not perfectly perpendicular to the centripetal acceleration. The result is
two oppositely signed spiral vortex sheets whose strength increases logarithmically in
time. The spiral KH instability which ensues therefore grows as ¢'. Both instabilities
give rise to large growth rates, with the SKH dominating at large times. Note that
this prediction is made here by an idealized inviscid model. Physically, the continuous
generation of fresh vorticity at the density interfaces stoking the already unstable
exponential instability, leads one to expect a super-exponential behaviour. However
the difference between the form ¢ and that of a pure exponential growth is small,
and the present simulations are not able to distinguish between them. A larger
computation where the interface could be resolved better everywhere, and the growth
rate could be gleaned to better accuracy, would be needed to check this prediction. At
small interface thickness, the dominant m in inviscid SKH+CRT instability is dictated
by the interface thickness. For higher interface thickness a flapping mode is observed,
with significantly lower m. The viscous analysis shows that decreasing the Reynolds
number, decreasing the Atwood number and increasing the interface thickness all
have a stabilizing effect, as is to be expected. Decreasing the Reynolds number results
in a reduction of the dominant wavenumber as well. A detailed parametric study for
the viscous case is warranted.

The azimuthal wavenumbers seen in the viscous and inviscid simulations were in
good qualitative agreement with the stability results. For .o/ =0.1, no instability was
noticed for Re <2000, while the critical Reynolds number for this Atwood number
and comparable thickness was slightly lower in the stability studies. The grid used in
the present simulations is insufficient to completely resolve the final turbulence-like
state, but the breakdown into a spectrum of small scales, and the annihilation of the
original vortex are evident.

Since inertia and the effective gravity are dictated by the same scales in this flow,
the effective Froude number based on Ap is of O(.«7~'/?). For a thin density interface,
the effective Froude number, which depends on the density gradient rather than on
the density difference, would be much lower ~ (.«Zp'r/p)~'/?, so density would play a
lead role for thin interfaces.

The effect of continuous density stratification is being studied, especially in the
context of vortex merger. The effect of three-dimensionality and the competition
between the new instabilities which would then occur is also of interest.

This work has benefitted from several discussions with Ganesh Subramanian and
Anubhab Roy. Grateful thanks to them. We also benefitted from the incisive comments
of the referees which helped us improve the paper significantly.

REFERENCES
BaJER, K., BassoMm, A. P. & GILBERT, A. D. 2001 Accelerated diffusion in the centre of a vortex.
J. Fluid Mech. 437, 395-411.

BaJER, K., BassoM, A. P. & GILBERT, A. D. 2004 Vortex motion in a weak background shear flow.
J. Fluid Mech. 509, 281-304.



Vortex-induced instabilities due to density stratification 439

BiLLanT, P. & CHOMAZ, J-M. 2000 Experimental evidence for a new instability of a vertical
columnar vortex pair in a strongly stratified fluid. J. Fluid Mech. 418, 167-188.

BranDT, L. K. & Nomura, K. K. 2007 The physics of vortex merger and the effects of ambient
stable stratification. J. Fluid Mech. 592, 413-446.

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.

CoQuarT, L., Stpp, D. & JacqQuin, L. 2005 Mixing induced by Rayleigh-Taylor instability in a
vortex. Phys. Fluids 17, 021703.

Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8, 2172-2179.

Drazin, P. G. & ReIp, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.

Durr, R. E., HArRLOW, F. H. & HirT, C. W. 1962 Effects of diffusion on interface instability between
gases. Phys. Fluids 5, 417-425.

FLoHR, P. & VassiLicos, J. C. 1997 Accelerated scalar dissipation in a vortex. J. Fluid Mech. 348,
295-317.

FoNTANE, J. & Jory, L. 2008 The stability of the variable-density Kelvin—-Helmholtz billow. J. Fluid
Mech. 612, 237-260.

Fung, Y. T. 1983 Non-axisymmetric instability of a rotating layer of fluid. J. Fluid Mech. 127, 83-90.

Fung, Y. T. & Kurzwea, U. H. 1975 Stability of swirling flows with radius-dependent density.
J. Fluid Mech. 72, 243-255.

GILBERT, A. D. 1988 Spiral structures and spectra in two-dimensional turbulence. J. Fluid Mech.
193, 475-497.

GiLL, A. E. 1982 Atmosphere—Ocean Dynamics. Academic Press.

GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.

Howarp, L. N. & GUPTA, A. S. 1962 On the hydrodynamic and hydromagnetic stability of swirling
flows. J. Fluid Mech. 14, 463-476.

ITano, T. 2004 Stability of an elliptic flow with a horizontal axis under stable stratification.
Phys. Fluids 16, 1164-1167.

Jory, L., FONTANE, J. & CHASSAING, P. 2005 The Rayleigh-Taylor instability of two-dimensional
high-density vortices. J. Fluid Mech. 537, 415-431.

JosseraND, CH. & Rossi, M. 2007 The merging of two co-rotating vortices: a numerical study.
Eur. J. Mech. B/Fluids 26, 779-794.

KEersweLL, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83-113.

KHORRAMI, M. R, MALIK, M. R. & AsH, R. L. 1989 Application of spectral collocation techniques
to the stability of swirling flows. J. Comput. Phys. 81, 206-229.

LE1BovICH, S. 1969 Stability of density stratified rotating flows. AIAA J. 7, 177-178.

LiN, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.

Mivazakl, T. & Fukumorto, Y. 1992 Three dimensional instability of strained vortices in a stably
stratified fluid. Phys. Fluids A 4, 2515-2522.

MorratT, H. K. & Kamkar, H. 1983 The time-scale associated with flux expulsion. In Stellar and
Planetary Magnetism (ed. A. M. Soward), pp. 91-97. Gordon and Breach.

NEILSEN, A. H., HE, X., RasMUSSEN, J. J. & BoHR, T. 1996 Vortex merging and spectral cascade in
two-dimensional flows. Phys. Fluids 8, 2263-2265.

REemNAUD, J., JoLy, L. & CHASSAING, P. 2000 The baroclinic secondary instability of the two-
dimensional shear layer. Phys. Fluids 12, 2489-2505.

RHINES, P. B. & Younag, W. R. 1983 How rapidly is a passive scalar mixed within closed streamlines?
J. Fluid Mech. 133, 133-145.

SAUNDERS, P. M. 1973 The instability of a baroclinic vortex. J. Phys. Oceanogr. 3, 61-65.

Sipp, D., FABRE, D., MICHELIN, S. & JAcQuiN, L. 2005 Stability of a vortex with a heavy core.
J. Fluid Mech. 526, 67-76.

VILLERMAUX, E. 1998 On the role of viscosity in shear instabilities. Phys. Fluids 10, 368-373.

YiH, C. S. 1961 Dual role of viscosity in the instability of revolving fluids of variable density.
Phys. Fluids 4, 806-811.



