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We study the effect of density stratification in the plane on the merging of two
equal vortices. Direct numerical simulations are performed for a wide range of
parameters. Boussinesq and non-Boussinesq effects are considered separately. With
the Boussinesq approximation, moderate to high Prandtl number and Froude number
close to unity, there is a monotonic drifting away of the vortices from each other,
and merger is completely prevented. Among non-Boussinesq effects, the inertial
effects of density stratification are highlighted. These give rise to a breaking of
symmetry, and consequently, the vorticity centroid is found to drift significantly from
its initial position. Using an idealized model, we explore the role of baroclinic vorticity
in determining these features of the merger process. C© 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4773445]

I. INTRODUCTION

One of the simplest forms of interaction between vortices is the merger of two co-rotating
vortices as shown schematically in Figure 1. In the last few decades, vortex merger has received a
great deal of attention, especially since it forms one of the basic interaction processes in a turbulent
flow. This is more apparent in two-dimensional turbulence where smaller eddies “merge” to form
larger eddies as the flow evolves, which is believed to be a fundamental mechanism for the transfer of
energy to larger scales. Simultaneously, the merger of vortex cores is almost always associated with
the formation of filamentary debris in the form of tight spirals with very thin cross sections. These
filaments cause a cascade of enstrophy to smaller scales. The first detailed observations of vortex
merging can be attributed to experiments on mixing layers. Freymuth1 observed the coalescence of
vortices in a separated laminar boundary layer. More detailed observations were made by Winand
and Browand,2 who attributed the growth of a turbulent mixing-layer to vortex merger.

Much of the early work involved studies in a purely inviscid context in an unstratified flow.
Brandt and Iversen3 and Rossow4 studied the role of vortex merger in aircraft trailing vortices using
point vortex methods. For finite but inviscid vortices of radii a and separation distance b, it was soon
found that a critical ratio (a/b)cr exits below which a merger process is not initiated.5–8 For a/b <

(a/b)cr these inviscid vortices essentially rotate about their fixed centroid indefinitely with a constant
angular velocity. During the initial stages, due to the straining field of its neighbor, each vortex
supports Kelvin waves,5 which amplify, eventually distorting the vortex to an equilibrium state.
This adaptation process was studied by Le Dizès and Verga9 using direct numerical simulations
(DNS) with various vorticity profiles by monitoring the eccentricities of the vortex core. They
showed that the eccentricity exhibits a damped oscillation and attributed this to the damped Kelvin
modes (quasi-modes) of each vortex,10 which results in an equilibrium state (in a rotating frame).
Equilibrium states for multiple vortex configurations were first studied in the context of finding
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FIG. 1. Schematic of a two-dimensional initial vortex configuration, which will lead to merger. The arrows indicate the sense
of vorticity, such that the two vortices initially describe an anti-clockwise revolution of period πb2

0/�, where the subscript 0
stands for initial conditions, about the vorticity centroid “O.” The 2π� is the circulation of each vortex.

stable non-axisymmetric solutions of the Euler’s equations.11 The stability of these states were then
studied by Saffman and Szeto5 and Overman and Zabusky6 and it was found that these configurations
become unstable if the vortices are too close to each other. This analysis was later extended12 to
many vortices rotating about a common centre. For symmetric systems, to arrive at an equilibrium
configuration, it suffices to analyze the deformation of just one vortex. Equilibrium shapes with
a non-uniform vorticity distribution were studied by Meunier et al.8 to arrive at a more realistic
critical separation distance, which could be compared with their experiments. They attribute the
merger of the vortices to the conservation of angular momentum as the filaments are ejected outside
the core. Meunier and Leweke13 experimentally studied the three-dimensional instabilities in vortex
merger. In the absence of viscosity, the vortices either reach an equilibrium state, or undergo a
rapid merger depending on the initial a/b value. With viscosity, the vortex radius increases in time
due to diffusion ensuring that the critical a/b value is always crossed. Hence with viscosity, vortex
merger is inevitable. The viscous merger process for an unstratified flow has been well studied, and
is described later in this section. We show below that density stratification can lead to surprising
results, sometimes preventing merger completely.

Stratification effects on vortex dynamics has received a great deal of attention in the literature.
In two dimensions, i.e., with the density gradient direction perpendicular to the vortex axes, the main
focus has been on the dynamics of vortex dipoles, since this problem finds relevance in mitigating
the threat posed by aircraft trailing vortices to follower aircraft.14 Another geometry which has
been studied well is that of a single asymmetric vortex with a radial density stratification. The
stability of this flow was studied with broken-line profiles15 and smooth profiles.16, 17 The effect of
vertical density variation on a single vortex was studied by us18 where it was shown that strong
centrifugal effects could lead to instabilities inside the vortex core, resulting in a turbulence-like
state. As for a vortex pair, the case of stratification along the axes of the vortices, being relevant in the
geostrophic context, is studied well. The merger process in this case has been studied experimentally7

in both a baroclinic and a barotropic setting. There have been far fewer studies on the effects of
stratification perpendicular to the axes of the vortices on the vortex pair. Numerical simulations
with the Boussinesq approximation were carried out by Brandt and Nomura19 at low to moderate
stratifications, which showed that merger always occurs, but the merger time depends both on
Reynolds as well as Froude number. The present work extends the study of Brandt and Nomura19 in
three directions: we (i) examine the effect of strong stratification on vortex merger, (ii) study the role
of diffusivity of density field, (iii) study the inertial effects of stratification (non-Boussinesq effects)
on vortex merger. The results of the unstratified and Boussinesq cases are in good agreement with
Brandt and Nomura,19 and were used to validate the present numerical scheme. Before discussing
the stratified case further, for the purpose of contrast, we briefly recapitulate the viscous merger
process for an unstratified flow.

In an unstratified flow, when the two vortices are initially kept sufficiently far apart, the process
of viscous merger can be divided into four stages. The first is the viscous diffusive stage, where the
two vortices behave like point vortices rotating about a common axis. Viscous diffusion acts on the
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vortex cores increasing their size, thus increasing the value of a/b with time. The second, convective,
stage begins when a/b crosses a critical value. Here, the vortices rapidly approach each other with
the ejection of spirals of vorticity in the form of filaments. This stage is nearly independent of the
Reynolds number, and can be explained by an inviscid mechanism. The third stage can be called the
axisymmetrization stage where the vortex cores completely merge into each other, and the single
final vortex relaxes towards an axisymmetric state. The final stage involves the viscous diffusion of
the single vortex. The role of various regions in the flow on the merger process has been studied by
Cerretelli and Williamson,20 and Brandt and Nomura.21 A detailed review of vortex merger in an
unstratified flow can be found in Meunier et al.22 and Josserand and Rossi.23

Atmospheric conditions such as stable density stratification can have an important role to play
in the merger process. In the present work, we study the effect of stable density stratification on the
interaction of two co-rotating vortices, with density gradient perpendicular to the vortex axes. In
brief, we find that apart from the Froude number, Fr, which governs the strength of stratification,
the Peclet number, Pe, also plays an important role. For flows with Fr ∼ 1, merger never occurs and,
remarkably, the vortices actually move away from each other. Two distinct mechanisms are found
to operate depending on the value of Peclet number. For flows with high Pe, spirals of density field
enter each vortex core resulting in the breakdown of the vortex cores.18 Whereas for flows with low
Pe, the density field diffuses rapidly near the vortex core and no such breakdown was observed.

In summary, the aims of this paper are two-fold. First, we extend the Boussinesq simulations of
Brandt and Nomura19 to higher stratifications, where it will be shown that strong baroclinic vorticity
can completely prevent vortex merger, and to lower diffusivity. For higher stratifications, inertial
effects of stratification cannot always be ignored. We show that certain symmetries satisfied by the
Boussinesq system are now broken, which can lead to drift in the centroid of vorticity.

The paper is organized as follows. In Sec. II, the governing equations and the numerical method
is discussed. In Sec. III, we consider vortex merger under the Boussinesq approximation. The effect
of Prandtl number is also treated in this section. In Sec. IV, we consider non-Boussinesq effects on
the merger process. To highlight the importance of inertia, in this section we either neglect gravity
altogether, or stay at large Froude numbers. In Sec. V, we summarize our main results. The physics
of the merger process is also discussed qualitatively using an idealized model.

II. GOVERNING EQUATIONS AND NUMERICAL METHOD

Direct numerical simulations in two-dimensions are performed with a co-rotating Gaussian
vortex pair in a stably stratified fluid. The initial background density stratification is taken to be
linear. We further split the total density field, ρ̃(x, y, t) in the form (see Turner24)

ρ̃(x, y, t) = ρ0 + ρ̄(y) + ρ ′(x, y, t), (1)

where x and y are the horizontal and vertical directions, respectively. Note that the subscript 0, when
used with ρ denotes a constant reference value, and not the initial conditions. ρ̄(y) is the vertical
variation of the mean density about ρ0. We prescribe linear stratification, i.e., ρ̄(y) has a linear
dependence on the y coordinate. And ρ ′ is a time dependent perturbation density field generated
due to the motion of vortices. The governing non-Boussinesq equations in the velocity-pressure
formulation can be written as

∇ · u = 0, (2)

ρ̃

(
∂u
∂t

+ u · ∇u
)

= −∇ P + ρ ′g + ρ̃ν∇2u, (3)

∂ρ̃

∂t
+ u · ∇ρ̃ = κ∇2ρ̃. (4)

In the above equations, ν is the kinematic viscosity, κ is the thermal or mass diffusivity, and these
quantities are taken to be constant for simplicity. Gravity g = gey where ey is the unit vector in the
vertical direction and P is the pressure. The fluid is incompressible, which allows us to define a
streamfunction to solve the momentum equation in the vorticity-streamfunction formulation. Notice
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that the total density ρ̃ appears in the inertial acceleration terms. At low to moderate density
variations, it is common to employ the Boussinesq approximation. In the limit of

ρ ′ � ρ̄ � ρ0, (5)

rewriting total density as

ρ̃ = ρ0

(
1 + ρ ′

ρ0
+ ρ̄(y)

ρ0

)
, (6)

and retaining only the lowest order inertial terms, we get the Boussinesq approximation, under
which, the momentum equations take the form

ρ0

(
∂u
∂t

+ u · ∇u
)

= −∇ P + ρ ′g + ρ0ν∇2u. (7)

In many physical systems, such as in the oceans, ρ0 + ρ̄(y) ≈ ρ0 on an average, so the inequality (5)
is valid, whereas in atmospheric flows, this approximation can be restrictive. Even when (5) is a fair
approximation, whenever centrifugal accelerations are comparable with or larger than gravity, such
as in the immediate vicinity of a vortex, inertial effects of density stratification cannot be ignored.
This is especially true when the transition from heavy to lighter fluid occurs across a thin layer, since
significant amounts of baroclinic torque can then be generated from inertial effects. In our recent
papers,17, 18 we have studied the inertial effects of density stratification on the stability of single
vortex. The evolution equation for the vorticity Z (x, y, t) ≡ ∇ × u for a non-Boussinesq system is
obtained by taking the curl of Eq. (3), as

∂ Z

∂t
+ u · ∇Z = ∇ρ̃ × ∇ P

ρ̃2
+ g

ρ0

∂ρ ′

∂x
+ ν∇2 Z , (8)

where the streamfunction in the fixed frame is related to vorticity in the standard way,

∇2ψ = −Z . (9)

The initial condition consists of two Gaussian (Lamb-Oseen) vortices with centres at (x1, 0) and (x2,
0) with a radius a0 (see Figure 1),

Z (x, y, 0) = Z0

[
exp

(−((x − x1)2 + y2)

a2
0

)
+ exp

(−((x − x2)2 + y2)

a2
0

)]
. (10)

The peak vorticity Z0 is related to the circulation �′ and the initial vortex radius a0 as Z0 = 2�/a2
0 ,

where � ≡ �′/2π . The initial separation between the two vortices is given by b0 = |x1 − x2|. This
initial condition is consistent with the experiments of Meunier and Leweke.13 The Reynolds number
and the Prandtl number are defined by

Re = �′

ν
, Pr = ν

κ
. (11)

The Peclet number Pe is the product of the two. We report all our results in terms of Pr rather than
in terms of Pe. We do not distinguish here between the Schmidt number (for mass diffusivity) and
the Prandtl number, so this value can be quite high. The Froude number is defined as

Fr = �

b2
0 N

, (12)

where N is the Brunt-Väisälä frequency given by

N 2 = − g

ρ0

dρ̄

dy
. (13)

The strength of stratification can be conveniently defined by a non-dimensional density gradient or
the Atwood number, as

At = −b0

ρ0

dρ̄

dy
. (14)
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If the vortices are oriented vertically with their centers at b0/2 and −b0/2, then the relevant Atwood
number is given by At = (ρ2 − ρ1)/ρ0 where ρ1 and ρ2 are the density values at ±b0/2. Note
that Froude number in (12) in terms of At can be written as Fr2 = �2/gb3

0 At . In the absence of
gravity, centrifugal acceleration plays the role of gravity and this scales as �2/b3

0 (see Dixit and
Govindarajan18 for more details). In such a case, replacing gravity by this quantity, we see that At1/2

is just the inverse of Froude number.
Results are presented in terms of the non-dimensional time t* = t/Tref, where the reference

time Tref ≡ πb2
0/� is the time period of rotation of two point vortices of the same circulation. The

buoyancy force is related to the deviations in the instantaneous density from a mean (time invariant)
density profile. Though simulations were carried out for a slightly wider range of non-dimensional
numbers, we present results here for 1000 ≤ Re ≤ 10000, 1 ≤ Fr ≤ ∞ and 0.005 ≤ Pr ≤ 10. Some of
these values, especially very low Prandtl numbers, may not appear commonly in physical situations,
but are useful to highlight the physics. It is useful to remember a few points regarding the effect of
Pr and Fr. At large Pr, momentum diffuses much more rapidly than density, whereas at small Pr, the
reverse is true. Therefore, for a low Pr fluid, the rapid homogenization of density gradients ensures
that stratification does not survive for too long. At Fr = 1, the time scale associated with rotation of
the vortices and the time scale associated with density oscillations, i.e., 1/N, are comparable. Since
Fr is inversely related to stratification, its effects will be felt strongly for Fr ∼ O(1).

The symmetries in a Boussinesq system are such that the equations of motion are invariant
under the following transformations for Z and ρ, i.e.,

Z∗(x, y) → Z (−x,−y), (15)

ρ∗(x, y) → −ρ(−x,−y), (16)

ρ ′∗(x, y) → −ρ ′(−x,−y). (17)

Because of this, so long as the initial configuration is symmetric with respect to gravity, the centroid
of vorticity is preserved in a Boussinesq system. As will be shown later, symmetry is broken when
employing the non-Boussinesq equations, so the vortex system migrates as the merger process
continues.

The numerical simulations are carried out in Cartesian coordinates in a doubly periodic domain
using the Fourier pseudospectral method with a second-order Adams-Bashforth time stepping. Due
to the incompressibility assumption, we can solve in the vorticity-streamfunction formulation. In all
the simulations, the width of the domain was at least 10 times the separation distance. The number
of collocation points varied depending on the Re and Fr used, but we always had more than 30 points
across each vortex. The present simulations were validated against many test cases including the
results of Brandt and Nomura.19 Due to the splitting of the density field as shown in equation (1), ρ ′

can be taken to be a spatially periodic function. Domain dependence and grid dependence tests were
conducted to arrive at the parameters used for the simulations. The code was also used in our earlier
published work.17, 18 To measure the separation distance to sub-grid accuracy, we track the location
of the vortex maximum as follows. We first isolate the grid box in which the vorticity maximum lies,
and then use the values of the gradient at the four corners of the grid box to determine the sub-grid
location where the gradient of vorticity vanishes. For this, we use an iterative technique on a finer
spatial mesh of 10 × 10. Even without this, our results are accurate owing to the fine grids used in
most simulations.

III. EFFECT OF STRATIFICATION UNDER THE BOUSSINESQ APPROXIMATION

Under the Boussinesq approximation, the vorticity Eq. (8) reduces to

∂ Z

∂t
+ (u · ∇Z ) = ν∇2 Z − g

ρ0

∂ρ ′

∂x
. (18)

Note that horizontal gradients of density contribute to vorticity generation. As the two vortices
rotate, they advect the entire density field around them such that horizontal density gradients are
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FIG. 2. Time evolution of vorticity (upper panel) and density (lower panel) contours for merger at higher levels of stratification
than in Figure 4 with Re = 5000, Fr = 1, and Pr = 1. Significant generation of small scales can be observed. This figure is
not to the same scale as the previous figure.

created. This in turn influences the evolution of the vortices themselves. It can be easily seen that
both positive and negative vorticity will be created due to density effects. Simulation results at
Fr = 2 and Pr = 1 were practically identical to those presented in Brandt and Nomura19 and this
served to validate our approach. It is relevant to mention that at Fr = 2 two dominant filaments of
baroclinic vorticity appear. The position, orientation, and sign of this additional vorticity relative
to the primary vortices can either accelerate, or decelerate the merger process. When stratification
increases further to Fr = 1, a qualitative change is evident. The negative signed baroclinic vorticity
due to stratification is comparable to the strength of the vortex, as shown in Figure 2. When each
vortex approximately completes one rotation, i.e., the vortex rotation time scale equals the buoyancy
time scale, these baroclinically generated filaments were observed to roll-up into two smaller vortices
as can be seen at t* ≈ 1.25. In this case, the result of stratification is to cause the primary vortices to
move away from each other, preventing merger. Another noticeable feature is the strong mixing that
is generated in this flow. Local regions of unstable stratification further enhance the mixing, causing
the breakdown of the flow into a turbulence-like state. Internal gravity waves appear to radiate out
from the mixing zone. A kinematic view of the flow field and the role of various time scales in the
flow will be examined later in Sec. V and this will help us understand the reasons behind merger/
non-merger.

A series of numerical simulations were carried out for different Fr and different Pr with Re
ranging from 1000 to 10 000. We validated our numerical method by comparing the our results with
that of Brandt and Nomura.19, 21 For all the simulations presented in this paper, we use a smaller
a0/b0 ratio than that used in Brandt and Nomura.19, 21 In agreement with their results, we find that
up to a Froude number of 2, stratification slows down merger at low Reynolds number, and speeds
up merger at high Re, with a cross-over in the range 1500 < Re < 2000. But our values of merger
time at the cross-over are slightly lower than those of Brandt and Nomura,19 which is to be expected
from a smaller a0/b0.

A new finding in the present simulations is that merger was always prevented at all Reynolds
number when Froude number approached unity, except for the cases when Pr was small. We examine
the role of Pr separately in Sec. III A. Therefore, merger time for high Re cases is a non-monotonic
function of Fr, i.e., merger time reduces with decrease in Fr till about Fr ≈ 2 and rapidly increases and
diverges at Fr = 1. The reasons for this non-monotonic variation are discussed later, for which it will
help to briefly discuss the energetics of the system, as we do now. As the vortices rotate, the density
field is advected, creating a large-scale overturning. This process has a time-scale dependent on the
vortex time scale and the distance from the origin, but small perturbations in the density field would
oscillate with the Brunt-Väisälä frequency. At Fr = 3 for example, the vortices would complete three
rotations for one cycle of oscillation of the density. During one half-cycle of density oscillation,
heavier fluid rises upwards and lighter fluid sinks downwards. This causes a local increase in potential
energy (P.E.) at the expense of the kinetic energy (K.E.) of the system. In a neutral oscillation, the
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FIG. 3. Evolution of kinetic (K.E. - solid), potential (P.E. - dashed), and total (Etot - dashed-dotted lines) for Re = 5000 and
Pr = 1 for four different Froude numbers indicated with different colors. The kinetic and potential energies are always in
anti-phase with each other.

balance would have been restored during the second half of oscillation. Indeed, this is seen to happen
in our simulations as shown in Figure 3, though small differences exist in the timescales observed.
As expected from the explanation above, the kinetic and potential energies are in anti-phase with
each other. Simultaneously, owing to viscous effects, the total energy decreases in all cases, but a
much larger dissipation is observed with Fr = 1. This is due to the significant generation of small
scales in the flow at this Froude number, as was seen in Figure 2, which makes viscosity more
effective. On the other hand, for higher Fr, the final state is a single large vortex, with the only small
scales being due to weak filaments of vorticity.

In the above simulations, Pr was held fixed at unity, but for very small Pr, things can be different,
and therefore the role of Pr is discussed separately below.

A. Effect of diffusivity and of low Froude number

The Prandtl number is a measure of the rate at which the density field diffuses in relation
to diffusion of momentum. For a low Pr fluid, density inhomogeneities are rapidly erased, thus
removing the source of baroclinic torque. However, for a high Pr fluid, there is a prolonged effect
of density stratification due to the slow diffusion of density gradients. We first show in Figure 4 the
time evolution of vorticity and density contours with Re = 5000 and Fr = 2 at Pr = 10. The vorticity
and density contours differ in detail from those of Pr = 1, as shown in Brandt and Nomura,19 but
the basic structure of these fields remain unaltered.

It is instructive to study the effect of varying Prandtl and Froude numbers on the time evolution
of the separation distance between the two vortices. In Figure 5, we plot the variation of separation
distance for two different Fr by varying Pr in each case separately. By comparing merger time for
the same Pr in the two cases, it is clear that vortex merger is delayed, and even prevented, with
increasing stratification. The effect of Pr is marginal at high Froude number, but at low Fr, unity in
this case, diffusivity can become important due to the generation of small scale structures in the flow
as shown in Figure 2. Clearly at Fr = 1, vortex merger is delayed or completely prevented if the Pr
is not too low. Conversely, as Pr decreases below unity, the density field is rapidly homogenized,
and little baroclinic torque is generated, so the merger process would be progressively closer to that
in a constant density fluid. In the small Pr limit, merger was always found to occur, even for very
large stratifications, as can be seen in Figure 5(b) for Fr = 1.

In this section, Boussinesq equations were employed in all the simulations. In spite of the
complexity of the flow field, the centroid of vorticity was always invariant as can be seen in
Figures 2 and 4. This is due to the symmetries in a Boussinesq system as discussed in Sec. II. In
Sec. IV, we consider inertial effects of stratification, and no such symmetries exist.
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FIG. 4. Time evolution of vorticity (color) and density (gray scale) contours for merger in the presence of density stratification
with Re = 5000, Fr = 2, and Pr = 10.

IV. NON-BOUSSINESQ EQUATIONS

We now study the effect of inertial (non-Boussinesq) terms on the merger process. As discussed
in Sec. II, inertial effects of density stratification can lead to symmetry breaking. Therefore, the
main goal of this section is to study this symmetry breaking process inherent in non-Boussinesq
equations. To demonstrate this effectively, we deliberately employ large density stratifications, which
enhance the impact of inertial terms. In many flows, it is possible that large density gradients arise
not from large density contrasts, but from rapid variations in density across narrow regions in the
flow. In such scenarios, it was shown in an earlier paper18 that significant baroclinic vorticity can be
generated.

For simplicity, all transport coefficients are held constant. Two cases can be separately studied:
(1) where purely inertial effects of density variation are considered with gravity being absent,
and (2) where combined inertial-gravity effects are present in the system. To evaluate the relative
contribution of Boussinesq and non-Boussinesq effects on separation distance, we carried out a
sample simulation at Re = 5000 with Fr = 3. To make a fair comparison, we fix a mean density
profile and adjust gravity such that a desired Froude number is attained. In Figure 6, we compare
the variation of separation distance with time for unstratified flow, a Boussinesq fluid with Fr = 3, a
non-Boussinesq fluid with Fr = 3 and a purely inertial case where baroclinic vorticity is generated
from inertial effects of density stratification and gravity is set to zero. Clearly, purely inertial effects
do not affect the separation distance when compared with an unstratified case. It is confirmed in
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FIG. 5. Effect of Prandtl number, shown in the legend, on the separation distance for a fixed Re = 1000 and different Froude
numbers, (a) Fr = 2 and (b) Fr = 1.
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FIG. 6. Variation of separation distance with time for Re = 5000 with a mean non-dimensional density gradient of
At = 0.0954. For the purely Boussinesq flow, gravity is chosen to give Fr = 3. In the purely inertial case, gravity is
neglected and baroclinic torque is generated only due to the nonlinear terms in the governing equation.

Figure 7 (where we plot the separation distance as a function of time for different Atwood numbers
at Re = 3000) that inertial effects have a negligible effect on the separation distance, a quantity,
which changed significantly due to other parameters, as discussed earlier.

In spite of negligible effect on separation distance, there is an unexpected and significant effect
of inertia, which we focus on in this section. This effect becomes apparent when we look at the
trajectory of the two vortices. This is first shown by plotting the vorticity contours at four different
times for Re = 3000. The vortex merger process is similar to the unstratified case except for the
drift the vorticity centroid as shown in Figure 8. To highlight the effect of symmetry breaking
due to inertia, we first consider a higher Reynolds number, viz., Re = 10 000. At this Re and the
prescribed initial conditions, the two vortices complete approximately 5 rotations before convective
merger begins. This provides ample time for baroclinic torque to act on the vortices and symmetry
breaking to become noticeable. In Figure 9, the trajectory of one of the vortices is plotted as a
function of time. It can be seen that for a system where inertial effects of density stratification are
present, the centroid of vorticity is no longer an invariant. For this case, the equivalent centrifugal
Froude number is approximately 3.24. Though the separation distance does not differ significantly
from the unstratified case, the vortices can be seen to exhibit a pronounced drift leftwards. The
exact direction and rate of drift depends both on Re and the density stratification employed. The
same conclusion can be arrived at by monitoring the x-coordinate of the two vortices as shown in
Figure 10. These results show that for large density stratifications, where inertial effects of density
field become important, symmetry breaking can lead to the large-scale meandering of vortices.

0 0.5 1 1.5 2 2.5 3
t*

0

0.5

1

b*

FIG. 7. Variation of separation distance with time for Re = 3000 by varying the Atwood number from 0.0106 to 0.0954 in
nine equal steps of 0.0106. All the nine curves are clearly identical to each other.
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FIG. 8. Non-Boussinesq effects on the time evolution of vorticity contours for merger in the presence of density stratification
with Re = 5000, At = 0.0954, and Pr = 1. The black line shows the drift of the vorticity centroid.

To quantify the symmetry breaking process, we measure (i) the magnitude of drift quantified
by the distance the centroid travels in one rotation cycle and (ii) initial drift velocity as a function of
Atwood and Reynolds numbers. The magnitude of drift is defined as

	dri f t = |r(Tref ) − r(0)|, (19)

and the drift velocity is defined as

Vdri f t = 1

Tref

∫ Tre f

0

|r(t + 	t) − r(t)|
	t

dt, (20)

where r(t) is the position vector of the centroid at time t and 	t is a chosen time interval. Note
that Tref is the time taken for one complete rotation in the unstratified case. In most of our results
presented above, 	t was approximately 200 times the timestep used in the simulation. The drift
velocity is averaged over the time the vortices take to complete one rotation. This averaging process
was necessary since the drift velocity was found to have a small oscillation about a mean value.
It has to be mentioned here that the average drift velocity is not dependent on the value of the
upper limit used in the above integral. Even after the merger of the two vortices, the merged vortex
was found to drift in the same direction with the same drift velocity. We carry out a series of
simulations for different Reynolds and Atwood numbers. The magnitude of drift after one rotation
cycle is shown in Figure 11 for four different Reynolds numbers by sequentially varying the Atwood
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FIG. 9. Trajectory of a single vortex with Re = 10 000 (a) no stratification, (b) with Boussinesq approximation at Fr = 3, (c)
with only inertial effects of stratification at At = 0.0954. For visual clarity, the curves are shifted vertically from each other.

number. It is quite remarkable that the magnitude of drift is independent of Reynolds number.
Moreover, the universality of the curve suggests that a scaling relationship exists between 	drift and
At. A exponential fit for the data revealed that 	drift ∼ e0.636At. More simulations are required to
understand this scaling relationship, which is left for future study. The drift velocity was found to
have a weak dependence on the Reynolds number as shown in Figure 12. It is clearly evident that
Vdri f t again follows a universal curve as At increases, independent of Reynolds number. The weak
dependence of 	drift and Vdri f t on Re suggests that drifting of the vortices is due to an inviscid
mechanism and can be modelled using point vortices in a stratified fluid.

Drift of a single vortex due to inertial effects was observed by us in an earlier work18 where
stratification was in the form of a density jump at the location of the vortex. The results above show
that a smooth density gradient, such as the one used here, can lead to significant drift of the vortices
and could have important implications for other stratified turbulent flows.

0 2 4 6 8
t*

x

(a)

(b)

(c)

FIG. 10. Same as Figure 9, but showing the x-coordinate of both the vortices as a function of time. (a) Unstratified fluid, (b)
Boussinesq fluid, (c) non-Boussinesq fluid.
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FIG. 11. Drift of the vortex centroid as a function of Atwood number for four different Reynolds numbers with Pr = 1.

V. MERGER MECHANISM IN A STRATIFIED FLUID

We briefly examine some aspects of the physical mechanism in vortex merger when the density
in the vicinity is stratified. We have seen that two kinds of baroclinic torque are created, as a result
of misalignment of the density gradient vector with gravity and with the centrifugal acceleration.
The second would be missing in a Boussinesq calculation.

To understand the conditions under which merger will be accelerated or decelerated, we make
a simple model, of two point vortices, placed on an initially horizontal line, which defines a density
jump. The density takes on different constant values on either side of the horizontal line. We
evolve this system inviscidly, and move in the frame of reference of the centroid of the system.
In this idealized system, baroclinic torque can only be produced at the density interface, at a rate
proportional to the cross product of the density jump and the local body force. There are two
contributions to this force: gravitational, acting vertically, and centrifugal, acting radially. Since we
can analytically write down the shape of the interface18 at a given time, this model serves to explain
the mechanism.

Figure 13 shows the right and left density interfaces at a particular instant later in time, in
black and red, respectively. At an arbitrarily chosen point on the interface, the normal to the density
interface is seen neither to be aligned with gravity, nor with the centrifugal acceleration. Thus,
both gravity and centrifugal forces will induce vorticity at the interface, and the productions of
both are positive at the point and time instant chosen. The sign of vorticity production at other
places on the two interfaces are also shown. The magnitude of the baroclinic vorticity Zg created
by gravity increases and decreases alternately as the interface is advected. The centrifugal accel-
eration, on the other hand, always produces vorticity Zc of one sign on a given interface (left
or right).
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FIG. 12. Variation of drift velocity as a function of Atwood number for four different Reynolds numbers with Pr = 1.
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-,+ gravity

centrifugal

FIG. 13. Baroclinic torque produced due to centrifugal effects and gravity. Shown here is the locus at a given time of an
initially horizontal interface separating light and heavy fluid. The solid arrow represents the normal to this line at one point.
The effect of gravity (centrifugal acceleration) produces the same (opposite) sign of vorticity along diametrically opposite
points as shown in the figure. The sign of the vorticity produced depends on the orientation of the normal vector to the
interface with respect to gravity and to the radial vector. The first in the pair of signs shown indicates the sense of torque
produced by gravity effects, while the second shows the sign of torque production due to centrifugal effects. The small dashed
circle shows the locus of the two point vortices.

The relative strengths of Zg and Zc can be estimated far away from the primary vortices, where
the density field responds as to a single point vortex of twice the circulation �′. It is straightforward
to show18 that a step density interface which is initially horizontal will evolve into an ever-tightening
Lituus spiral. In the inviscid case, considering gravity alone and neglecting non-Boussinesq effects,
Eq. (3) may be simplified to give

Żg = 	ρ

ρave
g cos

{
θs + tan−1

[
1

2θs

]}
δ(rθ − rθs). (21)

On the other hand, neglecting gravity and taking into consideration the non-Boussinesq (centrifugal)
term, we would have18

Żc = 	ρ

ρave

4�2

r3

1(
1 + 4θ2

s

)1/2 δ(rθ − rθs). (22)

The net baroclinic torque Z = Zg + Zc. Here, θ s(t) is the total angle traversed up to time t by a point
on the spiral density interface at a distance r from the centroid. At large r, θ s(t) may be approximated
as

θs = 2�t

2πr2
. (23)

For the portion of the interface initially to the right of the two vortices, it is evident that the
centrifugally created vorticity is always positive, whereas the gravity-created vorticity as the point
on the interface traverses one quadrant (approximately) is more or less canceled out during its travel
through the next.

The acceleration or deceleration of vortex merger may be explained by gravity effects alone.
We simplify the argument by clubbing the net vorticity created by gravity into two small vortices,
as shown in Figure 14. It is clear that the phase between the baroclinic vortices “B” and the primary
ones “P” will determine whether the P vortices proceed towards or away from merger. Being at
large r, the location of the B vortices is a slowly changing function of time, whereas the P vortices
rotate much faster. Depicted in the figure is a time instant where the vortices are at an angle θ < π /2
to the horizontal. At this instant, the gravity-created baroclinic torque serves to push the primary
vortices apart. On the other hand, if the vortices had executed a larger angle by this time, say π , the
baroclinic vorticity would push them together. Remembering that the strength of B increases with
time, we see that if the stratification is weak, the pushing-apart in the initial quarter cycle will be
overcome by the pulling together in the next quarter cycle, and we could have earlier merger than
in an unstratified case. Figure 6 shows such an initial increase in separation followed by a quicker
merger. On the other hand, if the stratification is large, the strength of B will be high enough to
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FIG. 14. A schematic of the dominant vorticity due to gravity alone, based on Figure 13. The two primary vortices are
shown in solid circles, and marked “P,” and the “clubbed” baroclinic vortices are marked “B” and shown by open circles (not
to any scale). In (a), the primary vortices are at such a phase with respect to the baroclinic vortices causing them to move
away from each other. In (b), the net effect on the primary vortices is to push them towards each other leading to accelerated
merger.

FIG. 15. Vorticity (lines) and density (gray scale) contours for Re = 5000, Pr = 1 at time t* = 0.5 for various Fr:
(a) Fr = ∞, (b) Fr = 3, (c) Fr = 2, (d) Fr = 1. Solid and dashed lines represent positive and negative vorticity levels. Note
that in (a), the density field is a passive scalar.
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FIG. 16. Same as Figure 14 with “B” now representing baroclinic vorticity generated from inertial effects of stratification.
The baroclinic vortices act like a dipole imparting a push on the primary vortices. In both (a) and (b), the net effect on the
primary vortices is to push them leftward.

influence P before they execute a large angle. The vortices are then pushed apart in the beginning
of the process at a rate too large for the rest of the cycle to proceed undisturbed. The complicated
structure of the vorticity field now generated has the effect of a breakdown into decaying turbulence.
From scaling arguments, it is easy to see that a Froude number of about unity would constitute a
large stratification. Figure 15 shows the vorticity and density field at t* = 0.5 from a Boussinesq
calculation at various levels of stratification. For comparison, an unstratified case is also presented.
The figure demonstrates that at this short time, the vorticity and density fields are similar in structure
in all the cases, but the magnitude of the baroclinic vorticity scales with the inverse square of the
Froude number. For example, the maximum baroclinic vorticity at this time for Fr = 3, 2, 1 is
approximately 0.013, 0.029, and 0.117, respectively, which closely follows the required scaling. The
primary vortices are not too affected by stratification at this time, so the assumption in the model is
a reasonable one.

Now considering centrifugal effects alone, Eq. (22) shows that the baroclinic vorticity above the
primary vortices would be negative, while that below would be positive. This leads to the formation
of a dipole around the vortices, which would impart a net linear momentum to the primary pair P
as shown in Figure 16. The direction and rate of advection would depend on the ratio of buoyancy
timescale to the characteristic rotation timescale of the primary vortices, i.e., on a centrifugal Froude
number as suitably defined in Eq. (12). Though highly simplistic this model explains the basic effect
of density stratification in the merging process.

VI. SUMMARY AND DISCUSSION

In this paper, we study the effect of ambient density stratification on the merger of two like-
signed vortices, employing a wide range of stratification levels. We also analyze the effect of Prandtl
number. Apart from the Boussinesq equations commonly employed, we also study the inertial effects
of stratification on the merger process.

The two key results of this paper are: (i) a demonstration and a mechanism, for the initial
moving apart of the vortices at intermediate levels of stratification, and prevention of merger at
high stratification levels (Fr ≈ 1 or lower), for all Re when Pr ∼ O(1), and (ii) drift of the vortical
system due to inertial effects of stratification. The first result can be summarized as follows: when
the Prandtl number is O(1) or higher, the diffusion of the density interface is slow enough for
baroclinic vorticity to be produced, and for a sufficient amount to accumulate in spiral filaments
around the vortices. At moderate stratification, this vorticity leads to an initially oscillatory response
of the separation distance, and at higher stratifications, causes a monotonically increasing separation,
completely preventing merger. Our low to moderate stratification cases are in complete agreement
with Brandt and Nomura.19 Since flow fields governed by the Boussinesq equations are constrained
by certain symmetries, the location of the centroid is an invariant quantity. When this approximation
is relaxed, we observe a significant drift of the vortical system. This drift may be attributed to
baroclinic vorticity generated by the centrifugal acceleration. The direction and rate of drift may
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be modeled as well. We construct a simple point vortex model with a single density interface to
understand the essential features of the flow kinematically. Owing to the simplicity of the model,
quantitative comparisons with the DNS results were not possible, but the model reveals key features
of accelerated/ decelerated merger, and drift in the “inertial” case.

Finally, we briefly examine the relevance of the present work in a broader context. A key
application of this work lies in geophysical flows. Merger events have been observed on Jupiter,
and also in Earth’s atmosphere. Both these systems tend to be strongly stratified in the meridional
(latitudinal) direction. For large vortices such as a tropical cyclone or a polar vortex, strong meridional
stratifications could be an important factor affecting the lifetime and trajectory of the vortices. In a
simplified 2D analysis for atmospheric flows, stratification is present only in the meridional direction
and inertial effects of stratification could become important. This can lead to significant drift of the
vortex trajectories as shown in this work. Another important application is the merger events of
Kelvin-Helmholtz billows. Often, the rate of growth of a mixing layer is attribute to vortex merger.
The stratification of the billows is in the same sense as studied in this paper and in this case, both
gravity and inertial effects are important. Quicker merger of vortices due to stratification should
therefore lead to a faster growth of the mixing layer.

ACKNOWLEDGMENTS

A large part of this work was carried out when H.N.D. was a Ph.D. student at JNCASR,
Bangalore. H.N.D. wishes to thank the Department of Science and Technology, Government of India
for financial support during his Ph.D., and Professor Homsy (UBC) for providing infrastructure to
complete this work.

1 P. Freymuth, “On transition in a separated laminar boundary layer,” J. Fluid Mech. 25, 683–704 (1966).
2 C. D. Winant and F. K. Browand, “Vortex pairing: The mechanics of turbulent mixing-layer growth at moderate Reynolds

number,” J. Fluid Mech. 63, 237–255 (1974).
3 S. A. Brandt and J. D. Iversen, “Merging of aircraft trailing vortices,” J. Aircr. 14, 1212 (1977).
4 V. J. Rossow, “Convective merging of vortex cores in lift-generated wakes,” J. Aircr. 14, 283–290 (1977).
5 P. G. Saffman and R. Szeto, “Equilibrium shapes of a pair of equal uniform vortices,” Phys. Fluids 23, 2339–2342

(1980).
6 E. D. Overman and N. J. Zabusky, “Evolution and merger of isolated vortex structures,” Phys. Fluids 25, 1297–1305

(1982).
7 R. W. Griffiths and E. J. Hopfinger, “Coalescing of geostrophic vortices,” J. Fluid Mech. 178, 73–97 (1987).
8 P. Meunier, U. Ehrenstein, T. Leweke, and M. Rossi, “A merging criterion for two-dimensional co-rotating vortices,” Phys.

Fluids 14, 2757–2766 (2002).
9 S. Le Dizès and A. Verga, “Viscous interactions of two co-rotating vortices before merging,” J. Fluid Mech. 467, 389–410

(2002).
10 S. Le Dizès, “Non-axisymmetric vortices in two-dimensional flows,” J. Fluid Mech. 406, 175–198 (2000).
11 G. S. Deem and N. J. Zabusky, “Vortex waves: Stationary “V States,” interactions, recurrence, and breaking,” Phys. Rev.

Lett. 40, 859–862 (1978).
12 D. G. Dritschel, “The stability and energetics of corotating uniform vortices,” J. Fluid Mech. 157, 95–134 (1985).
13 P. Meunier and T. Leweke, “Three-dimensional instability during vortex merging,” Phys. Fluids 13, 2747–2750 (2001).
14 R. S. Scorer and L. J. Davenport, “Contrails and aircraft downwash,” J. Fluid Mech. 43, 451–464 (1970); P. G. Saffman,

“The motion of a vortex-pair in a stratified atmosphere,” SIAM L 1, 107–119 (1972); S. C. Crow, Motion of a Vortex
Pair in a Stably Stratified Fluid (Poseidon Research, Santa Monica, CA, 1974), pp. 1–48; J. P. Narain and M. S. Uberoi,
“The motion of a trailing vortex-wake in a stratified medium,” Atmos. Environ. 8, 459–473 (1974); T. Sarpkaya, “Trailing
vortices in homogeneous and density-stratified media,” J. Fluid Mech. 136, 85–109 (1983); P. R. Spalart, “On the motion
of laminar wing wakes in a stratified fluid,” ibid. 327, 139–160 (1996).

15 Y. T. Fung and U. H. Kurzweg, “Stability of swirling flows with radius-dependent density,” J. Fluid Mech. 72, 243–255
(1975); Y. T. Fung, “Non-axisymmetric instability of a rotating layer of fluid,” ibid. 127, 83–90 (1983).

16 D. Sipp, D. Fabre, S. Michelin, and L. Jacquin, “Stability of a vortex with a heavy core,” J. Fluid Mech. 526, 67–76 (2005);
L. Joly, J. Fontane, and P. Chassaing, “The Rayleigh-Taylor instability of two-dimensional high-density vortices,” ibid.
537, 415–431 (2005).

17 H. N. Dixit and R. Govindarajan, “Stability of a vortex in radial density stratification: Role of wave interactions,” J. Fluid
Mech. 679, 582–615 (2011).

18 H. N. Dixit and R. Govindarajan, “Vortex-induced instabilities and accelerated collapse due to inertial effects of density
stratification,” J. Fluid Mech. 646, 415–439 (2010).

19 L. K. Brandt and K. K. Nomura, “The physics of vortex merger and the effects of ambient stable stratification,” J. Fluid
Mech. 592, 413–446 (2007).

Downloaded 05 Aug 2013 to 131.170.6.51. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1017/S002211206600034X
http://dx.doi.org/10.1017/S0022112074001121
http://dx.doi.org/10.2514/3.58917
http://dx.doi.org/10.2514/3.58772
http://dx.doi.org/10.1063/1.862935
http://dx.doi.org/10.1063/1.863907
http://dx.doi.org/10.1017/S0022112087001125
http://dx.doi.org/10.1063/1.1489683
http://dx.doi.org/10.1063/1.1489683
http://dx.doi.org/10.1017/S0022112002001532
http://dx.doi.org/10.1017/S0022112099007326
http://dx.doi.org/10.1103/PhysRevLett.40.859
http://dx.doi.org/10.1103/PhysRevLett.40.859
http://dx.doi.org/10.1017/S0022112085002324
http://dx.doi.org/10.1063/1.1399033
http://dx.doi.org/10.1017/S0022112070002501
http://dx.doi.org/10.1016/0004-6981(74)90061-4
http://dx.doi.org/10.1017/S0022112083002074
http://dx.doi.org/10.1017/S002211209600849X
http://dx.doi.org/10.1017/S0022112075003321
http://dx.doi.org/10.1017/S0022112083002621
http://dx.doi.org/10.1017/S0022112004003143
http://dx.doi.org/10.1017/S0022112005005495
http://dx.doi.org/10.1017/jfm.2011.156
http://dx.doi.org/10.1017/jfm.2011.156
http://dx.doi.org/10.1017/S0022112009992515
http://dx.doi.org/10.1017/S0022112007008671
http://dx.doi.org/10.1017/S0022112007008671


016601-17 H. N. Dixit and R. Govindarajan Phys. Fluids 25, 016601 (2013)

20 C. Cerretelli and C. H. K. Williamson, “The physical mechanism for vortex merging,” J. Fluid Mech. 475, 41–77 (2003).
21 L. K. Brandt and K. K. Nomura, “The physics of vortex merger: Further insight,” Phys. Fluids 18, 051701 (2006).
22 P. Meunier, S. Le Dizès, and T. Leweke, “Physics of vortex merging,” C. R. Phys. 6, 431–450 (2005).
23 C. Josserand and M. Rossi, “The merging of two co-rotating vortices: A numerical study,” Eur. J. Mech. B/Fluids 26,

779–794 (2007).
24 J. S. Turner, Buoyancy Effects in Fluids (Cambridge University Press, New York, 1973).

Downloaded 05 Aug 2013 to 131.170.6.51. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1017/S0022112002002847
http://dx.doi.org/10.1063/1.2201474
http://dx.doi.org/10.1016/j.crhy.2005.06.003
http://dx.doi.org/10.1016/j.euromechflu.2007.02.005

