
J. Fluid Mech. (2011), vol. 679, pp. 582–615. c© Cambridge University Press 2011

doi:10.1017/jfm.2011.156

Stability of a vortex in radial density
stratification: role of wave interactions

HARISH N. DIXIT† AND RAMA GOVINDARAJAN‡
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research,

Bangalore 560064, India

(Received 3 September 2010; revised 18 March 2011; accepted 26 March 2011;

first published online 25 May 2011)

We study the stability of a vortex in an axisymmetric density distribution. It is shown
that a light-cored vortex can be unstable in spite of the ‘stable stratification’ of
density. Using a model flow consisting of step jumps in vorticity and density, we
show that a wave interaction mediated by shear is the mechanism for the instability.
The requirement is for the density gradient to be placed outside the vortex core
but within the critical radius of the Kelvin mode. Conversely, a heavy-cored vortex,
found in other studies to be unstable in the centrifugal Rayleigh–Taylor sense, is
stabilized when the density jump is placed in this region. Asymptotic solutions at
small Atwood number At show growth rates scaling as At1/3 close to the critical
radius, and At1/2 further away. By considering a family of vorticity and density
profiles of progressively increasing smoothness, going from a step to a Gaussian, it is
shown that sharp gradients are necessary for the instability of the light-cored vortex,
consistent with recent work which found Gaussian profiles to be stable. For sharp
gradients, it is argued that wave interaction can be supported due to the presence of
quasi-modes. Probably for the first time, a quasi-mode which decays exponentially is
shown to interact with a neutral wave to give exponential growth in the combined
case. We finally study the nonlinear stages using viscous direct numerical simulations.
The initial exponential instability of light-cored vortices is arrested due to a restoring
centrifugal buoyancy force, leading to stable non-axisymmetric structures, such as
a tripolar state for an azimuthal wavenumber of 2. The study is restricted to two
dimensions, and neglects gravity.
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1. Introduction
Density variation in the neighbourhood of vortices occurs in many natural systems

and technological applications. Large-scale geophysical vortices can be subjected to
strong density variations, often along their axis, and occasionally perpendicular to it.
The latter configuration, especially in the form of an axisymmetric flow with radial
density variations, has been the subject of numerous papers, and is under study here.
The primary focus has been on the destabilization of heavy-cored vortices. Such a
vortex, where the density is a monotonically decreasing function of radius, is expected
to undergo a centrifugal Rayleigh–Taylor instability (CRTI). In the present work, we
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show that a light-cored vortex may become unstable for certain configurations, while
a heavy-cored one may be stabilized.

The CRTI is the circular analogue of the classical Rayleigh–Taylor instability (RTI)
with gravity replaced by the centrifugal acceleration. However, while the RTI can
exist without a mean flow, centrifugal forces are generated due to the vortex, and
this makes the analogy incomplete. A more direct theoretical analog of the planar
RTI is a radial density variation in a flow which is entirely in solid-body rotation,
where shear is absent. Such a configuration was investigated by Fung & Kurzweg
(1975) with an algebraically varying density. They also study the 3D stability of a
radially stratified Rankine-type vortex, but the density jump was fixed at the edge
of the core. This work was a generalization of the earlier study of Uberoi, Chow
& Narain (1972) on the stability of a Rankine vortex. In a later work, Fung (1983)
studied the stability of a three-layer rotating fluid, each region with a fixed angular
velocity and density. This is analogous to the planar three-layer fluid first considered
by Taylor (1931). In geophysical flows, there is an interest in understanding the
baroclinic instability process, discussed in detail in Vallis (2006). It was shown by
Saunders (1973) experimentally that radial density variation in a baroclinic vortex
drives a CRTI. Nadiga & Aurnou (2008) came up with an excellent expository
article on the phenomenon. For an idealized compressible fluid rotating in a pipe,
Gans (1975) considered density variations in the radial direction, and noted that the
stability depends on a ‘centrifugal Richardson number’.

In all the above studies, shear does not play a role. We shall see below how the
presence of shear in a vortical flow can have important implications for the stability
of the system. In particular, it will be shown that shear can cause the destabilization
of a light-cored vortex, or stabilize a heavy-cored vortex. The latter situation finds
some mention in Joly, Fontane & Chassaing (2005), but the former has not been
seen before, to our knowledge. In parallel flows, various combinations of density
stratification and shear have been well investigated. As an extension of the popular
semi-circle theorem of Howard (1961), a semi-ellipse criterion for plane stratified flows
was derived by Kochar & Jain (1979) to define the possible range of phase speeds.
This theorem was shown to hold for the cylindrical case as well by Fung (1983), and
applies to the present flow of a vortex with radial density stratification.

Kurzweg (1969) was one of the earliest to consider non-axisymmetric disturbances,
and derived a sufficient condition for stability for a smooth vortex with radial
density variation. Necessary conditions for the stability of the same flow were given
by Eckhoff & Storesletten (1978, 1980). To the best of our knowledge, there is
no necessary and sufficient condition for instability of a vortex subject to radial
density stratification. A summary of various necessary and sufficient conditions for
stability/instability of this flow is given by Sipp et al. (2005). The stability of a
heavy-cored Gaussian vortex with a Gaussian density distribution was studied by
Sipp et al. (2005) and Joly et al. (2005). These studies are complementary to each
other. While the former shows that a competition between 3D centrifugal instabilities
and 2D Rayleigh–Taylor instabilities can occur, the latter restricts their analysis to
two dimensions and includes the nonlinear stages of RTI. Here, in agreement with
Coquart, Sipp & Jacquin (2005), they show that wave-like motions on the vortex core
amplify and result in the breakdown of the vortex into multiple parts, reminiscent
of the breakdown of a baroclinic vortex observed by Saunders (1973). The number
of parts is governed by the wavenumber of the linear perturbation. These workers
found that CRTI is stabilized for density core sizes comparable to the vortex core,
and realized that shear has a role to play in the stabilization. Incidentally, a similar
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mechanism was predicted by Lees (1958) in boundary-layer flow over a convex
surface.

Importantly, Joly et al. (2005) noted that a light-cored Gaussian vortex, where
density increases monotonically away from the vortex centre, is always stable. Our
work confirms their result for a Gaussian vortex, but we show that the smoothness
of the vortex profile plays a crucial role, so a light-cored vortex is not always stable.
This result may appear counter-intuitive at first sight, but is shown to be a natural
consequence of wave interactions. Using a Rankine vortex and a step density jump
located at a given radial location, we explicitly show that the Kelvin wave supported
at the edge of the vortex core is allowed, due to shear, to interact with density waves,
leading to stabilization/destabilization. For a Gaussian vortex however, shear and
vorticity gradient co-exist everywhere, and this clouds the interaction between the two.
In our recent work on a more generic density stratification (Dixit & Govindarajan
2010), we obtained one instance of a Rankine vortex surrounded by lighter fluid
immediately outside the core, where a configuration which is unstable in terms of
density stratification is rendered neutrally stable. A desire to understand this result
motivated the present study.

Wave interactions have been observed to cause instability on numerous occasions
in the past. Taylor (1931) was among the earliest to observe that ‘stable’ density
stratification can give rise to instabilities in a three-layer planar model. He attributed
this to the interaction of waves on two interfaces. A detailed study of the wave
interaction mechanism for instabilities is given in Sakai (1989). For a homogeneous
shear layer with two vorticity interfaces, Hoskins, McIntyre & Robertson (1985)
showed that instability is due to a linear wave interaction of counter-propagating
Rossby waves riding at these interfaces. An exhaustive survey of stratified shear flow
instabilities with broken-line profiles is given in Howard & Maslowe (1973). But at the
time of that survey, a clear kinematic understanding of the instability process in terms
of wave interactions did not exist. The wave interaction mechanism was extended
to stratified shear flows recently by Baines & Mitsudera (1994) and Harnik et al.
(2008). We apply this mechanism to a stratified vortex geometry. The phase between
the interface displacement and the normal velocity component is an important driver
for both stabilization and destabilization, as will be demonstrated below. We further
discuss the role of the critical layer.

In the present flow, the interaction is between Kelvin waves riding on the vortex
core, and internal waves riding on the density interface. The Kelvin waves are
analogous to Rossby waves due to a potential vorticity gradient, and are sometimes
referred to by this name (see McWilliams, Graves & Montgomery (2003); Schecter &
Montgomery (2003)). We neglect gravity, so the internal waves are caused solely by
centrifugal forces. The wave interaction is easy to obtain analytically, as we do, when
both vorticity gradient and density profiles are imposed in the form of step functions.
We then need to describe what happens with smooth vorticity profiles, which do not
support discrete Kelvin waves. We hypothesize that the wave interaction mechanism
is now between the quasi-modes from the vorticity field and internal waves from
the density field. For this, we follow the work of Briggs, Daugherty & Levy (1970)
and of Schecter et al. (2000) showing that when a piecewise continuous profile is
smoothened, discrete modes are replaced by quasi-modes, which are a collective
response of the continuous spectrum modes. A detailed mathematical treatment
of quasi-modes in boundary layer flows is available in Shrira & Sazonov (2001),
along with a discussion on the usage of piecewise linear approximations in stability
theory.
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The present work is the first to our knowledge where a quasi-mode, which is
exponentially decaying, and a neutral discrete mode are shown to interact to give
exponential growth. However, there have been some studies which have investigated
the interaction between continuous spectrum modes and discrete modes. Voronovich,
Pelinovsky & Shrira (1998a) and Voronovich, Shrira & Stepanyants (1998b) study
the interaction of boundary-layer quasi-modes with internal gravity waves in the
ocean. Similarly Voronovich & Rybak (1978) and Romanova & Shrira (1988)
study the interaction of boundary-layer quasi-modes with gravity-capillary waves
at an air/water interface. Sazonov (1989) showed that the resonant interaction
between discrete spectrum and continuous spectrum modes leads to a linear growth
of disturbances in time, and provided a physical interpretation of this algebraic
instability. Vanneste (1996) also considered an interaction between discrete (regular)
and continuous (singular) spectrum modes, and clarified that when dealing with
continuous spectrum interaction, one needs to consider a packet of these modes
together. As a result, the contribution of continuous spectrum modes appears in
terms of integrals over the physical domain, with quasi-modes being a special case.

The paper is organized as follows. The problem is formulated in §2. Base flow
profiles and the governing equations are discussed here. The case of a Rankine vortex
with step density jump is considered in §3, and the mechanism is elaborated for light-
cored vortices. We then extend the stability of light-cored vortices to smooth profiles
in §4. Landau poles for various vorticity profiles are extracted, and their connection
to quasi-modes is discussed. A linear initial value problem is solved numerically for
comparison. Results from direct numerical simulations for light-cored vortices are
presented in §5 and concluding remarks are provided in §6.

2. Formulation
We consider the range of vorticity profiles from a Rankine to a Gaussian vortex.

The density jump may also be step-like or smooth, and can be located at any radial
location.

2.1. Base flow profiles

We define a family of vorticity profiles with the same circulation as that of a Gaussian
vortex of core size a. The vorticity profile depends on a single parameter n in the
following way:

Z = Z0 exp

[
−
(

r

δz

)2n
]
, (2.1)

where Z0 is the vorticity at the vortex centre, and δz is the vortex core size. The total
circulation is given by

Ξ ≡ 2π

∫ ∞

0

Z(r)r dr =
πZ0δ

2
z

n
Γ (1/n), (2.2)

where Γ (·) is the gamma function. When n= 1, the vorticity profile simplifies to a
simple Gaussian form. For a Gaussian vortex of core size a, the circulation is equal
to πZ0a

2. To keep the circulation fixed at this value for all n, we define the core size
δz as

δz = a

[
n

Γ (1/n)

]1/2

. (2.3)
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Figure 1. (a) Vorticity and (b) density profiles as functions of n. From left to right (indicated
by arrow), n= 1, 2, 4, 8, ∞ going from a Gaussian to a step profile. In this representative figure,
the core sizes for vorticity and density are chosen as a = 1 and rj = 1.5, respectively, and the
Atwood number At = 0.1.

At n= 1, we obtain a Gaussian profile, and as n → ∞, the profiles assume a step-like
shape as shown in figure 1. While we keep the numerical values of Z0 and a fixed at
1 for simplicity, we retain these variables in the algebra for generality. The effect of
smoothness can also be studied by imposing hyperbolic tangent profiles of varying
width (see, e.g. Hall, Bassom & Gilbert (2003)), but the present family was chosen
for two reasons. The Gaussian profile at n= 1 makes for straightforward comparison
with earlier work, and it is easier in (2.1) rather than with a tanh to enforce the
same circulation for each profile. We believe our conclusions are valid for all types of
smooth profiles. Since the vorticity for any n is monotonically decreasing, i.e.

dZ

dr
< 0, (2.4)

for all r , discrete vorticity (Kelvin) modes do not exist (see Briggs et al. (1970)) except
when n= ∞. In this limit, we get a Rankine vortex, which supports a single discrete
mode due to a vorticity discontinuity at r = a. An artefact of the family of profiles
thus constructed is a small variation of the core size with n. From (2.3) we find that
the core size δz is equal to unity for Rankine and Gaussian profiles, but is slightly
higher for intermediate profiles, with a maximum of about 1.06 at n ≈ 2.17.

Unless otherwise specified, density profiles are defined analogous to vorticity profiles
as

ρ̄ = ρ2 + (ρ1 − ρ2) exp

[
−
(

r

δρ

)2n
]
, (2.5)

where δρ is the density core size, ρ1 is the density near the vortex centre and ρ2 is the
far-field value. We further define the location of the density interface, rj , as

rj =
δρ

δz

a. (2.6)

When rj > a, the density core is larger than the vortex core. Another artefact of these
profiles is that the density gradient varies with n and rj . Varying the location of
the density jump affects the gradient value, and this becomes severe for large n. To
overcome this difficulty, and more importantly, to estimate the effect of smoothing the
vorticity profile alone, we make use of tanh density profiles in the stability analysis
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of §4, defined by

ρ̄ =
1

2

[
(ρ1 + ρ2) − (ρ1 − ρ2) tanh

(
r − rj

δt

)]
. (2.7)

For these profiles, steepness does not depend on rj but is controlled by the factor δt ,
fixed here at a value of 0.1.

2.2. Governing equations

The appropriate governing equations are the two-dimensional Navier–Stokes
equations in r − θ coordinates. A small-amplitude perturbation (u′

r , u
′
θ , ρ

′) is imposed
on the axisymmetric base vorticity and density profiles. Using a Fourier decomposition
in the azimuthal direction, i.e.

[u′
r , u

′
θ , ρ

′](r, θ, t) = Re{[ũr , ũθ , ρ̃](r, t) exp[imθ]}, (2.8)

the linearized system of equations for ỹ = [ũr ρ̃] can be written in the form

∂

∂t
(M ỹ) = −iN ỹ, (2.9)

where the operators are given by

M =

[
ρ̄L + (Dρ̄)r2D∗ 0

0 1

]
, (2.10)

N =

[
ρ̄m(ΩL − rDZ) + (Dρ̄)m(Ωr2D∗ − rZ) −im2rΩ2

−iDρ̄ mΩ

]
, (2.11)

L = r2D2 + 3rD − (m2 − 1). (2.12)

Here D = d/dr and D∗ = D + 1/r . The azimuthal velocity component ũθ can be
computed from ũr using the continuity equation. The base state angular velocity Ω(r)
is given by

Ω(r) =
Z0δ

2
z

2nr2
Γ

[(
r

δz

)2n

, 1/n

]
Γ (1/n), (2.13)

where Γ (·, ·) is the incomplete gamma function (see, e.g. Abramowitz & Stegun 1972).
The boundary conditions are that perturbations decay to zero at the vortex axis and
as r → ∞. The perturbation vorticity ζ (r, t) is related to ũr and ũθ as

ζ (r, t) =
1

r

∂(rũθ )

∂r
− im

r
ũr . (2.14)

For a normal mode in time

[ũr (r, t), ũθ (r, t), ρ̃(r, t)] = [ur (r), uθ (r), ρ(r)] exp[−iωt], (2.15)

and a single equation in ur can be written as

D(ρ̄r2D∗ur ) +

[
m2rΩ2 Dρ̄

(ω − mΩ)2
+

mr D(ρ̄D∗(rΩ))

(ω − mΩ)
− m2ρ̄

]
ur = 0. (2.16)

This equation is analogous to the Taylor-Goldstein equation for planar flow (Drazin
& Reid 1981), and has been derived earlier by Fung & Kurzweg (1975) and others.
The boundary conditions are ur =0, at r = 0 for m � 2, and at r → ∞. We will consider
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only wavenumbers m � 2 as m =1 is only a translational mode in 2D, and does not
alter the dynamics. The centrifugal acceleration rΩ2 in the first term in the bracket
is analogous to gravity in a planar flow. Thus, unlike in the planar situation, internal
waves supported by density inhomogeneity do not have an existence independent of
the flow. When ω is real, the flow is always neutrally stable, and when the imaginary
part of ω is positive, the flow is unstable.

3. Stability of a Rankine vortex with density jump
The limit n → ∞ corresponding to a Rankine vortex with a step density jump

allows for analytical solutions, and is therefore considered in some detail. We keep
the location of the density jump arbitrary. When the vorticity is constant everywhere,
i.e. the entire flow is in solid-body rotation, Fung (1983) showed that no instability
can occur when Dρ̄ > 0, which is an intuitive result. We repeat this proof for clarity.
Substituting Ω(r) = Ω0, c =ω/m and ur =Ψ/r in (2.16), we get

D(ρ̄rDΨ ) +

[
−m2ρ̄

r
+ ΛDρ̄

]
Ψ = 0, (3.1)

where

Λ =
Ω2

0

(c − Ω0)2
+

2Ω0

(c − Ω0)
. (3.2)

Equation (3.1) along with homogeneous boundary conditions at r = 0 and ∞ is in a
Sturm–Liouville or self-adjoint form, so Λ is purely real, with the same sign as Dρ̄.
Rewriting (3.2) as

c = Ω0

[
(1 + Λ) ±

√
1 + Λ

Λ

]
, (3.3)

we see that a density jump from light to heavy is always stable, since Λ is now positive
and so c has only real solutions. Note, however, that the reverse case of a heavy core
is not unstable unless Λ < −1.

On the other hand, for the irrotational flow near a point vortex, where angular
velocity varies as Ω = Γ/r2, we get

Λ =
1

(c − Ω)2
. (3.4)

Again, we arrive at the result that there is no instability when Dρ̄ > 0, but when
Dρ̄ < 0, there is always an instability. In our flow, a density jump placed at r 	 a or
r 
 a, respectively, resembles the limits of solid-body rotation or a point vortex. A
positive density jump being stable in either of these limits, one may expect a light-
cored vortical flow to be stable wherever the jump is placed. This will be shown below
to be not true. The reason is that while (2.16) can be reduced to (3.1) either inside
or outside the vortex core, it still is not a Sturm–Liouville system as homogeneous
boundary conditions are not satisfied at r = a, a region of non-zero vorticity gradient.
There is thus an opportunity for different behaviour if the jump is placed at r ∼ a.
Note also that this system is not self-adjoint.
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The n → ∞ limit may be described as

r � a a < r � rj r > rj

Z = Z0 Z = 0 Z = 0
Ω = Ω0 Ω = Ω0a

2/r2 Ω = Ω0a
2/r2

ρ̄ = ρ1 ρ̄ = ρ1 ρ̄ = ρ2

(3.5)

The general solution of (2.16) in the above three regions is in general a linear
combination of the solutions r (m−1) and r (−m−1). For r � a, for finiteness of ur at
the vortex centre, the solution is of the form r (m−1) and for r > rj , for the solution
to decay uniformly as r → ∞, the solution is of the form r−(m+1), whereas in the
intermediate region, the solution involves a linear combination of the above two
forms. The coefficients appearing in the above solution are obtained by matching
the value of ur and pressure at the interfaces r = a and r = rj . In Appendix A, the
eigenfunctions ur are given along with the necessary steps for the derivation of the
dispersion relation. Non-dimensionalizing ω by the maximum core vorticity Z0, a
cubic eigenvalue equation can be obtained from (2.16) as follows:

ω3 + a2ω
2 + a1ω + a0 = 0, (3.6)

where

a2 =
1

2

(
1 − m

[
1 + 2

(
a

rj

)2
]

+ At

(
a

rj

)2m
)

, (3.7)

a1 =
m

4

(
2(m − 1)

(
a

rj

)2

− 2At

(
a

rj

)2m+2

+ (m + At)

(
a

rj

)4
)

, (3.8)

a0 =
m(m − 1)

8

(
At

(
a

rj

)2m+4

− (m + At)

(
a

rj

)4
)

, (3.9)

and At = (ρ1 − ρ2)/(ρ1 + ρ2) is the Atwood number. In the homogeneous fluid limit
of At = 0, (3.6) is solved to give a 2D Kelvin mode, ω

(1)
0 , on the vortex core boundary,

and a single continuous spectrum mode, ω
(2,3)
0 , at any r = rj , given, respectively, by

ω
(1)
0 =

(m − 1)

2
, ω

(2,3)
0 =

ma2

2r2
j

. (3.10)

The subscript 0 denotes the case of At = 0. The discrete mode is obtained due to a
non-zero vorticity gradient at r = a. The continuous spectrum of a Rankine vortex
is studied in detail in a forthcoming work of A. Roy and G. Subramanian (private
communication). The critical radius for the Kelvin mode is obtained by equating the
two solutions of (3.10) giving

rc = a

√
m

m − 1
. (3.11)

The angular speed of the base flow at this radius is equal to that of the Kelvin
mode. In a frame of reference rotating with this speed, disturbance waves rotate in
opposite directions on either side of rc. The continuous spectrum outside the core can
result in interesting behaviour for At �= 0. Romanova (2008), for instance, showed
that the continuous spectrum modes of a homogeneous flow can become unstable
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Figure 2. Curves of P from (3.12) plotted as functions of the density jump location rj /a. The
wave number m corresponding to each curve is shown in the legend. In the limit of small At,
the flow is unstable when P > 0. The dotted vertical lines indicating the zero crossings of P
coincide in each case with the critical radius for the Kelvin mode obtained from (3.11).

eigenmodes in the presence of density stratification. We therefore restrict our study
to the region rj > a.

3.1. Heavy-cored Rankine vortex

We first consider At > 0, which means that fluid within rj is heavier than that outside
it. Following the standard methods of solving a cubic equation (Press et al. 1992),
a criterion for instability can be derived. As the general criterion is cumbersome,
we give here the small At approximation, retaining up to O(At). For instability, we
require

P =

(
1 − m + m

(
a

rj

)2
)3(

1 − m + m

(
a

rj

)2

−
(

a

rj

)2m
)

> 0. (3.12)

Figure 2 shows curves of P plotted as a function of rj/a. The zero crossing occurs
when the jump is placed exactly at the critical radius, i.e. rj = rc. As the Atwood
number increases, a jump placed anywhere outside rc becomes increasingly unstable,
and the unstable range encroaches within rc as well, but the flow is neutrally stable for
a range of rj immediately outside the Rankine core. This can be seen in figure 3(a),
where the growth rate is plotted as a function of the Atwood number for a fixed
wavenumber m =2. Figure 3(b) shows that a neutral region exists for all m. Here, no
assumption is made on the smallness of At .

The complete dispersion relation in the At − rj/a plane for m =2 is plotted in
figure 4, where a region of stabilization can clearly be seen for small At and rj/a. For
a density jump which coincides with the core, i.e. rj = a, (3.6) reduces to the simple
form

ω =
m

2
−
[

(1 + At)

4

(
1 ±

√
1 − 4mAt

(1 + At)2

)]
. (3.13)

Therefore, instability occurs at the core only if

m >
(1 + At)2

4At
. (3.14)
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Figure 3. Growth rate for a heavy-cored Rankine vortex as a function of density jump
location. (a) For various Atwood numbers, as shown in the legend, for m= 2. At increases
upwards in powers of 10 starting from 10−2. (b) At fixed At = 10−5, for various m, as shown in
the legend. In both plots, the dash-dot vertical lines indicate the critical radius obtained from
(3.11).
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Figure 4. Contours of growth rate in the At–rj /a plane for heavy-cored vortex (At > 0).
Only the region outside the core is indicated, since a density jump within the core would be
stable. Solid lines indicate growth rate, and dashed lines the frequency. Grey shading represents
neutral regions.

When m =2, this condition is met when At > 0.171, and for m = 3, when At > 0.101.
A physical explanation for the stabilization will become apparent after the discussion
in §3.3.

3.2. Light-cored Rankine vortex

If unstable density stratification can be stabilized, then the natural question that arises
is whether the reverse is also true, i.e. can a light-cored vortex flow ever be unstable.
To put the present results in perspective, it is re-emphasized that the earlier work
of Sipp et al. (2005) and Joly et al. (2005) did not find any destabilization for any
density contrast using Gaussian profiles. In this subsection, we see that a Rankine
core with a step density jump can be unstable. In the next section, we show that
instability occurs only for steep profiles.
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Figure 5. (a) Variation of growth rate with the jump location for a light-cored Rankine
vortex at (a) At = −10−5, (b) At = −10−3. The dash-dot vertical line indicates rc .
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Figure 6. Contours of growth rate in the At–rj plane for a light-cored vortex (At < 0). Solid
lines indicate growth rate and dashed lines indicate frequency. The grey shading represents a
neutral region.

For a light-cored vortex, At < 0. At low (−At), instability now occurs when P in
(3.12) is less than 0. From (3.11), it is again seen that instability first occurs at the
critical radius as the Atwood number is increased (negatively) from zero. Instability
is now confined to the region immediately outside the core as shown in figure 5. The
complete dispersion relation for a light-cored vortex with m =2 is plotted in figure 6.

The three solutions of (3.6), named ω(1), ω(2) and ω(3) may be obtained from series
expansions in Atwood number. We derive an outer solution denoted by a superscript
o, valid away from the critical radius and an inner solution, denoted by a superscript
i, valid in the neighbourhood of the critical radius. The first solution, corresponding
to the Kelvin wave riding on the vortex core boundary in the homogeneous case,
takes the asymptotic form

ω(1),o = ω
(1),o
0 + (−At) ω

(1),o
1 + O(−At)2, (3.15)
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where

ω
(1),o
0 =

m − 1

2
and ω

(1),o
1 =

(m − 1)

(
a

rj

)2m
[
(m − 1) − 2m

(
a

rj

)2m

+ m

(
a

rj

)4
]

2(m − 1)4 − 4m(m − 1)

(
a

rj

)2

+ 2m2

(
a

rj

)4
.

(3.16)
This solution diverges at the critical radius rc, but since it gives rise to no instability,
that neighborhood is not studied in detail. The other two solutions, which describe
the continuous spectrum modes localized at r = rj , take the asymptotic form

ω(2,3),o = ω
(2,3),o
0 + (−At)1/2 ω

(2,3),o
1 + O(−At), (3.17)

with

ω
(2,3),o
0 =

ma2

2r2
j

,

ω
(2,3),o
1 = ±

⎡
⎢⎢⎢⎢⎣

−3

(
a

rj

)2m+4

(2m2 + m) − 3m(m − 1)

(
a

rj

)4

+ 4m2

(
a

rj

)6

12

(
m

(
a

rj

)2

− (m − 1)

)
⎤
⎥⎥⎥⎥⎦

1/2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.18)

These solutions too diverge at the critical radius. An inner solution in this
neighborhood takes the asymptotic form

ω(2,3),i = ω
(2,3),i
0 + (−At)1/3ω

(2,3),i
1 + O(−At)2/3, (3.19)

where the correction term ω
(2,3),i
1 is obtained as a solution to the equation

ω2
1

⎛
⎜⎜⎜⎝

m

(
a

rj

)2

2
− m − 1

2
+ (−At)1/3ω1

⎞
⎟⎟⎟⎠

= (−At)1/3 m

8

(
a

rj

)4
(

m

(
a

rj

)2

− (m − 1) −
(

a

rj

)2m
)

. (3.20)

Thus, a continuous spectrum mode localized at r = rj becomes unstable with a growth
rate increasing as |At |1/2 when rj 
 rc. In a small region around the critical radius of
the Kelvin wave, the growth rate increases faster, as |At |1/3.

3.3. Physical mechanism

In §§3.1 and 3.2, we showed that a light-cored (At < 0) Rankine vortex can be
destabilized. We now examine the physical mechanism behind this process. A
corresponding explanation may be offered for the stabilization of a heavy-cored
vortex. The mechanism, of wave interaction, relies on the existence of two differentially
moving free waves (these are neutral waves having an independent existence and are
associated with perturbation vorticity localized in space), which can slow each other
down relatively until they settle into a normal mode, see, e.g. Hoskins et al. (1985). The
final phase difference between the two will determine the production of perturbation
energy, and therefore decide whether the combined system will be stable. This can
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Figure 7. Variation of frequencies (solid lines) with radial location of the density jump of the
three solutions for light cored Rankine vortex with m= 2 and At = −10−3. The growth rate of
the unstable mode is shown by the dash-dot-dot line. The dashed curves correspond to (3.10)
for a Rankine vortex at At = 0. The dash-dot curves indicate the frequencies for a point-vortex
system derived from (2.16). The vertical dotted line shows rc .

be seen both by performing an energy balance, or as done below, by a simple
mechanistic argument. In our flow, the interaction is between internal waves at the
density interface and a Kelvin wave on the Rankine vortex.

The solid lines in figure 7 show the three eigenvalue branches of perturbations on a
Rankine vortex as functions of rj , where the step density jump is placed. The growth
rates corresponding to the unstable mode are shown by the dash-dot-dot lines. The
branches contain the effects of both the vorticity step at the edge of the Rankine
vortex, and the density step at rj . In order to understand the origin of each branch, we
plot separately the solutions to (i) a Rankine vortex in a homogeneous density fluid,
and (ii) a circular density interface around a point vortex. The former are obtained
from (3.10), and are shown by the dashed lines in the figure. The dispersion relation
for the latter may be derived from (2.16), and for a typical Atwood number, lie on
either side of the homogeneous ω2,3, as shown by the dash-dot curves. Starting at
large rj in the figure and proceeding leftwards, we see that branch 1, corresponding
to the faster moving density wave, interacts with the Kelvin mode, branch 2. At an
rj not far from the critical value, they combine to give eigenvalues thereafter which
form a complex conjugate pair.

Using the eigenfunctions given in Appendix A, interface displacements and
perturbation vorticity may be seen to take the forms

ηa =
ia−m−1[(rj

a

)2m

(ω − (m − 1)Ω0) − Ω0

] , (3.21a)

ηj =
ir−m−1

ω − mΩ
a2

r2
j

, (3.21b)
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(a) (b)

Figure 8. Wave interaction for a light-cored Rankine vortex. The perturbed interfaces at r = a
and r = rj are shown by the solid line. Dashed lines indicate the unperturbed location. The
straight solid arrows indicate the induced velocity at the nodes of the interfaces and dashed
arrows indicate the direction of the tangential velocity disturbance. The circular arrows denote
the disturbance vorticity. (a) Neutral configuration. The radial velocity perturbation ur does
not affect the density interface. (b) Unstable configuration, where ur destabilizes the outer
sheet.

ζa =
2iΩ0a

−m−1[(rj

a

)2m

(ω − (m − 1)Ω0) − Ω0

]δ(r − a), (3.22a)

ζj =

−2ir−m−1
j

[(rj

a

)2m

(ω − (m − 1)Ω0)

]
[(rj

a

)2m

(ω − (m − 1)Ω0) − Ω0

] δ(r − rj ), (3.22b)

where η and ζ are the amplitudes of the perturbed interface location and the
perturbation vorticity, respectively, and the subscripts refer to radial locations a and
rj . The phases between various quantities on the twin vortex sheets may be derived
from the above, and are shown schematically in figure 8. Figure 8(a) corresponds to
rj 
 rc, where all modes are neutrally stable, while shown in figure 8(b) is the situation
at an rj ∼ rc, where the instability growth rate is the maximum. The difference we
would like to highlight is the phase between the two interfaces in each figure, and
the phase between the density interface and the radial velocity perturbation. In the
neutrally stable situation, the two interfaces are in phase, and both are perfectly out
of phase with the radial velocity. Thus, ur neither abets nor impedes the interface
displacement. If one rotates the Kelvin wave, being the faster moving, in the anti-
clockwise direction, it can be worked out that the outer vortex sheet will respond
so as to return the system to the original phase. On the other hand, for a growing
mode, we need the interfaces to be positioned such that ηj lags ηa to within half a
wavelength. In the most dangerous case, ηa and ηj are out of phase, and ur causes
ηj to grow. The Kelvin mode thus acts as a source of energy, absent in the point
vortex case. This is the essential mechanism for the instability of a light-cored vortex.
In other words, for a neutral wave, the kinematic condition Dη/Dt = ur means that
the interface displacement and the normal velocity are always out of phase, i.e. there
is no production of disturbance energy. Once the waves interact, and η and ur are
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locked at a particular phase, an instability can result. To see where such interaction
happens, an approximate estimate of the phase is obtained by putting ω1 ≈ mΩ0a

2/r2
j

in (3.21). We may see that for rj >∼ rc, the two interfaces are in phase, whereas below

rc, the interfaces are no longer in phase.
Figure 9 shows the variation of the phase angle α between η and ur at both

interfaces as a function of rj . Since m =2 here, a half-wavelength displacement in the
azimuthal direction is represented by an angle of 900. For the smallest At considered,
the two interfaces behave like free waves and this results in near-perfect phase locking
between the density interface and the radial velocity below the critical radius. The
phase angle at r = a shown in the inset departs marginally from the neutral wave
condition, i.e. αa ≈ −900. This too indicates that it is the density interface that is
destabilized, rather than the vortex core. The above discussion can be easily extended
to explain the stabilization of a heavy-cored vortex.

The kinematic picture described above is in agreement with the wave energetic
viewpoint of linear wave interactions. The wave energy concepts first developed in
plasma physics were introduced into hydrodynamics by Cairns (1979). A detailed
discussion of wave energetics is given in Craik (1985) and Fabrikant & Stepanyants
(1998). The wave energy can be calculated from the dispersion relation using the
formula

E =
1

4
ω

∂D

∂ω
|η0|2, (3.23)

where E is the wave energy, D is the cubic dispersion relation of (3.6) multiplied by a
negative sign and η0 is the interface displacement amplitude. Instability occurs when
the dispersion curves of two waves with oppositely signed wave energies intersect.
This happens in the present case, since branch 1 can be shown to be associated
with positive wave energy, while the Kelvin mode, as Fukumoto (2003) showed, is
associated with a negative wave energy.
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4. Stability of smooth profiles
Given that a light-cored Rankine vortex with step density jump can be unstable,

but a light-cored Gaussian vortex with a Gaussian density distribution is not (Joly
et al. 2005), it is clear that the smoothness of the profile has a crucial role to play.
In §4.1, we demonstrate that for smooth profiles too, instabilities similar to that for
a Rankine vortex can exist, if the variation in the mean flow is rapid enough. With
increasing smoothness however, the corresponding growth rates decrease and, at some
smoothness, instabilities vanish. How may this be explained, i.e. what happens to the
mathematical construct of free waves we created above, when the discontinuities, as
in real life, are smoothed out?

As shown by Briggs et al. (1970) and is now well known, smooth vorticity profiles
do not have discrete normal mode solutions. However, a subset of the continuous
spectrum, lying in the vicinity of the critical radius of a related sharp profile, can take
the place of the discrete mode. In other words, the collaboration of these continuous
spectrum modes (which actually appear as singular wave packet solutions) can lead to
remarkably wave-like behaviour. When this happens, it is referred to as a quasi-mode
((Briggs et al. 1970); (Schecter et al. 2000) and others). These quasi-modes exhibit
an exponential decay, much in the manner of a stable discrete wave, for a short
time. At longer times, we have the usual algebraic decay (Case 1960) of the entire
continuous spectrum. The exponential decay can often be associated with the least
stable Landau pole. Landau poles are discrete eigenvalues of the inviscid (Rayleigh)
stability equation, obtained from an analytic continuation into the complex plane.
Since they exist in another Riemann surface, they have to be distinguished from true
eigenmodes. It is well known now that when vorticity gradient at the critical radius
is very small, then Landau poles indeed become quasi-modes, i.e. manifest wave-like
behaviour in the physical Riemann surface. On physical grounds, the exponential
damping has been interpreted as being due to a resonant wave–fluid interaction,
analogous to the wave–particle interaction considered by Landau. Schecter et al.
(2000) showed that this resonant damping is a result of the conservation of angular
momentum, where phase mixing of vorticity in the Kelvin’s cat’s eye at the critical
layer leads to a decrease in the mode amplitude. The existence of quasi-modes can be
ascertained by various qualitative measures as we shall see.

As the base vorticity becomes more spread out, its resemblance to a step vorticity
change becomes weaker, and so does the connection between the displayed behaviour
and the Landau pole. Consequently, the behaviour will be seen to be no longer
wave-like at high levels of smoothness. In particular, as Schecter et al. (2000) noted,
a Gaussian vortex has no noticeable quasi-mode signature. In this case, an initial
impulsive perturbation results in a spiral structure which does not resemble a normal
mode. Secondly, the pole lies so far from the real r line that a critical radius is not
well-defined. Since the deviation from wave-like behaviour is gradual with increase
in smoothness, a particular smoothness level at which a quasi-mode ceases to exist is
not possible to define in this flow.

By various measures, we show that a profile less smooth than about n= 4 exhibits
quasi-mode behaviour. More important, we show that quasi-modes possess another
property of wave-like disturbances, in that like discrete waves, they can participate in
interactions with other waves. Interestingly, the interaction in this case between an
exponentially decaying quasi-mode of the vortex profile and a neutral internal wave
results in exponential growth. This interaction can also be interpreted in terms of
wave energies. Briggs et al. (1970) showed that quasi-modes possess negative wave
energy. Hence, the mode amplitude grows when energy is extracted from these waves,
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Figure 10. Growth rates obtained by varying the value of n for vortex and density profiles
for different Atwood numbers. The density profiles are placed at rc .

by either introducing friction (viscosity) in the system, or by introducing a positive
energy wave. The former situation occurred in Briggs et al. (1970), while we let
ourselves into the latter situation by introducing positive energy waves due to density
stratification.

4.1. Quasi mode – gravity wave interaction

We now present stability results on the family of smooth vorticity profiles described
earlier. Equation (2.16) is solved in the domain r = 0 to Rmax, which is fixed at
20, using the Chebyshev spectral collocation method. A change in the domain size
to 15 or 30 did not change the eigenvalues significantly. Convergence checks were
carried out for most of our results. The collocation points are defined in the domain
x ∈ [−1, 1] which is then mapped on to a radial coordinate. The grid is clustered
in radial regions of sharp density gradients based on the stretching formula given
in Govindarajan (2004). To improve accuracy at small growth rates and to obtain
Landau poles, the integration contour is deformed into a plane of complex radius r∗.
All the above are incorporated in the following:

r∗ = β1

[
sinh(β2((1 + x)/2 − y0)) + sinh(β2y0)

sinh(β2y0)

]
− iα(1 − x2), (4.1)

where

y0 =
1

2β2

log

[
1 + (eβ1 − 1)β1

1 + (e−β1 − 1)β1

]
. (4.2)

Here, β1 represents the location where clustering is desired, β2 determines the degree
of clustering, and α < 0 denotes the extent of deformation. For radially stratified
vortices, we choose β1 to coincide with the density jump location. For homogenous
flows treated later in the paper, β1 is chosen to be equal to the critical radius. β2 is fixed
at 10 in all our calculations. It was seen above that instability for a Rankine vortex
is highest when the density jump is placed at the critical radius. To get an estimate
of the maximum growth rate, we again place the density jump at the critical radius,
defined now as the real part of the Landau pole location of the homogeneous vortex,
as described in detail later. In figure 10, growth rates for different Atwood numbers
are shown as functions of profile steepness. For the Atwood numbers considered
here, instability always vanishes for n less than about 6. On the other hand, for large
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Figure 11. Neutral curves with tanh density profiles (2.7) of δt = 0.1. solid line: At = −0.01,
dashed line: At = −0.02, dash-dot line: At = −0.025. Dash-dot-dot line: At = −0.05 with the
density profile according to (2.5) with n= 10.

n, the Rankine limit is approached. The density profiles here have the same n as
the vorticity. To estimate how much of the stabilization at lower n is due to the
smoothening of the density profiles, a steep tanh density profile, as given in (2.7), is
used to obtain neutral stability curves, shown in the n − rj plane in figure 11. The
steepening of the density profile does bring down the n at which instabilities vanish.
Though its exact value is sensitive to At , for small At , this n value is always between
2 and 1. Henceforth, we use only steep density profiles.

In the small At limit, waves from vortex and density profiles can be assumed to
weakly modify each other. For large At , vorticity and density waves strongly influence
each other, making it difficult to pin down a particular range of n for the transition
to stability.

In the next subsection, we study the stability properties of a homogeneous vortex.
The At is set to zero in the rest of this section.

4.2. Landau poles and quasi-modes for a homogeneous vortex

To estimate how wave-like the vorticity perturbation is, we prescribe homogeneous
density conditions in this subsection. Landau poles are recovered from a suitable
analytic continuation of the dispersion relation, as discussed in Briggs et al. (1970).
We then qualitatively estimate whether these are also quasi-modes of the system.

Figure 12 shows the frequency and decay rate as per the Landau pole as functions of
the smoothness parameter n. For large n, the frequency approaches asymptotically the
Kelvin mode frequency of a Rankine vortex. The decay rate increases dramatically
for n � 3.5. Eventually, at low enough n, we have ωq,i/ωq,r ∼ O(1), violating the
assumption of small decay rate of Briggs et al. (1970) and Schecter et al. (2000),
under which they are able to obtain quasi-modes. An examination of figure 13 reveals
that the critical point rc too drifts rapidly away from the real-r axis for n � 3.5, so the
approximation of the critical point by its projection on the real axis is not justified.
We therefore expect that there should be no quasi-mode evident at low n, and apply
some diagnostics to support this.
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The first is the excitability test of Schecter et al. (2000). The excitability, which they
define as

Xl = −〈ξl, r
m−1DZ(r)〉
〈ξl, ξl〉

, (4.3)

is a measure of amplification of a given frequency in the perturbation. Here, the inner
product is defined as

〈f, g〉 =

∫ ∞

0

f ∗(r)g(r)

|DZ(r)| r2 dr, (4.4)

and the disturbance vorticity is considered in discretized form, for example in terms
of Chebyshev polynomials, as

ζ (r, t) =

N∑
l=1

alξl(r) e−iωl t , (4.5)

where al are the expansion coefficients, ξl the vorticity eigenfunction and ωl is
the frequency. In the case of steep tanh vortices, Schecter et al. (2000) obtained a
Lorentzian-type excitability spectrum, with a peak at the Landau frequency. This is
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Figure 14. Excitability for vorticity profiles with (a) n= 4, (b) n= 2, (c) n= 1.5 and (d) n= 1.
Note the change of vertical scale for (a). A sharply peaked excitability spectrum is indicative
of a quasi-mode.

the signature of a quasi-mode. However, for a Gaussian vortex, a broadband spectrum
was obtained with no well-defined peak. Our results for the present profiles are in
qualitative agreement, as seen in the excitability spectra in figure 14 for four vorticity
profiles of decreasing steepness. Given its sharply peaked excitability spectrum, we
estimate that a profile of n= 4 is steep enough to respond with a wave, and at some
lower n, a quasi-mode no longer exists. In fact, the excitability spectrum for n= 4 is
fit well by a Lorentzian, with a peak at Re(ωq), where the subscript q stands for the
Landau pole, that is orders of magnitude greater than for surrounding frequencies.
For n= 2 and 1.5, there is only a shallow peak, while a Gaussian vortex behaves in
accordance with Schecter et al. (2000).

Fabre, Sipp & Jacquin (2006), whose primary focus was 3D perturbations, provided
a second diagnostic. They too noted that a Gaussian vortex does not have a quasi-
mode in the 2D limit, displaying instead a broadband response. Their viscous L-
branches (as they name them), the only modes which can possess a critical layer
singularity, undergo a dramatic change in eigenmode structure as axial wavenumber
is decreased (see their figure 14). For small axial wavenumber and large Reynolds
number, the disturbance is wound into a thin spiral structure outside the vortex core,
notably with no perturbation in the core region. If a resonant wave–fluid interaction
were taking place, we would have seen its signature in the form of a significant
perturbation amplitude at the core. They further showed that these viscous L-branch
solutions at large Re match the inviscid solutions of Sipp & Jacquin (2003) suggesting
that the quasi-modes of the inviscid system become true eigenmodes of the viscous
problem. Moreover, decay rates of these L-branch solutions rapidly increases with
decreasing axial wavenumber, such that eventually ωq,i ∼ O(ωq,r ). This led Fabre et al.
(2006) to conclude that there are no quasi-modes for a Gaussian vortex in the 2D
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Figure 15. Vorticity eigenfunctions for homogeneous vortices obtained from a viscous
calculation at Re = 105. (a) n= 4, (b) n= 2, (c) n= 1.5 and (d) n= 1. The dotted circle at
the centre indicates the vortex core size δz. Twelve equally spaced contour levels are plotted.
Solid and dashed lines indicate positive and negative vorticity levels, respectively.

limit. We extend the viscous stability study to other values of n, with the governing
equations and method described in Dixit & Govindarajan (2010). The results at
Re = 105 shown in figure 15 indicate that there are significant vorticity perturbations
inside the core for n � 2, suggesting again that quasi-modes exist for steeper profiles.

4.3. Initial value problem

In the solution of an initial value problem, quasi-modes are associated with
exponential decay of energy, where the decay rate is precisely that given by the
Landau pole. This provides a third diagnostic. The linear equations (2.9)–(2.12)
are solved with homogeneous boundary conditions at r = 0 and r =Rmax . Radial
discretization is given by (4.1) with α = 0 and we use 3000 collocation points. The
initial perturbation consists of a narrow ring of vorticity centered at the real part of
the critical radius Re(rc), with

ζ (r, 0) = exp

(
−(r − Re[rc])

2

δ2

)
. (4.6)

A large number of vorticity profiles were studied, but we present only a few. We
are specifically interested in the region between n= 4 and n= 1. One way to measure



Radially stratified vortex 603

n ωq rc

3.5 0.450 − 1.856 × 10−4i 1.490 + 0.307 × 10−3i

3.0 0.433 − 1.518 × 10−3i 1.518 + 0.266 × 10−2i

2.47 0.407 − 6.892 × 10−3i 1.567 + 0.133 × 10−1i

2.0 0.371 − 1.827 × 10−2i 1.638 + 0.406 × 10−1i

1.5 0.315 − 4.137 × 10−2i 1.766 + 0.118i

1.0 0.222 − 7.939 × 10−2i 2.022 + 0.370i

Table 1. Variation of Landau pole for select values of profile smoothness. The critical location
for these modes lies off the real axis, and is obtained by inverting the relation ωq =mΩ(rc).
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Figure 16. Vorticity gradient at the critical radius for various values of n. The solid line is
the real part of DZ obtained by considering the complex rc and the dotted line is obtained
by calculating DZ at r = Re(rc). The minima in these two cases are reached at n= 1.3 and
n= 1.6, respectively.

the strength of non-axisymmetric perturbations is to use the mth multipole moment
defined as

Qm(t) =

∫ ∞

0

rm+1ζ (r, t) dr. (4.7)

This quantity is a measure of the ellipticity of the vortex (for m =2) and is related to
the form of the streamfunction in the far-field, i.e.

Qm(t) ∼ 2mrmψm(t), (r → ∞), (4.8)

(see Bassom & Gilbert (1998); Turner & Gilbert (2007)). For comparison, table 1
gives Landau pole values and their critical radii for a few vortex profiles. As seen in
figure 17, the decay rate obtained from the multipole moment, Qm(t), is in excellent
agreement with table 1 for profiles n= 2 and n= 1.5, but the agreement is not so good
for n= 1. The exponential decay is seen to last for longer times as the profile is made
steeper. The noise at late times is probably due to insufficient numerical resolution,
since the disturbance field becomes progressively finer-scaled. A very small viscosity
has been used to stabilize some of the calculations (as done by (Turner & Gilbert
2007)).

Another useful quantity is the kinetic energy of the perturbations, defined as

E(t) =

∫ ∞

0

r

m2
(m2||ur ||2 + ||D(rur )||2) dr. (4.9)
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n Im(ωq ) σq σe

2.0 −0.01827 −0.01827 −0.01827
1.5 −0.04137 −0.04137 −0.0325
1.0 −0.07939 −0.054 −0.0245

Table 2. Comparison of decay rate obtained from multipole moment and energy with the
Landau pole value for three different vortex profiles. The decay rate of energy for n= 2 vortex
is in excellent agreement with the Landau pole value, but is poor for the other profiles.
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Figure 17. Evolution of quadrupole moment |Re(Q2(t))| for four different vortex profiles, (a)
n= 4, (b) n= 2, (c) n= 1.5 and (d) n= 1. The dashed lines are fits for the exponential damping
rate with the indicated decay rate.

At intermediate times, larger than the mean turnover time, E(t) being proportional to
exp(−2ωq,it) is a definitive demonstration of quasi-mode response. Figure 18 shows
the evolution of normalized kinetic energy. After a short early transient, a clear
exponential decay can be noticed, similar to the observations of Shrira & Sazonov
(2001) in a boundary layer flow. A striking distinction between the decay of Qm(t)
and E(t) is the significantly shorter duration of exponential decay in E(t). Decay
rates σq and 2σe, obtained by a fit of the exponential portions of Qm(t) and E(t),
respectively, are tabulated in table 2. Again, the decay of Qm(t) is in fair comparison
with the Landau pole value, but the decay of energy is in poor agreement for n= 1.5
and n= 1 vortices. The transient growth is seen in the inset of figure 18 to increase
with increasing n at short times. But the exponential decay rate at intermediate times
does not change monotonically with n; at n= 1.5, the decay is more rapid than at
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Figure 18. Evolution of disturbance kinetic energy E(t) in homogeneous vortices for
n= 1, 1.5, 2, 2.47, 3 and 4 indicated by solid lines. An exponential fit of the form e2σ t is
obtained and is shown for the first four curves. Values of σ obtained for n= 1, 1.5, 2 and 2.47
are −0.0245, −0.0325, −0.01827 and −0.006892, respectively. The inset shows the region near
t =0 indicated by a rectangle, where transient growth is obtained. Notice a monotonic increase
in transient energy growth with n, but a non-monotonic variation in energy decay.

n= 1 or n= 2. The decay rate is expected to be directly related to DZ(rc), and a
corresponding non-monotonicity in that quantity in seen in figure 16.

To compare the response of the initial value problem with the viscous stability
calculations, a fixed time of 100, close to the beginning of the energy decay, is chosen.
Figure 19 shows the contours of perturbation vorticity at t = 100 for four different
values of n. Figures 19(a), 19(b) and 19(c) are remarkably similar to the viscous
results shown in figure 15, suggesting that quasi-modes indeed become eigenmodes
of the viscous problem. Clearly, a lobed structure analogous to a Kelvin wave can be
noticed at r = a (shown by a dotted circle) for the n= 4 vortex. For an n=2 vortex,
weak lobes are noticed at the core boundary. Core perturbations completely vanish
for an n= 1.5 vortex, and in the case of n= 1, the spiral region begins to engulf the
vortex core with no visible wave-like pattern noticeable.

Having seen by all measures that no quasi-mode exists for n< 1.5, we now examine
the light-cored vortex. Clearly from figure 11, the instability vanishes for n between
2 and 1. We thus conclude that the existence of a quasi-mode is strongly correlated
with the existence of an instability. We surmise that the quasi-mode makes a wave
interaction possible.

5. Nonlinear stages
We now present results from a viscous direct numerical simulation to understand

the nonlinear stages of these instabilities. Even in stably stratified shear flows like the
Holmboe instability, there continues to be interest in understanding these instabilities
in the nonlinear regime (see the recent paper of (Carpenter et al. 2010)). In the
light of this interest in a parallel flow, it would be of interest to understand similar
situations for a rotating flow. Only the results for light-cored vortices are presented,
as the heavy-cored case has already been treated in Joly et al. (2005) and Coquart
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Figure 19. Contours of perturbation vorticity for a homogeneous vortex obtained from a
linear initial value problem at t =100. (a) n= 4, (b) n= 2, (c) n= 1.5 and (d) n= 1. Twenty
equally spaced contour levels between the maximum and minimum values are plotted. The
positive levels are shown by solid lines and negative levels by dashed lines. The dotted circle
shows the region of the vortex core. Note the change of scale for (d).

et al. (2005). In many flows, the nonlinear pattern bears strong similarities with
the most unstable mode obtained from a linear analysis. Heavy-cored vortices were
shown by Joly et al. (2005) to split into m smaller but stronger vortices. But with
stable stratification in light-cored vortices, it is interesting to know what would be the
outcome of an exponentially growing instability. We find initial adherence to the linear
growth rate followed by nonlinear saturation. However, unlike in the heavy-cored case
where the primary vortex splits into m parts, baroclinically generated vorticity creates
m additional satellite vortices around the primary vortex, forming a stable nonlinear
structure. For an m =2 perturbation, the saturated state takes the form of a tripolar
vortex. This is the first study to our knowledge which shows that a tripolar vortex
can be created from a vortex profile in the presence of a ‘stable’ density stratification.
Incidentally, in an experimental realization of an unstratified tripolar vortex,
van Heijst & Kloosterziel (1989) and van Heijst, Kloosterziel & Williams (1991)
use an initial negative vorticity envelope. This envelope makes the vortex susceptible
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to barotropic instabilities. Carton, Flierl & Polvani (1989) exploit these unstable
modes to obtain stable tripolar vortices in their numerical simulations at constant
density.

5.1. Numerical method and initial perturbation

The numerical method is a 2/3-dealiazed pseudo-spectral code Canuto et al. (1988)
solved in the vorticity-streamfunction formulation with periodic boundary conditions
for an incompressible non-Boussinesq fluid. This enforces a solenoidal velocity field.
An additional equation is solved for the non-axisymmetric correction to the density
field. The characteristic scales in the problem, as given in section (2.1), are determined
by the vortex core size, δz, density core size, δρ and circulation Ξ . For simplicity,
we consider the transport coefficients to be constant. To enable comparison with
the stability analysis presented in §4, we consider a large Reynolds number, Re and
Peclet number, Pe in the present simulations. This allows us to approach inviscid
results with viscosity and diffusivity to stabilize the numerical scheme. The governing
equations solved in cartesian coordinates can be written as

dZ̃

dt
=

1

ρ̃

(
∂ρ̃

∂y

dũ

dt
− ∂ρ̃

∂x

dṽ

dt

)
+

1

Re
∇2Z̃, (5.1)

dρ̃

dt
=

1

Pe
∇2ρ̃. (5.2)

Here d/dt represents the total derivative, and Z̃ and ρ̃ are the total vorticity
and density fields. The first term on the right-hand-side of (5.1) is responsible for
baroclinic torque created by a misalignment of pressure and density surfaces. These
are the standard equations for an incompressible fluid where density varies across
the flow (see e.g. (Birman, Martin & Meiburg 2005) and (Dixit & Govindarajan
2010)). We use a unit Schmidt number, so Re = Pe = Ξ/ν. A large value of 50 000
was chosen. A domain size of L =8π in x and y directions was chosen and we use
10242 grid for all the cases. Periodicity enforces a net zero circulation in the flow, and
hence the velocity field far away from the vortex axis is not accurately predicted. This
prompts us to use a large domain size. This was found to be very important in order
to capture the transient periods of the instability.

At t =0, an initial perturbation is given to the vorticity and density fields

Z̃(r, θ, t) = Z(r) + ε Ẑ(r, θ, t), (5.3)

ρ̃(r, θ, t) = ρ(r) + ε ρ̂(r, θ, t). (5.4)

Here, [Z(r), ρ(r)] are the base state vorticity and density profiles as defined in
§2, [Ẑ(r, θ), ρ̂(r, θ)] are perturbation vorticity and density fields normalized by
max[Ẑ(r, θ)], and ε controls the initial amplitude of the perturbation, to be discussed
later. We fix the profile parameter n at 10 for both vorticity and density, as we did
not wish to carry out a detailed parametric study for the present work. Other values
of n are expected to give qualitatively similar results. This choice of n was found to
be ideal for the present problem as it provided a sufficiently large growth rate for
a wide range of Atwood numbers which could be easily captured in the numerical
simulations, and at the same time, the profile was sufficiently smooth to describe the
steep gradients well while using a smaller number of total grid points. A larger value
of n would require a much finer grid than used here.
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Run n At m δρ/δz ωr (lin) ωi(lin)

1 10 −0.2 2 1.5 0.5803 0.04606
2 10 −0.5 2 1.5 0.6520 0.04377
3 10 −0.2 3 1.5 0.9874 0.02826
4 10 −0.5 3 1.5 1.0370 0.05190

Table 3. Description of the various parameters used in the numerical simulations. ωr (lin) and
ωi(lin) are the frequencies and growth rates obtained from a linear stability analysis.

An inviscid stability analysis was first carried out with an n= 10 vorticity and
density profile to obtain discrete (unstable) eigenmodes. For simplicity, we fix the
ratio of vortex and density core sizes at a value of 1.5. A viscous stability analysis
at Re = Pe = 50 000 did not produce any appreciable difference in the results. The
numerical simulations carried out are listed in table 3, but only a few representative
results are presented. In figure 20, initial perturbations for vorticity and density fields
are plotted for runs 1 and 3. The perturbations are organized as 2m spiral arms, and
an additional rim of vorticity at the density interface can be noticed. This additional
outer rim of vorticity is crucial to the formation of stable nonlinear structures.

These perturbations are now added to base state vorticity and density, and a small
value of ε, fixed at 0.01, is used. Computations were also carried out with ε = 0.05, 0.1.
No appreciable difference was noticed in the results, but a shorter linear regime was
obtained. With a value of ε = 0.01, the peak vorticity perturbation value was 1/100
of the base state vorticity value at the vortex axis, and the peak density perturbation
value was approximately 1/600 of the average density value. These are small enough
for linear dynamics to be captured well.

5.2. Results

In figures 21 and 22, we plot the full nonlinear time evolution of vorticity and
density fields for run 1, which corresponds to an m = 2 perturbation with At = −0.2.
At initial time, negative vorticity levels are about two orders of magnitude smaller
than the maximum vorticity level. Time in these plots is non-dimensionalized by
maximum vorticity value. After a very early transient adjustment of the perturbation
field, an exponential growth ensues, whose rate is in good agreement with linear
stability prediction. At t = 40, a ring of negative vorticity is formed around the
vortex. This ring soon organizes itself into two satellite vortices. By t =80, a fully
developed tripolar vortex is formed, and at t ≈ 100, saturation of |Q2(t)| is observed.
To quantify the eccentricity of the perturbation field, we numerically calculate the
multipole moment for m = 2. This is plotted in figure 23. Upon saturation, a flat
region which survives for many turnover time periods may be seen. The evolution of
the square of the density fluctuations averaged over the simulation domain is plotted
in figure 24(a). In our simulations, we directly calculate the non-axisymmetric part of
the density field, ρ̂(x, y, t), and from this we obtain

〈ρ̂(t)2〉 =

∫ L

0

∫ L

0

ρ̂(x, y, t) dx dy. (5.5)

We additionally place monitor points across the density interface along a given radial
line, and instantaneous values of total density were extracted at each time step.
The time evolution of instantaneous density at five such monitor points is shown in
figure 24(b). The first and last monitor points are far away from the density interface,
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Figure 20. Vorticity (a,c) and density (b,d ) perturbation corresponding to the most unstable
eigenmode for an n= 10 vortex from a linear stability calculation. This is the initial condition
for the simulations. At = −0.2 and m= 2 for the first row, and At = −0.5 and m= 3 for the
second row. Twelve equally spaced contours between maximum and minimum values plotted.

and are placed inside and outside the density core, respectively. At these two points,
there is no change in density value up to an error of 10−6, whereas at other points, an
oscillatory signal is obtained. The frequency spectrum yielded a dominant frequency
of 0.57, which is in excellent agreement with the linear stability calculations. In fact,
this rotation rate is seen to vary very little even for a fully developed tripolar vortex.

Because of the finite value of viscosity, vorticity in these satellites slowly
homogenizes. At t = 200, the vorticity in the satellites is still an order of magnitude
smaller than in the primary vortex. The whole structure slowly advects relative to
the flow. Density contour plots in figure 22 offer a good visualization of the flow
field. The reversal of vorticity field in the satellites is clearly accompanied by density
contours being twisted in the clock-wise direction. The final tripolar vortex formed is
observed to be stable for a very long period of time, and is only weakened slightly
due to viscosity. Nonetheless, Re = 50 000 was observed to be a large enough value
for inviscid dynamics to be captured. Smaller Reynolds number simulations were also
carried out, and they yielded similar results.
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Figure 21. Vorticity contours at various times for Run-1 with m= 2 and At = −0.2. Notice
the smallness of negative vorticity levels indicated with dashed lines. All figures are to the
same scale as shown in figure 20. The nonlinear saturation into a tripolar state of an initially
stably stratified configuration is evident.
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Figure 22. Density contours at various times for Run-1 with m= 2 and At = −0.2. Twelve
equally spaced contour levels between max(ρ̄) and min(ρ̄) are shown.

6. Summary and discussion
The problem of a vortex in a density stratification has been studied many times

before. The studies found the expected result, namely that a light-cored vortex is
always stable, and a heavy-cored one usually unstable. We show here situations
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prediction from linear stability calculation and has a slope of 0.04606, as shown in table 3.
The best fit for the numerical slope is approximately 0.051, in good agreement with the linear
stability result. The flattening of |Q2(t)| at t > 100 corresponds to nonlinear saturation into a
tripolar vortex.
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Figure 24. (a) Time evolution of ρ(t)2 averaged over the entire domain, i.e. 〈ρ(t)2〉 for Run-1
simulation with m= 2 and At = −0.2. (b) Time trace for the same case showing evolution of
instantaneous density extracted from various monitor points placed along a radial line at radii
0.48, 0.97, 1.46, 1.95 and 2.44. A fast Fourier transform (FFT) spectrum yields a dominant
frequency of 0.57, in excellent agreement with linear stability calculation shown in table 3.

where, remarkably, the opposite happens, with a light-cored vortex going unstable,
and a heavy-cored one stabilizing. Though the latter situation has found mention
earlier, the reason was not clarified. We show that there are two requirements for
the unexpected behaviour. (i) the variation in vorticity and density must be confined
to thin layers, and (ii) these two layers of rapid variation must lie relatively close
to each other. For a Rankine vortex, the best location for the density interface is in
the vicinity of the critical layer of the Kelvin mode. The reason that earlier work, in
particular that of Joly et al. (2005), did not find this counter-intuitive result is that
they used a Gaussian vortex, not one with a steeply-varying vorticity. In addition, in
a Gaussian vortex, regions of shear and vorticity overlap. This makes it harder to
discern the role of shear in the stabilization of a heavy-cored vortex. By studying a
class of profiles of varying smoothness, we derive a level of steepness below which
no instability is seen. Further, we show that for small Atwood numbers, instability
growth rates of light-cored vortices are comparable to their heavy-cored counterparts.
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It is seen that shear is necessary for the interaction, so a density jump placed within
a region of solid-body rotation would be uninteresting. An expansion for small
Atwood numbers shows that the growth rate of the instability scales as |At |1/3 in the
vicinity of the critical layer, and only as |At |1/2 closer to the vortex core. Thus, the
instability appears first at rc and is strongest in that vicinity. When rj increases away
from rc, there is a steep fall-off in the instability. Conversely, in a heavy-cored vortex,
a jump placed in the region immediately outside the core, but within rc, is stabilized.
An Atwood number criterion for instability when the vorticity and density jumps
coincide is derived. The physical mechanism leading to the destabilization of a light-
cored Rankine vortex is explained as two neutral waves interacting to give exponential
growth. Further support for the mechanism is given by wave-energetic arguments.

For smooth but steep profiles, the instability is described as being caused by the
interaction between the quasi-mode of the homogeneous vortex and an internal wave
arising due to density inhomogeneity. A direct mathematical proof of this result was
found to be too difficult at this stage, but this work demonstrates the feasibility of such
an interaction within the linear regime. Due to a non-zero vorticity gradient at the
critical radius, all smooth vortex profiles possess Landau poles with an exponentially
decaying solution. In the steep (n → ∞) limit, we show that these Landau poles
indeed become discrete neutral eigenmodes of the Rankine vortex, but for small n,
the exponential decay rate in an initial value problem departs from the Landau pole
prediction. The eigenfunction structure in this case is dominated by a spiral outside the
core with no vorticity inside it (also see (Schecter et al. 2000) and (Fabre et al. 2006)).

Quasi-modes have earlier been studied in the context of nonlinear resonant triad
interactions. Here, we show that they might be useful to interpret linear instabilities in
smooth profiles. In particular, we have shown that a quasi-mode can behave exactly
like a wave in its interaction with another wave.

In a stratified turbulent flow, we expect this new mechanism to be displayed in
terms of multipolar vortices arising from a single light-cored vortex. This is because
we expect a nonlinear saturation, especially given the overall stabilizing influence
of density. Our direct numerical simulations confirm this, giving stable tripolar and
quadrupolar vortices corresponding to m =2 and 3 perturbations. The numerically
obtained exponential growth of perturbations at short times compares well with the
linear stability predictions.

An extension of the present work to 3D flows would be interesting in many ways.
Stratification can be considered both in the axial direction as has been recently studied
by Le Dizès (2008) and Le Dizès & Billant (2009), and in the radial direction as done
here. With constant axial stratification, internal gravity waves can radiate away from
the vortex, leading to radiative instabilities. Moreover, the fact that a 3D Rankine
vortex supports an infinite number of discrete Kelvin modes tremendously increases
the possibilities of wave interactions. Some progress in this direction has been made.

The authors thank A. Roy for suggesting many useful references and discussions,
especially regarding the relevance of quasi-modes. Figure 8 was inspired by schematics
of G. Subramanian.

Appendix A. Derivation of Rankine vortex dispersion relation
In the three regions for a Rankine vortex with a density jump given by (3.5), the

general solutions of (2.16) take the form, rm−1 and r−m−1. The complete solution can
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be written as

ur =

⎧⎪⎨
⎪⎩

A1r
m−1, if r < a,

A2r
m−1 + A3r

−m−1, if a < r < rj ,

r−m−1, if r > rj .

(A 1)

The constants A1, A2 and A3 can be found by matching radial velocity at r = a and
r = rj and pressure across r = a, and this gives

A1 =
(ω − mΩ0)a

−2m[(
rj

a

)2m

(ω − (m − 1)Ω0) − Ω0

] , (A 2)

A2 =
(ω − (m − 1)Ω0)a

−2m[(
rj

a

)2m

(ω − (m − 1)Ω0) − Ω0

] , (A 3)

A3 =
−Ω0[(

rj

a

)2m

(ω − (m − 1)Ω0) − Ω0

] . (A 4)

Finally, matching pressure across the density jump gives us (3.6), a cubic dispersion
relation in the eigenvalue ω. From the continuity equation, the azimuthal velocity
perturbation can be written as

uθ =
ir

m
D∗ur. (A 5)

The form of ur on either side of the two interfaces shows that there exists a jump in
uθ at r = a and r = rj , i.e. there is a vortex sheet at each of the two interfaces. The
vortex sheet strength is given by

�uθ |r=a =
2iΩ0a

−m−1[(rj

a

)2m

(ω − (m − 1)Ω0) − Ω0

] , (A 6)

�uθ |r=rj = −2ir−m−1
j

[(rj

a

)2m

(ω − (m − 1)Ω0)

]
[(rj

a

)2m

(ω − (m − 1)Ω0) − Ω0

] . (A 7)
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