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The elastic Landau–Levich problem
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We study the classical Landau–Levich dip-coating problem in the case where the
interface has significant elasticity. One aim of this work is to unravel the effect of
surface-adsorbed hydrophobic particles on Landau–Levich flow. Motivated by recent
findings (Vella, Aussillous & Mahadevan, Europhys. Lett., vol. 68, 2004, pp. 212–218)
that a jammed monolayer of adsorbed particles on a fluid interface makes it respond
akin to an elastic solid, we use the Helfrich elasticity model to study the effect of
interfacial elasticity on Landau–Levich flow. We define an elasticity number, El, which
represents the relative strength of viscous forces to elasticity. The main assumptions
of the theory are that El be small, and that surface tension effects are negligible.
The shape of the free surface is formulated as a nonlinear boundary value problem:
we develop the solution as an asymptotic expansion in the small parameter El1/7 and
use the method of matched asymptotic expansions to determine the film thickness
as a function of El. The solution to the shape of the static meniscus is not as
straightforward as in the classical Landau–Levich problem, as evaluation of higher-
order effects is necessary in order to close the problem. A remarkable aspect of
the problem is the occurrence of multiple solutions, and five of these are found
numerically. In any event, the film thickness varies as El4/7 in qualitative agreement
with the experiments of Ouriemi & Homsy (Phys. Fluids, 2013, in press).
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1. Introduction
One of the most fundamental fluid mechanical processes is the coating of a wall or

a plate. In a laboratory setting, it is common to withdraw a submerged plate from a
reservoir of fluid, thus coating the plate with a thin film of fluid. This is the classical
Landau–Levich dip coating flow. If U is the speed of withdrawal of a vertical plate, µ
is the viscosity of the fluid and σ is the surface tension of the fluid–gas interface, the
problem is governed by the capillary number, Ca = µU/σ . Landau & Levich (1942)
and Derjaguin (1943) theoretically obtained the classical Landau–Levich law which
gives the coating thickness in the fully developed region, h̄∞,c, as

h̃∞,c = 0.9458lcCa
2/3 (1.1)

where lc = √σ/ρg is the capillary length with ρ being the density of the underlying
fluid and g being gravity. Closely related to the Landau–Levich flow is the so-called
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Bretherton problem (Bretherton 1961) where a thin film is deposited on the inner walls
of a tube when a low-viscosity fluid displaces a high-viscosity fluid. Other related
problems are the coating of fibres (see Quéré 1999 and references therein), roll-coating
on a tube (Gaskell et al. 1995) and film coating in a Hele-Shaw cell (Park & Homsy
1984).

The Landau–Levich problem for a clean, no tangential-stress interface has been
verified experimentally on numerous occasions (see, for example, Groenveld 1970a;
Krechetnikov & Homsy 2005 and references therein). Both the Landau–Levich and
Bretherton problems have been a focus of intense study for the last four decades not
only due to their fundamental importance, but also because of some puzzling results
found in experiments. What began as a investigation into the apparent discrepancy
between Bretherton’s theoretical and experimental results for capillary numbers smaller
than 10−4 has evolved into a separate study on the role of surface impurities in the
coating process. Commonly encountered impurities are either surfactants or colloidal
particles residing both in the bulk and on the interface. Surfactants lower the surface
tension of the interface producing a Marangoni effect resulting in film thickening
relative to that obtained with a clean interface. Groenveld (1970b) investigated the
role of surface impurities and obtained a film thickness twice that of the clean case.
Ratulowski & Chang (1990) and Stebe & Barthès-Biesel (1995) developed asymptotic
analysis for the Bretherton problem and obtained film thickening whose upper bound
was found to be a factor of 42/3 over the clean interface case. Mayer & Krechetnikov
(2012) found that Groenveld was the first to obtain this 42/3 bound, which was
reported incorrectly in his publication. Park (1991) developed an asymptotic theory
for insoluble surfactants and found the same upper bound. Both Groenveld (1970b)
and Park (1991) concluded that the interfacial stagnation point found in the clean
case disappears. Upon extracting the flow field from Park’s analysis, we found that
the interfacial stagnation point becomes a saddle point in the bulk. This latter flow
field was recently obtained using numerical simulations by Campana et al. (2010) for
soluble surfactants and by Campana et al. (2011) in the case of insoluble surfactants.
Mayer & Krechetnikov (2012) recently conducted a systematic flow visualization study
using SDS surfactants and revealed the saddle-point structure of the flow field near the
plate.

Coating flows with surfactants also has an important application in the formation
of Langmuir–Blodgett films, but in these films the surfactant concentration is typically
high, with the interface covered by a uniform monolayer of surfactants. Surfactant
effects in the Bretherton problem have an important biological application: liquid
occlusions in the lungs prevent airways from opening, resulting in respiratory distress
syndrome in infants. It is believed that lack of surfactants prevent the airways from
reopening, and much effort has been devoted to understanding this mechanism (see
Gaver, Samsel & Solway 1990; Gaver et al. 1996; Jensen et al. 2002; Grotberg &
Jensen 2004). However, unlike the classical Bretherton problem, the capillaries are
flexible and the wall elasticity plays an important role in the fluid mechanical process.
In the above studies, wall elasticity is treated using linear springs which are flexible in
a direction perpendicular to the motion of the bubble. Finally, in addition to biological
films such as lipid bilayers, amphiphilic films can be formed with surfactants. The
well-known Helfrich elasticity model (Helfrich 1973), has been widely used to model
elasticity in such surfactant films (Szleifer et al. 1990; Daicic et al. 1996; Würger
2000), although the origins of elastic constants in the model in this case are still an
area of active research.
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Particles at interfaces can also lead to important surface forces, and they have strong
similarities with surfactants, as discussed in a review by Binks (2002). The role of
particles in stabilizing emulsions is well known. Ramsden (1903) and Pickering (1907)
first noticed how emulsions can be stabilized by using particles to coat the interface
between the two phases. Kruglyakov & Nushtayeva (2004) give a modern account of
the role of particles in stabilization of emulsions. Floating particles on an interface
experience long-range capillary attraction forces (Nicolson 1949; Gifford & Scriven
1971; Chan, Henry & White 1981; Danov & Kralchevsky 2010). In the absence of
any surface charge, these forces cause the particles to stick to each other, forming a
monolayer on the interface. Such a monolayer can be used to shield drops and bubbles
from the surrounding environment by forming ‘armour’ at the interface (Dinsmore
et al. 2002; Subramaniam, Abkarian & Stone 2005b). This can be exploited to create
hydrophobic liquid ‘marbles’ with fluid encapsulated by tiny colloidal hydrophobic
particles (Aussillous & Quéré 2001; McHale & Newton 2011). In general, particle-
laden interfaces exhibit three different states depending on the surface concentration
of the particles (Monteux et al. 2007). At low concentrations when the particles are
separated from each other, the interface is said to be in a fluid state and is dominated
by surface tension. The interface exhibits solid-like characteristics when the particles
get into a jammed state and if the particle concentration is further increased, the
interface buckles. At the onset of buckling, Monteux et al. (2007) showed that the
surface tension of the interface drops to zero. Within the jammed state, Varshney
et al. (2012) showed a phase transition from a less-rigid state where the interface is
a capillary bridged solid to a more-rigid state where the interface is a dominated by
frictional contacts between the particles. Interfacial rheology of such systems has been
studied by Reynaert, Moldenaers & Vermant (2007) and is also discussed in a recent
review by Fuller & Vermant (2012).

The above works suggest that the presence of a monolayer of particles can
drastically change the mechanical properties of the interface. Vella, Aussillous &
Mahadevan (2004) show that a jammed monolayer of floating particles responds
like an elastic sheet undergoing a buckling instability on compression. Using the
wavelength of the instability, the authors calculate the Young’s modulus of the particle
raft assuming an elastic response for small interface deformations. The authors suggest
that the interface deformation can be described by a beam equation

B
d4h

dx4
+ T

d2h

dx2
+ ρgh= 0, (1.2)

where B is the bending stiffness of the sheet, T is the compressive force per unit
length in the sheet, g is gravity and h(x) is the deformation of the interface from
its equilibrium horizontal position. For large deformations to an interface, particles
can undergo spatial rearrangements. In terms of an energy landscape, if the new
configuration has a lower energy compared with the old configuration, then the system
can undergo permanent plastic deformation. This was demonstrated by Subramaniam
et al. (2005a) where a bubble covered with particles was shown to assume non-
spherical shapes. Interestingly, Yunker et al. (2012) show that anisotropic particles can
lead to increased bending rigidity of the interfaces.

There is also relevant literature on floating elastic sheets. Buckling and wrinkling of
elastic films over a fluid/gel surface has been studied by many authors in recent years
(see Pocivavsek et al. (2008) and Audoly (2011) and references therein). Remarkably,
Diamant & Witten (2011) show that in two dimensions, the static interface shape can
be obtained analytically. The interaction of an elastic membrane with a fluid interface
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FIGURE 1. A schematic of the Landau–Levich dip-coating problem (a) with the interface
represented as an elastic sheet and (b) with a jammed monolayer of particles. The Cartesian
coordinates x and y are directed along the plate and on the undisturbed flat interface,
respectively, and s is the arclength coordinate directed along the tangent vector.

can also lead to interesting elastocapillary problems such as capillary origami (Py
et al. 2007), where an elastic sheet spontaneously wraps around a drop to create
three-dimensional origami-type shapes.

These various phenomena involving surfactants at high concentration, particles
adsorbed at interfaces, and elastic sheets at interfaces all raise the interesting question
of the role of elasticity on the dip-coating process. In this paper, we theoretically
examine the role of interfacial elasticity on the Landau–Levich flow, employing the
well-known Helfrich elasticity model (Helfrich 1973), a model that is widely used to
mimic elasticity in lipid bilayers. Figure 1(a) shows the basic model, the formulation
of which is given in the next section.

The work considered in this paper was motivated in part by experiments by Ouriemi
& Homsy (2013) who showed that surface-adsorbed hydrophobic particles can lead
to film thickening in the Landau–Levich flow. Floating particles cause two primary
changes to an interface: (i) they alter the surface tension of the interface (Okubo
1995; Fainerman et al. 2006); and (ii) they produce an elastic response as discussed
above. The former effect is similar to that of surfactants and arises when the particle
concentration changes along the interface. We focus on the second of these effects
and assume that the particles form a monolayer that entirely covers the fluid interface
and that the particles are always in a jammed state, as shown in figure 1(b). In such
a scenario, the concentration of particles is fixed along the interface at the limiting
concentration.

It is important to sound a word of caution in relating the idealized elastic model to a
particle-laden interface in a coating flow. In reality, the concentration of particles may
vary along the interface. This in turn will affect the flow field in the bulk as a result
of variable surface tension and variable elasticity and the corresponding generalized
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Marangoni effects. In addition, particle diffusion and adsorption/desorption could also
be important. While not unaware of these possibilities, we restrict this study to the
case of constant particle concentration (and, hence, to constant interfacial elasticity)
as a necessary first step in building understanding of coating of a broad class of
interfacial materials that exhibit elasticity. We hope that such a study will motivate
further research into particle-laden interfaces. Indeed, as greater understanding of
particle-laden interfaces is gained, the present theory can be extended to include
the case of variable particle concentration. Finally, in the current paper, we neglect the
role of surface tension assuming that elasticity affects dominate over surface tension
effects. The combined effects of elasticity and surface tension will be analysed in a
subsequent companion paper.

The paper is organized as follows. In § 2, we first introduce the governing equations
in dimensional and non-dimensional forms with a discussion of various scalings
and non-dimensional numbers. In § 3, the asymptotic analysis is presented for the
leading order equations along with the relevant matching conditions. We then obtain
the solution to a static elastic meniscus in § 4. In § 5, the solution to the elastic
Landau–Levich (ELL) equation is obtained. Section 6 summarizes the paper, compares
the present theory with experiments of Ouriemi & Homsy (2013) and discusses
possible extensions and applications of the theory developed here.

2. Governing equations and scalings
Consider a vertical flat plate rising from a reservoir of fluid with a constant velocity,

U, as shown schematically in figure 1(a). The density of the fluid is ρ and we
neglect the effect of the surrounding air. The schematic shows the flat interface at
x = 0 covered with a jammed monolayer of particles. We further assume that the
particle size is much smaller than the film thickness in the fully developed region. The
governing equations for the fluid below the interface in steady-state conditions can
then be written in dimensional form as

∇ · ũ= 0, (2.1a)

ũ ·∇ũ=− 1
ρ
∇p̃+ µ

ρ
∇2ũ+ g (2.1b)

where ũ is the dimensional velocity, ρ is the density of the fluid, g is the gravity, µ is
the dynamic viscosity and p̃ is the dimensional pressure.

As discussed, the presence of particles at the interface modifies the stress boundary
condition there. We model the particle-laden film using the Helfrich model (Helfrich
1973) for the elastic energy Ec,

EC = 1
2

∫
KB(κ̃ − κ̃0)

2 dA+
∮
γ dC, (2.2)

where KB is the bending modulus, and κ̃ and κ̃0 are the dimensional mean and
spontaneous curvatures, respectively. In the first term, the integration is performed
over the surface area of the interface, and in the second term, the integration is
performed around the particle-raft ‘islands’ representing the contribution from the line
tension, γ . This term does not enter the present analysis since we assume that the
particles are in a completely jammed state throughout the interface and the analysis is
restricted to two dimensions. If the size of the particles is small in relation to the mean
radius of curvature of the interface, it can be shown that spontaneous curvature is
small (Planchette, Lorenceau & Biance 2012), and hence we neglect κ̃0 in the present
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analysis. In the absence of particles, there is an additional free energy contribution
from surface tension,

ET =
∫
σ dA, (2.3)

where σ is the surface tension of the interface. In the present paper, we neglect
surface tension and assume that the interface shape is wholly described by a balance
of viscous, gravitational and elastic effects.

For a two-dimensional interface, the integration is performed along a line, and
hence dA can be replaced by ds, where s is the arclength coordinate measured in the
direction of the tangent as shown in figure 1(a). Using the procedure given in Kaoui
et al. (2008), we derive expressions for the interfacial forces from (2.2), which are
given by

fc =−KB

(
∂2κ̃

∂s2
+ κ̃

3

2

)
n, (2.4)

where n is unit vector in the normal direction. In deriving (2.4), we assumed a
constant modulus KB. The normal and tangential stress balance equations on the
interface at y= h(x) then take the form

n · T̃ ·n=−KB

(
∂2κ̃

∂s2
+ κ̃

3

2

)
, (2.5a)

t · T̃ ·n= 0, (2.5b)

where t is the unit vector in the tangential direction and T̃ =−p̃I+µ[∇ũ+∇ũT] is the
stress tensor. In writing these equations, the effect of interfacial viscosity is neglected.
The remaining boundary conditions on the plate and the free-surface are given by

ũ= Ũ at ỹ= 0, (2.6)

n · ũ= 0 at ỹ= h̃(x̃). (2.7)

Being dimensionless, the tilde decoration is not used for the normal and tangential
vectors. In terms of free-surface shape, h̃(x̃), these vectors take the form

n= −h̃x̃ î+ ĵ

(1+ h̃2
x̃)

1/2 , t = î+ h̃x̃ ĵ

(1+ h̃2
x̃)

1/2 with h̃x̃ = dh̃

dx̃
, (2.8)

where î and ĵ are the unit vectors in the x and y directions respectively. The
dimensional curvature, κ̃ , is written as

κ̃ = h̃x̃x̃

(1+ h̃2
x̃)

3/2 . (2.9)

2.1. Non-dimensional numbers
In the absence of flow, the combination of gravity and elasticity defines a length scale
through the balances of hydrostatic pressure, ρgh, and elastic pressure, KBκ̃/l2

e ,

p∼ ρgh∼ KB
h

l4
e

⇒ le =
(

KB

ρg

)1/4

. (2.10)
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We refer to le as the elasticity length and is the characteristic scale of the interface in
the absence of flow. If the fluid interface is covered by a thin elastic strip, then an
elastic meniscus forms in the absence of flow. In a recent study, Rivetti & Antkowiak
(2013) determined the shape of an elastic meniscus by covering the fluid interface by
a thin elastic strip, the shape of which was also characterized by the elasticity length
scale, le. As an example of a typical magnitude of KB, we briefly discuss the result
of Vella et al. (2004) who determined the Young’s modulus and bending stiffness of a
particle-laden interface. For rigid particles, Vella et al. (2004) suggest that the Young’s
modulus depends solely on the surface tension, σ , and the particle diameter, d, and is
given by

E = 2.82
σ

d
. (2.11)

Using the relation between bending modulus and Young’s modulus (cf. Vella et al.
2004), KB = Ed3/12(1− ν2) where ν = 1/

√
3 is the Poisson ratio, we obtain

KB = 0.3525σd2. (2.12)

It is of interest to compare this new length to the capillary length, lc, for clean
interfaces governed by a balance of gravity and surface tension.

le = 0.35251/4

(
σd2

ρg

)1/4

≈ l1/2
c d1/2, (2.13)

where the O(1) numerical prefactor has been neglected. Hence, the ratio of le/lc

becomes

le

lc
≈
(

d

lc

)1/2

= B1/4
0 , (2.14)

where B0 is a Bond number based on the size of the particle. It is clear from the above
expression that for small particles, le� lc.

In the presence of flow, the problem is characterized by the following non-
dimensional numbers:

Reynolds number, Re= ρUle

µ
, (2.15a)

Elasticity number, El = µUl2
e

KB
. (2.15b)

Recall that surface tension effects are neglected in this paper so that a capillary
number does not appear. A complete analysis valid for all Re and El is beyond the
scope of this paper. We restrict the theory in this paper to the following limiting
conditions:

El� 1 and ReEl� 1. (2.16)

For a typical value of El = 0.1 and 1 µm-sized particles, we require the velocity of
the plate, U < 1.325 mm s−1, while for 25 µm-sized particles, we require the plate
velocity to be less than 33 mm s−1 for the parameters used here.

2.2. Non-dimensional equations: static region
We non-dimensionalize the governing equations with the following scales: all length
scales by the elasticity length scale, le, velocities by plate speed U and pressure with
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KB/l3
e . The non-dimensional equations then become

ux + vy = 0, (2.17a)

ElRe(uux + vuy)=−px + El∇2u− 1, (2.17b)

ElRe(uvx + vvy)=−py + El∇2v, (2.17c)

u= 1, v = 0 at y= 0. (2.18)

At y= h(x), we have:

v − hxu= 0, (2.19a)

−p+ 2El
(1+ h2

x)

{
ux(h

2
x − 1)− (uy + vx)hx

}
=−

[
2(1+ h2

x)
2hxxxx − 20(1+ h2

x)hxhxxhxxx − 5(1− 6h2
x)h

3
xx

2(1+ h2
x)

9/2

]
, (2.19b)

El[−4uxhx + (uy + vx)(1− h2
x)] = 0. (2.19c)

As can be seen from (2.17b), (2.17c) and (2.19b), viscous stresses are negligible for
small El. Setting El = 0, it is clear from the above equations that the static interface
is governed by a balance of gravity and elasticity, with an absence of flow effects
as expected. As in the classical Landau–Levich case, the static solution cannot be
smoothly matched to the fully developed region near the plate where a film of constant
thickness moving at uniform speed exists. Thus, we require a transition region near
the plate where viscous effects become important and adjust the shape of the interface
to match to the fully developed region. In this transition region, the dominant balance
is between viscous and elastic forces with gravity being unimportant. We therefore
develop the transition layer equations by rescaling all of the variables.

2.3. Non-dimensional equations: transition region
In the transition region, a new set of scales are obtained such that viscous forces
become as important as the elastic pressure and the equations of motion are given by
the lubrication approximation. To obtain the relevant scalings in this region (shown
with an overbar), we write

(x̄, ȳ)=
( x

Eln ,
y

Elm

)
; p̄= p; (ū, v̄)=

(
u,

v

Elm−n

)
. (2.20)

Balancing the dominant terms in the normal stress balance equation (2.19b) and the
x-momentum equation (2.17b), we find

m− 4n= 0, n= 2m− 1, (2.21)

which gives n = 1/7 and m = 4/7. The rescaled variables in the transition region are
therefore

(x̄, ȳ)=
(

x− x0

El1/7 ,
y

El4/7

)
, (2.22a)

(ū, v̄)=
(

u,
v

El3/7

)
, (2.22b)

p̄= p, h̄= h

El4/7 . (2.22c)
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FIGURE 2. The asymptotic structure of the flow showing the breakdown of the problem
into three regions: (i) a static region where gravity balances elasticity; (ii) a transition region
where the viscous stress balances elasticity; and (iii) a fully developed region where the flow
is uniform.

Here x0 is the origin of the coordinate system the value of which has to be determined
as part of the solution procedure. The non-dimensional equations in the transition
region in terms of the rescaled variables become

ūx̄ + v̄ȳ = 0, (2.23a)

ElRe(ūūx̄ + v̄ūȳ)=−p̄x̄ + El6/7ūx̄x̄ + ūȳȳ − El1/7, (2.23b)

ElRe(ūv̄x̄ + v̄v̄ȳ)=−p̄ȳ + El12/7v̄x̄x̄ + El6/7v̄ȳȳ, (2.23c)

ū= 1, v̄ = 0, at ȳ= 0. (2.24)

At ȳ= h̄(x̄), we have

v̄ − h̄x̄ū= 0, (2.25a)

−p̄+ 2El6/7(
1+ El6/7h̄2

x̄

) [−h̄x̄(ūȳ + El2/7v̄x̄)− ūx̄ + El6/7ūx̄h̄
2
x̄

]
=− 1(

1+ El6/7h̄2
x̄

)9/2

[
h̄x̄x̄x̄x̄ + O(El5/7)

]
, (2.25b)

−4El6/7ūx̄h̄x̄ +
(
ūȳ + El6/7v̄x̄

) (
1− El6/7h̄2

x̄

)= 0. (2.25c)

Only the leading elastic term is written in the normal stress balance equation
in the interest of brevity. In the lubrication approximation, the characteristic scale
perpendicular to the plate is much smaller than the scale measured along the plate
as reflected in (2.22). We can use El1/7 as the relevant small parameter to develop
an asymptotic expansion. In terms of this parameter, y scale is three orders smaller
than the x scale. This is one of the fundamental differences between the ELL problem
and the classical Landau–Levich problem where the y scale is one order smaller
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than the x scale in terms of the small parameter, Ca1/3. As will be shown later, this
mean that: (i) the equation for the interface shape is a highly stiff equation, making
the numerics very challenging; (ii) matching the static and transition regions is more
complicated; and (iii) higher-order perturbation terms are necessary in order to close
the lowest-order problem.

3. Asymptotic expansion and matching conditions
As mentioned above, the nature of the scaling in the transition region suggests

that all unknown quantities in both regimes may be expanded in powers of El1/7 as
follows:

h(x)=
∞∑

j=0

El j/7hj(x), (3.1a)

p(x, y)=
∞∑

j=0

El j/7pj(x, y), (3.1b)

u(x, y)=
∞∑

j=0

El j/7uj(x, y). (3.1c)

For now, we only evaluate the leading-order terms in the expansion. A detailed
discussion of higher-order effects is given later.

3.1. Static region: leading order
On substituting (3.1) into (2.17)–(2.19), the governing equations in the static region at
leading order with u(0) = v(0) = 0 become

p(0)x =−1, (3.2a)

p(0)y = 0, (3.2b)

At y= h(0)(x), we have

p(0) −


2
(

1+ (h(0)x )
2
)2

h(0)xxxx − 20
(

1+ (h(0)x )
2
)

h(0)x h(0)xx h(0)xxx − 5
(

1− 6(h(0)x )
2
)
(h(0)xx )

3

2
(

1+ (h(0)x )
2
)9/2

= 0.

(3.3)

The interface far away from the plate has to be nearly flat (x = 0) and is determined
by the balance of hydrostatic pressure and elasticity. The boundary conditions for the
interface shape are given by

h(0)→∞,
h(0)x →−∞,
h(0)xx → 0,
h(0)xxx→ 0,

 as x→ 0. (3.4)

The above boundary conditions are not amenable to numerical treatment in their
current form. This is due to the difficulty in implementing the first two boundary
conditions of (3.4). In § 4 below, we obtain the solution of the static problem by
switching the coordinate system.
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3.2. Transition region: leading order
On substituting (3.1) into (2.23)–(2.25), the governing equations in the transition
region at leading order become

ū(0)x̄ + v̄(0)ȳ = 0, (3.5a)

p̄(0)x̄ = ū(0)ȳȳ , (3.5b)

p̄(0)ȳ = 0, (3.5c)

ū(0) = 1, v̄(0) = 0 at ȳ= 0. (3.6)

At ȳ= h̄(0)(x̄), we have

ū(0)h̄(0)x̄ − v̄(0) = 0, (3.7a)

p̄(0) − h̄(0)x̄x̄x̄x̄ = 0, (3.7b)

ū(0)ȳ = 0. (3.7c)

A parabolic velocity field is obtained in the usual way by integrating the x momentum
equation

ū(0) = p̄(0)x̄

(
ȳ2

2
− h̄ȳ

)
+ 1. (3.8)

By using conservation of mass and eliminating p̄(0), a nonlinear differential equation
can be derived for the film thickness, h̄(0)(x̄),

h̄(0)x̄x̄x̄x̄x̄ =
3
(
h̄(0) − h̄(0)∞

)(
h̄(0)
)3 . (3.9)

This equation is analogous to the classical Landau–Levich equation and we refer to
it as the ELL equation. We discuss its numerical solution later; here we focus on the
asymptotic behaviour for large positive and negative x̄ respectively.

In order to match the solution of the above equation to the thin-film region, we
require h̄→ h̄∞ as x̄→∞. Linearizing (3.9) about the fully developed film thickness
results in a quintic characteristic equation. Of its five roots, only the two decaying
roots are physically relevant. Therefore, the far-field condition becomes

h̄(0) = h̄(0)∞ + eλr x̄{A cos(λix̄)+ B sin(λix̄)} as x̄→∞, (3.10)

where λr < 0 and A, B are arbitrary constants. The eigenvalue, λ, depends on the film
thickness and is given by

λr + iλi = 31/5

h̄3/5
∞

[
cos
(

4π
5

)
+ i sin

(
4π
5

)]
. (3.11)

We can absorb the constant B into an arbitrary choice of the origin. Thus, the above
asymptotic behaviour simplifies to

h̄(0) = h̄(0)∞ + Aeλr x̄ cos(λix̄) as x̄→∞. (3.12)

Here both A and h̄∞ are unknown and have to be determined.
As x̄ becomes large and negative, the film thickness goes to infinity. From (3.9), it is

easy to see that the interface shape assumes a simple quartic form:

h̄(0) = c0x̄4 + c1x̄3 + c2x̄2 + c3x̄+ c4. (3.13)
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Similarly, the constants ci are unknown at this stage and have to be determined by
matching to the static equations.

3.3. The matching conditions
To continue the analysis further, the solution in the transition region has to be matched
with the solution of the static region (discussed below). Using (2.22), the matching
condition can be written as

lim
x̄→−∞

El4/7h̄(x̄)= lim
x→x0

h(x), (3.14)

where the limits are interpreted in the spirit of the matching principle of Van Dyke
(1975). Expanding h(x) about x = x0 using Taylor series, the matching conditions for
h(0) and h(1) become

O(El(0)) : h(0)(x0)= 0, (3.15)

O(El1/7) : h(0)x (x0)= 0, (3.16a)

h(1)(x0)= 0, (3.16b)

O(El2/7) : h(0)xx (x0)= 0, (3.17a)

h(1)x (x0)= 0, (3.17b)

O(El3/7) : h(0)xxx(x0)= 0, (3.18a)

h(1)xx (x0)= 0, (3.18b)

O(El4/7) : h(0)xxxx(x0)= 24c0, (3.19a)

h(1)xxx(x0)= 6c1. (3.19b)

Since the static region does not perceive the presence of a thin film in the inner region
near the plate, x= x0 is the location of the contact line where the static interface meets
the vertical plate. Recall that x0 is unknown and has to be determined as part of the
solution of the static equations. According to the above matching conditions (3.16a),
(3.17a) and (3.18a), the leading-order static interface meets the vertical plate with zero
contact angle, zero curvature and zero moment.

4. Static (outer) region: solution
We now obtain the shape of the static interface far from the plate. In this

region, elasticity balances gravity and the interface shape is governed by (3.3). Since
the boundary conditions are inhomogeneous as x→ 0, it is difficult to solve the
static equations in the current coordinate system. Instead, we switch the coordinate
system by assuming a one-to-one map from (x, h) plane to (η, ξ) plane as shown
schematically in figure 3. Eliminating pressure, the static equation for the interface
height, η(ξ), in the switched coordinate axes becomes

ηξξξξ =−η
(
1+ η2

ξ

)5/2 + 10ηξηξξηξξξ(
1+ η2

ξ

) + 5
(
1− 6η2

ξ

)
η3
ξξ

2
(
1+ η2

ξ

)2 , (4.1)

with η→ 0 as ξ →∞. The solution η can be expanded in powers of El1/7 as

η = η(0) + El1/7η(1) + O(El2/7). (4.2)
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FIGURE 3. Transformation from the original (x, h) axes to (η, ξ) axes.

4.1. The O(1) static solution

The equation for the leading-order term η(0) is identical to (4.1) and we do not repeat
it here. We now consider the solution to the static problem at the leading order.
Linearizing this equation about η = 0, the far-field boundary condition becomes

η(0) = eλrξ {a cos(λiξ)+ b sin(λiξ)}, (4.3)

where a and b are arbitrary constants and λr ± iλi = (1 ± i)/
√

2. Eliminating a and b,
two boundary or consistency conditions can be obtained:

η
(0)
ξξ =−η(0) + 2λrη

(0)
ξ

η
(0)
ξξξ =−η(0)ξ + 2λrη

(0)
ξξ

}
as ξ →∞. (4.4)

In order to obtain additional boundary conditions, we examine the region close to the
plate. As shown in figure 3, x0 is mapped to a the point η0 on the plate. From the
matching conditions in § 3.3, since hxxxx = 24c0 and all lower derivatives are zero, we
require in the vicinity of the contact line x= x0 that

h(0) = c0(x− x0)
4 near x= x0. (4.5)

In term of η(0) and ξ , we have

ξ = c0(η
(0) − η0)

4
. (4.6)

Defining d = c−1/4
0 , rewriting the above result as an equation for η(0) and

differentiating, we have

η(0) = η0 + dξ 1/4, (4.7a)

η
(0)
ξ =

d

4
ξ−3/4, (4.7b)

η
(0)
ξξ =−

3d

16
ξ−7/4, (4.7c)

η
(0)
ξξξ =

21d

64
ξ−11/4, (4.7d)

η
(0)
ξξξξ =−

231d

256
ξ−15/4. (4.7e)
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FIGURE 4. Variation of parameter d in (4.7) with δ.

The above expressions are consistent with the singular nature of the boundary
conditions as ξ → 0. Substituting (4.7) into (4.1) and balancing the dominant terms as
ξ → 0, we get the simple result

η0 = 24
d4
. (4.8)

Since η0 is still unknown, we solve (4.1) as a boundary value problem (BVP) with
two boundary conditions, (4.4), in the far field and three boundary conditions, (4.7),
near ξ = 0. Owing to the singular nature of the problem near the plate, we apply
the boundary condition at ξ = δ with δ� 1. For numerical purposes, we sequentially
decrease the size of δ starting from 0.1, each time using the solution for larger δ
to improve the accuracy of the solution. The parameter d in (4.7) is negative and
converges with decreasing δ as shown in figure 4. Using a value of d = −1.928 at
δ = 10−6, we get the contact line position as η0 = 1.735. In dimensional units, the
contact line position is 1.735le where le is the elasticity length scale. For purpose of
comparison, a static interface governed by a balance of surface tension and gravity
rises to a height of

√
2lc where lc is the capillary length scale (see Park 1991). The

shape of the elastic interface with δ = 10−6 is shown in figure 5. Clearly, an elastic
interface exhibits an oscillatory structure. Although the exact shape of the interface
would change with the specific elasticity model employed, the oscillatory structure
would exist for all elastic interfaces. The shape of the elastic meniscus studied here
is similar to a recent study by Rivetti & Antkowiak (2013) in which a static interface
was covered by a thin elastic strip. Direct comparison with their results is not possible
owing to the different elasticity model used.

Finally, the leading coefficient of the quartic polynomial in (3.13) is

c0 = 1
d4
= 0.0723. (4.9)

This provides one boundary condition for the solution of (3.9). A second boundary
condition is required and is obtained by examining higher-order corrections to the
static problem.



The elastic Landau–Levich problem 19

0

0.25

0.50

0.75

1.00

1.25

1.50

1.751.75

2.00

0 5.02.5 7.5 10.0 12.5 15.0

FIGURE 5. Shape of an elastic interface with δ = 10−6. The symbol shows the location of the
contact line at η0 = 1.735.

4.2. The O(El1/7) correction
In this subsection, we will examine higher-order terms in the static problem.
Expanding η in (4.1) in powers of El1/7, a linear homogeneous equation for η(1) is
obtained:

η
(1)
ξξξξ +M1η

(1)
ξξξ +M2η

(1)
ξξ +M3η

(1)
ξ +M4η

(1) = 0, (4.10)

where the coefficients M1–M4 are functions of ξ and depend on the leading-order
solution, η(0). The expressions for these coefficients are given in Appendix. Near ξ = 0,
based on the matching conditions in § 3.3, we again expect η(1) to have a power-law
dependence on ξ as follows:

η(1) = η1 + Fξ a, (4.11a)

η
(1)
ξ = aFξ a−1, (4.11b)

η
(1)
ξξ = a(a− 1)Fξ a−2, (4.11c)

η
(1)
ξξξ = a(a− 1)(a− 2)Fξ a−3, (4.11d)

η
(1)
ξξξξ = a(a− 1)(a− 2)(a− 3)Fξ a−4. (4.11e)

Here η1 is the first-order correction to the position of the contact line and a > 0 to
ensure regularity of η(1). Substituting (4.11) into (4.10) and using (4.7) near ξ = 0, we
get the following expression (after taking the limit ξ → 0):(

864a− 704a2 − 1536a3 − 1024a4
)

F + d5
(
η1ξ
−15/4 + Fξ a−15/4

)= 0. (4.12)

Since ξ−15/4→∞ as ξ → 0, we set η1 = 0. Physically, this shows that there is no
correction to the position of the contact line at this order. For the above equation
to the satisfied independent of the value of ξ , we further require F = 0. Hence
from (4.11), the first-order correction vanishes identically. The same result can be
established from the following fact: the static (4.1) is correct up to O(El4/7). Viscous
terms becomes important beyond this order. Hence any correction to the solution of
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the static problem has to arise from modifications to the boundary conditions. Since
the origin of the coordinate system moves with the interface, we can argue that the
origin x = x0, and hence η0, is independent of El. Therefore, first-order corrections
cannot arise in the present problem. The important consequence follows from the
matching conditions (3.19): we require h(1)xxx(x0)≡ 0, and therefore c1 = 0.

5. Transition (inner) region: solution
Having obtained the values of c0 and c1, we are now in a position to solve the

ELL equation (3.9). Recall that both A and h̄∞ in the boundary condition (3.12) are
unknown. Using the far-field quartic behaviour of h̄(x̄) from (3.13), we have

h̄(0)x̄x̄x̄

h̄(0)x̄x̄x̄x̄

= x̄+ c1

4c0
,

= x̄+ I, (5.1)

where I is the intercept. Combining these, we have

h̄(0)x̄x̄x̄x̄x̄ =
3
(
h̄(0) − h̄(0)∞

)(
h̄(0)
)3 , (5.2a)

with

h̄(0) = h̄(0)∞ + Aeλr x̄ cos(λix̄) and its derivatives as x̄→∞, (5.2b)

h̄(0)x̄x̄x̄x̄ = 24c0,

h̄(0)x̄x̄x̄

h̄(0)x̄x̄x̄x̄

= x̄+ I,

 as x̄→−∞. (5.2c)

With five boundary conditions from (5.2b) and two from (5.2c), we have a total of
seven boundary conditions to solve for the interface shape, h̄(x̄), and the unknowns A
and h̄∞. This completes the formulation of the problem. Since (5.2a) is translationally
invariant, it can easily be shown from (5.2b) that

h̄(0)(x̄;A)= h̄(0)
(

x̄+ 2π
λi
;A exp

[−2πλr

λi

])
. (5.3)

For numerical purposes, we fix the upper limit of the integration domain to x̄max = 0
and the lower limit to x̄min = −100 in all of the numerical calculations. With guessed
values for A and h̄∞, we solve (5.2a) as an initial value problem (IVP), with (5.2b)
serving as the initial values. We then iteratively solve for h̄∞ such that the first
condition in (5.2c) is satisfied. By sequentially changing the value of A, we obtain a
family of solutions in the A − h̄∞ plane. We then use the second condition in (5.2c)
to determine the value of h̄∞ for which the intercept vanishes. Figure 6 shows the
variation of intercept, I, with the parameter A for one set of IVP calculations. In the
vicinity of I = 0, the intercept, I, and film thickness, h̄∞, vary as

I = 1.4909× 104A− 2.854, (5.4)
h̄(0)∞ = 1010A+ 0.0587. (5.5)

The zero-crossing of I occurs at A = 2.026 × 10−4 and the value of the film thickness
at I = 0 is h̄∞ = 0.2634.

Since (5.2a) is a highly stiff equation, we verify the validity of the IVP solution
with a BVP approach. Since c1 = 0, using the far field quartic behaviour of h̄(0)(x̄)
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FIGURE 6. Variation of (a) intercept, I, and (b) film thickness, h̄∞, as a function of the
parameter A using an IVP approach. Every point on the curve satisfies the first condition in
(5.2c) and the dashed lines show the location of the solution which also satisfies the second
condition in (5.2c) with I = 0.

Solution A h̄(0)∞

1 2.007× 10−12 0.0999
2 −1.7777×10−10 0.1157
3 1.6483× 10−8 0.1390
4 −1.6594× 10−6 0.1783
5 2.0258× 10−4 0.2634

TABLE 1. List of solutions obtained by solving (3.9) using a BVP approach.

from (3.13), we have

h̄(0)x̄x̄x̄x̄ = 24c0,

h̄(0)x̄x̄x̄ = 24c0x̄min,

}
at x̄= x̄min. (5.6)

We can solve (5.2a) as a BVP with five boundary conditions, (5.2b), at x̄max = 0 and
two boundary conditions, (5.2c), at x̄min = −100. To solve the BVP, we first solve
an IVP with a guess value for A and h̄∞. This IVP solution is used as the starting
guess solution for the BVP solver. We use MATLAB’s bvp4c solver in all of the
calculations. The parameters A and h̄∞ were varied in the ranges [10−10, 10−2] and
[0.1, 2.5], respectively, and show excellent agreement with the solution obtained from
the IVP approach discussed above.

Remarkably, we find multiple solutions, i.e. pairs of (A, h̄∞) that satisfy all of
the conditions, unlike the classical Landau–Levich flow where the solution is unique.
Table 1 gives the values of (A, h̄∞) for these five solutions. Although these were
the only solutions found using above ranges for A and h̄(0)∞ , it does not rule out the
possibility of solutions with other values of h̄(0)∞ . Each of the solutions given in table 1
have been verified with the IVP approach. The five branches of solutions can be
written in dimensional form as

h̃(0)∞,e = h̄(0)∞ leEl
4/7. (5.7)
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where h̄∞ takes any one of the values given in table 1. Equation (5.7) is the main
result of this paper, as it establishes the relationship between the film thickness and
a combination of physical properties and dynamic conditions. In particular, since
El = µUl2

e/KB, the film thickness varies with the plate speed as U4/7.
Equation (5.7) is also to be compared and contrasted with the classical result for a

clean interface,

h̃∞,c = 0.9458lcCa
2/3 (5.8)

One notes that the capillary and elastic length scales play analogous roles in the two
theories, and that while the leading constant is unique in the classical case, we have
discovered multiple solutions, and hence several values of the leading constant (h̄∞),
in the elastic case. Finally, we note that the dependence on the plate speed, U, differs
slightly in the two cases: U2/3 in the classical case as compared with U4/7 in the
elastic case. This difference is discussed below in the context of the experiments of
Ouriemi & Homsy (2013).

The non-uniqueness of the solution is remarkable but not surprising. Equation (3.9)
is a complex nonlinear BVP, and hence it is possible that multiple solutions exist.
A classic example of a similar scenario is the existence of a continuous family
of solutions to the Saffman–Taylor fingering problem (see Saffman & Taylor 1958).
Inclusion of surface tension by McLean & Saffman (1981) changes the nature of
solutions from an continuous family to a discrete set resulting in multiple values
for the finger width. Another example is the existence of multiple solutions for the
shape of a rising inviscid bubble in a two-dimensional channel (see Vanden-Broeck
1984). Interestingly, in this case, the solution becomes unique in the limit of vanishing
surface tension. The non-uniqueness may be resolved through stability analysis of the
discrete set of solutions: we leave stability analysis for future study and do not pursue
the matter here.

Figure 7(a) shows the structure of the flow field for the case with h̄(0)∞ = 0.2634.
Using (3.8), it can be shown that there exists an interfacial stagnation point at
ȳ = h̄s = 3h̄(0)∞ . This is identical to the classical Landau–Levich case. In addition
to the stagnation point, there exists a ‘dimple’ where the film thickness is at its
minimum. This is consistent with (3.12) which shows that the film thickness follows
an oscillatory decay into the thin-film region. Snoeijer et al. (2008) recently found
such ‘dimpled’ solutions even in the classical Landau–Levich flow, but for cases when
the plate was partially wetting. Figure 7(b) shows the variation of the pressure gradient
along the interface. For comparison, we also plot the pressure gradient in the classical
Landau–Levich flow. As the interface curvature changes sign, a large adverse pressure
gradient is generated with a minimum at the location of the dimple. Note that the
variations in the pressure gradients is much larger in the present problem compared
with the classical Landau–Levich flow. This could have important implications for the
transport of particles along the interface for cases when the particles are not in a
jammed state.

6. Discussion
In this paper, we have developed a theory of dip-coating flow governed by

interfacial elasticity rather than surface tension. In analogy with the classical
Landau–Levich dip-coating flow, we call this the ELL flow. To model elasticity of
the interface, we take recourse to the widely used Helfrich model of elasticity and our
analysis is valid for small elasticity number. A scaling analysis reveals the presence
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FIGURE 7. (a) Flow field showing the location of the stagnation point (•) and the
dimple ( ). (b) Comparison of pressure gradient distribution with elasticity (solid) with the
Landau–Levich case (dashed).

of two regions near the plate: a static or outer region governed by the balance of
elasticity and gravity, and a transition or inner region governed by a balance of
elasticity and viscous forces. An asymptotic expansion in powers of El1/7 is developed
in the two regions. There are a number of differences between an ELL flow and
the classical Landau–Levich flow owing to the higher-order derivative terms as a
result of elasticity. (i) In the classical Landau–Levich flow, the static meniscus shape
can be found independent of the matching conditions and the solution has an non-
oscillatory structure, whereas in the ELL, matching conditions are needed to generate
the necessary boundary conditions for the static problem and the interface shape has
an oscillatory structure. (ii) In the classical Landau–Levich flow, the curvature (and
hence pressure) of the outer solution is non-zero at the apparent contact line whereas
in the ELL, both curvature and moment are zero there. (iii) In the ELL flow, higher-
order terms in the static problem are required to close the leading-order problem in the
transition region, unlike the classical Landau–Levich flow.

It is shown that the film thickness scales as El4/7, or in terms of the plate velocity as
U4/7. As mentioned in the introduction, the present work was motivated in part from
the experiments of Ouriemi & Homsy (2013) where an experimental study was carried
out to determine the effect of surface-adsorbed hydrophobic particles on dip-coating
flows. It is interesting to note that at high surface concentration of particles, these
authors find that the film thickness scales as Ca0.57, or in terms of the velocity, as U0.57.
This is identical to the scaling found in the present study suggesting that elasticity may
have had a role in their results.

In Ouriemi & Homsy (2013), the film thickness was non-dimensionalized by the
capillary length scale and its variation was plotted as a function of capillary number.
To convert these results to the elasticity length scale and elasticity number, we
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FIGURE 8. Comparison of the present theory with the experiments of Ouriemi & Homsy
(2013). The symbols show the experimental results, solid lines show the theoretical
predictions from (5.7) for each of the multiple solutions and the dashed line is an approximate
fit to the experimental data (see the text for more details).

need an estimation of the ratios le/lc and El/Ca. Two types of particles were used
in the dip-coating experiments: fingerprint powder with a typical particle size of
d ≈ 1 µm, and polystyrene particles with d ≈ 25 µm. The fluid used was a solution
of NaCl with σ = 0.076 N m−1, ρ = 1056 kg m−3 and µ = 1.25 × 10−3 Pa s. With
particles of d = 1 µm, using (2.10) and (2.12), we get KB = 2.679 × 10−14 N m
and le ≈ 4 × 10−5 m = 40 µm. And with particles with d = 25 µm, we get KB =
1.674 × 10−11 N m and le ≈ 2 × 10−4 m = 20 µm. Upon expressing le and El in (5.7)
in terms of fundamental parameters of the problem, it can be verified that the film
thickness varies with the bending stiffness as K−1/28

B . This dependence is surprisingly
weak given that interface bending is the only physical parameter controlling the
mechanical property of the interface. Comparing le to the capillary length, which
has a value of lc = 2.7 × 10−3 m, it is clearly evident that the elasticity length scale
is much smaller than the capillary length scale for these range of particle sizes. In the
case of fingerprint power (d = 1 µm), we estimate

le

lc
≈ 0.0148, (6.1)

and

El

Ca
≈ 4.5× 103. (6.2)

In the experiments, the capillary number approximately ranges from 6 × 10−4 to
1.7 × 10−3. Therefore, the elasticity number varies from 2.80 to 7.63. Clearly the
experiments do not fall into the small El regime investigated in the present paper.
However, the coincidence in the power laws invites further comparison. Figure 8
shows a comparison of the experimentally obtained film thickness, scaled by le, and
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the present theoretical prediction. The dashed line shows an approximate fit given
by h∞ = 0.5El4/7, i.e. the experimental data approximately differs by a factor of
two from the highest film thickness obtained in table 1. There could be a number
of reasons for the discrepancy between experiments and the present theory. (i) The
experimental results do not fall into the small El regime required to apply the present
theory. (ii) The prediction of Vella et al. (2004) could underestimate the bending
stiffness of the particle-laden interface. However, given the weak dependence of the
film thickness on the bending stiffness would require a large change in the value of KB

from that estimated above in order to account for the factor of 2.0. (iii) Surface tension
effects, neglected in the present paper, could be important.

As discussed in the introduction, it is necessary to sound a note of caution regarding
the direct applicability of the present theory to experiments with particles. Several
reasons for this have already been discussed and are amplified below. However, the
present analysis is the first to consider the effect of bending stiffness on coating
flows. As such, it provides a benchmark and is an appropriate first step in developing
a more complete understanding of interfacial elasticity. The present theory can be
extended in a number of different directions. In a companion paper, we investigate
the effect the combined effects of elasticity and surface tension on dip-coating flows.
In addition, when the particles are not in a jammed state, it is conceivable that the
particle concentration will vary along the interface. In such a case, elasticity will not
be constant but will also vary along the interface. The effect of variable elasticity will
lead to generation of tangential stresses along the interface giving rise to Marangoni-
like stress terms. The present theory can also be applied to other geometries, especially
for situations similar to the Bretherton problem. This could be of interest in the
biological context where walls of the tube possess elasticity. Finally, we mention the
issue of non-uniqueness of the solutions. As discussed before, a detailed stability
analysis might shed more light on this issue and could even resolve it. We leave this
for future work.
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Appendix. Coefficients M1–M4 in (4.10)

Here we give the coefficients M1–M4 in (4.10):

M1 =− 10η(0)ξ η
(0)
ξξ

1+
(
η
(0)
ξ

)2 , (A 1)

M2 =−


15
(

1− 6
(
η
(0)
ξ

)2
)(

η
(0)
ξξ

)2

2
(

1+
(
η
(0)
ξ

)2
)2 + 10η(0)ξ η

(0)
ξξξ

1+
(
η
(0)
ξ

)2

 , (A 2)
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M3 = 5η(0)η(0)ξ

(
1+

(
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