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Abstract

A thermal lattice Boltzmann method based on the BGK model has been used to simulate high Rayleigh number natural convection in
a square cavity. The model uses the double populations approach to simulate hydrodynamic and thermal fields. The traditional lattice
Boltzmann method on a uniform grid has unreasonably high grid requirements at higher Rayleigh numbers which renders the method
impractical. In this work, the interpolation supplemented lattice Boltzmann method has been utilized. This is shown to be effective even
at high Rayleigh numbers. Numerical results are presented for natural convection in a square cavity with insulated horizontal walls and
isothermal vertical walls maintained at different temperatures. Very fine grids (wall y+ < 0.3) have been used for the higher Rayleigh
number simulations. A universal structure is shown to exist in the mean velocity turbulent boundary layer profile for y+ < 10. This agrees
extremely well with previously reported experimental data. The numerical results (for Rayleigh numbers up to 1010) are in very good
agreement with the benchmark results available in the literature. The highlight of the calculations is that no turbulence model has been
employed.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decade and a half, tremendous amount of re-
search has been carried out in discrete lattice kinetic theory,
and in particular, the lattice Boltzmann method (LBM).
Lattice Boltzmann method has become a novel alternative
to traditional numerical methods like finite difference, finite
element and finite volume methods for solving the Navier–
Stokes equations [1]. LB method has already found exten-
sive applications in simulating physical phenomena of var-
ious complexities [2]. Of particular relevance to the present
work is the simulation of temperature fields in both square
[3,4] and tall cavities [5]. Lattice Boltzmann simulations
have met with significant amount of success in the case of
isothermal flows, and recently there have been a few at-
tempts to show the feasibility of non-isothermal flow simu-
lations using LBM. Some of the earliest works in thermal
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lattice Boltzmann method include those of Alexander
et al. [6], Chen et al. [7] and Eggels and Somers [8]. Thermal
lattice Boltzmann models can be classified into three cate-
gories based on their approach in solving the Boltzmann
equation, namely, the multispeed, the passive scalar and
the thermal energy distribution approach.

The multispeed approach, is an extension of the com-
mon LBE isothermal models in which only the density dis-
tribution function is used. To obtain the temperature
evolution equation at the macroscopic level, additional
speeds are necessary and the equilibrium distribution must
include the higher-order velocity terms, i.e., it is theoreti-
cally possible to express both heat flux and temperature
in terms of higher-order kinetic moments of the particle
distribution functions f ð~x; tÞ. Higher-order velocity terms
are involved in the formulation of the polynomial equilib-
rium distribution and additional speeds are required on the
corresponding lattices. But, the inclusion of higher order
velocity terms leads to numerical instabilities and hence
the temperature variation is limited to a narrow range [9].
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Nomenclature

f, g single particle distribution function for density
and internal energy

f eq, geq equilibrium distribution function for density
and internal energy

wi weights for the particle equilibrium distribution
function

~u macroscopic velocity
�u slip velocity at the boundary
(Uw, Vw) wall velocity
c dx/dt, the minimum speed on the lattice
T, Tm local and average temperatures
Th, Tc hot and cold wall temperatures
H height and width of the cavity
k thermal conductivity
g acceleration due to gravity
F external force (buoyancy force)
Ma Mach number
Nu0 � H

DT
oT
ox, Nusselt number

Pr m
v, Prandtl number

Ra bgDTH 3

mv , Rayleigh number

Greek symbols

b coefficient of thermal expansion
m kinematic viscosity
v thermal diffusivity
q fluid density
�q density corresponding to the slip velocity
sv, sc single particle relaxation times for density and

internal energy
~n particle velocity

Subscripts and superscripts

w wall
i lattice link number
eq equilibrium
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The passive-scalar approach utilizes the fact that the
macroscopic temperature satisfies the same evolution equa-
tion as a passive scalar if the viscous heat dissipation and
compression work done by the pressure are negligible
[10,11]. In this scheme, temperature is simulated using a
separate distribution function which is independent of the
density distribution. This approach has attracted much
attention compared to the multispeed approach on account
of its numerical stability. But the main disadvantage is that
viscous heat dissipation and compression work done by
pressure cannot be incorporated in this model.

The work of He and Luo [12] showed that the isother-
mal lattice Boltzmann equation can be directly obtained
by properly discretizing the continuous Boltzmann equa-
tion in both time and phase space. The equilibrium distri-
bution f eq has a fixed form which depends on the
discretized velocity set chosen. The f eq is obtained by
adjusting the coefficients in the polynomial so as to repro-
duce the Navier–Stokes equations, but stability is not con-
sidered. This type of construction works well for an
isothermal model because the deviation of f eq from the
Maxwell–Boltzmann equilibrium is O(u2). In the case of a
non-isothermal model, this deviation is only O(u) which
is clearly insufficient. Hence in constructing a LBE thermal
model, the equilibrium distribution function f eq should not
only lead to the incompressible Navier–Stokes equation,
but should also satisfy the Maxwell–Boltzmann equilib-
rium so that the stability of the model is assured by the
H-theorem. This has led to the development of the thermal
energy distribution model called the ‘‘doubled population
model’’. Here the thermal lattice Boltzmann evolution
equation is derived by properly discretizing the continuous
Boltzmann equation for the internal energy distribution
[13].
It has been shown [13] that both the thermal energy and
heat flux can be expressed as kinetic moments of a new
thermal energy distribution function, gð~x; tÞ. The zeroth
order moment of g gives the internal energy and the first
order moment gives the heat flux. The advantage of
employing such a method is that no moments higher than
first order is ever required, thus providing numerical
stability.

Extensive studies have been carried out on natural con-
vection in enclosures—numerical studies of de Vahl Davis
[14] for the laminar flow cases and numerical studies by
Henkes and Hoogendoorn [15] and Marakatos and Pericl-
eous [16] for transition and turbulent flow cases and pseudo
spectral studies of Le Quéré [17]. The flow is laminar for
Rayleigh numbers (Ra) less than 106 and it undergoes tran-
sition for 106 < Ra < 108 and then the flow becomes fully
turbulent.

A few researchers have carried out simulations of this
flow using LBM. Peng et al. [3] simulated natural convec-
tion in square cavity using a simplified thermal model. In
this model, the complex gradient operator present in the
evolution equation of the temperature was eliminated.
D�Orazio et al. [4] have also carried out LBM calculations
for the same problem, but with a general purpose thermal
boundary condition, to handle both Dirichlet and Neu-
mann boundary conditions. Again, the Rayleigh numbers
simulated were limited to the laminar case only.

To date, LBM simulations of fully turbulent natural
convection at very high Rayleigh numbers have not been
reported, presumably due to the enormous grid require-
ments. In the present study, simulations up to Ra = 1010

have been carried out and validated with solutions avail-
able in the literature, thus establishing the robustness of
the LBM calculations. It must be emphasized that no tur-
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Fig. 1. D2Q9 Discrete velocity set.
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bulent model has been used in the present study. Though
the problem of natural convection in a square cavity is
not new in the LBM community, not much progress has
been made in terms of the Rayleigh numbers simulated.
All the previous researchers have used uniform grids in
their simulations which restricts the Rayleigh numbers that
can be simulated. Use of irregular lattices in LB calcula-
tions was shown first by Nannelli and Succi [18]. In the
present work, the Interpolation Supplemented Lattice
Boltzmann (ISLB) Method [19] which allows LBM simula-
tions on non-uniform grids, has been used. The importance
of using non-uniform grids in conjunction with LBM has
been discussed by Eggels and Somers [8].

In the present work, the thermal lattice Boltzmann
scheme proposed by He et al. [13] is used for simulating
natural convection of a Boussinesq fluid in a square cavity.
The main drawback in using this model is the doubling of
the memory requirement for the simulations owing to the
use of two separate distribution functions. To alleviate this,
continuously varying non-uniform grids have been em-
ployed in the present work which results in considerable
reduction in the grid requirement. Also a grid indepen-
dence study has been carried out for the thermal ISLBM
at a high Rayleigh number. The main objective of the pres-
ent work is to establish lattice Boltzmann method as a via-
ble tool for the simulation of temperature fields at very
high Rayleigh numbers and demonstrate the usefulness of
the fully non-uniform grids.

This paper is organized as follows. In Section 2, a brief
overview of the thermal model employed along with a
simple discussion of the boundary conditions used in the
present simulations is given. Section 3 presents an overview
and the computational details of the ISLB method. In Sec-
tion 4, results are presented and discussed for both uniform
as well as non-uniform grids. Section 5 concludes the
paper.

2. Overview of thermal LBM

In the doubled population approach, the flow and the
temperature fields are solved by two separate evolution
equations, both of which, at the macroscopic level yield
the Navier–Stokes equation and the energy equation
through an appropriate Chapman–Enskog expansion.
The main drawbacks with this approach is the use of the
BGK (single-relaxation time) approximation, which re-
stricts the Prandtl number to a very narrow range, and
doubling of memory requirement.

Kinetic theory states that the evolution of the single-par-
ticle density distribution in a fluid system obeys the Boltz-
mann equation

otf þ ð~n � rÞ ¼ Xðf Þ ð1Þ
where f is the single-particle density distribution function,~n
is the microscopic velocity, and X is the collision term.
After including the effect of external forces and using the
BGK approximation, the above equation becomes
otf þ ð~n � rÞ ¼ � f � f eq

sv
þ F ð2Þ

Here sv is the relaxation time and f eq is the Maxwell–Boltz-
mann equilibrium distribution given by

f eq ¼ q

ð2pRT ÞD=2
exp � ð~n�~uÞ2

2RT

" #
ð3Þ

where R is the gas constant and D is the dimensionality of
the solution space under consideration. Macroscopic vari-
ables, such as the density q, and velocity~u can be calculated
as the moments of the density distribution function:

qð~x; tÞ ¼
Z

f ð~x;~n; tÞd~n ð4Þ

qð~x; tÞ~uð~x; tÞ ¼
Z

~nf ð~x;~n; tÞd~n ð5Þ

Similarly, the evolution equation for internal energy is
given as follows:

otg þ ð~n � rÞ ¼ � g � geq

sc
ð6Þ

where sc is the relaxation time for the internal energy distri-
bution function and

gð~x;~n; tÞ ¼ ð~n�~uÞ2

2
f ð7Þ

The internal energy~e can be calculated as a moment of the
internal energy distribution function g as

qð~x; tÞ~eð~x; tÞ ¼
Z

gð~x;~n; tÞd~n ð8Þ

The temperature and internal energy are related through
the equation of state e = RT. In all the simulations, a
9-bit two dimensional (D2Q9) lattice has been employed
(Fig. 1). After a suitable discretization is carried out, the
governing equations for the simplified thermal energy
distribution model become
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fið~xþ ~nidt; t þ dtÞ � fið~x; tÞ

¼ � 1

sv
½fið~x; tÞ � f eq

i ð~x; tÞ� þ dt � F i ð9Þ

gið~xþ ~nidt; t þ dtÞ � gið~x; tÞ ¼ � 1

sc
½gið~x; tÞ � geqi ð~x; tÞ� ð10Þ

Using the 9-bit two dimensional (D2Q9) lattice for which,

~ni ¼

0; i ¼ 0

cfcosðði� 1Þp=2Þ; sinðði� 1Þp=2Þg; i ¼ 1; 2; 3; 4ffiffiffi
2

p
cfcos½ði� 5Þp=2þ p=4�; sinðði� 5Þp=2þ p=4Þg;

i ¼ 5; 6; 7; 8

8>>>>><
>>>>>:

ð11Þ
where c ¼

ffiffiffiffiffiffiffiffiffi
3RT

p
is the lattice speed. The equilibrium func-

tion for the density distribution function is given as

f eq
i ¼ wiq 1þ 3ð~ni �~uÞ

c2
þ 9ð~ni �~uÞ2

2c4
� 3~u2

2c2

" #
ð12Þ

where w0 = 4/9, w0 = 1/9 for i = 1,2,3,4 and wi = 1/36 for
i = 5,6,7,8. Similarly, the equilibrium distribution for the
new thermal energy distribution function g can be written
as

geq0 ¼ � 2qe
3

~u2

2c2
ð13Þ

geq1;2;3;4 ¼
qe
9

3

2
þ 3

2

~ni �~u
c2

þ 9

4

ð~ni �~uÞ2

c4
� 3

2

~u2

c2

" #
ð14Þ

geq5;6;7;8 ¼
qe
36

3þ 6
~ni �~u
c2

þ 9

2

ð~ni �~uÞ2

c4
� 3

2

~u2

c2

" #
ð15Þ

The macroscopic density, velocity and temperature are cal-
culated from

q ¼
X
i

fi ð16Þ

q~u ¼
X
i

~nifi ð17Þ

qe ¼
X
i

gi ð18Þ

A Chapman–Enskog expansion for the density distribution
function recovers the Navier–Stokes equation from the
evolution LBM equation. This gives the kinematic viscosity
m in terms of the single relaxation time for hydrodynamics
sv as

m ¼ sv �
1

2

� �
c2dt ð19Þ

A similar procedure for the thermal evolution equation of
LBM yields the thermal diffusivity v in terms of the single
relaxation time for a non-isothermal flow, sc as

v ¼ 2

3
sc �

1

2

� �
c2dt. ð20Þ
2.1. Non-dimensional parameters

In the simulation of natural convection, the external
force term F corresponding to the buoyancy force is given
by the expression F ¼ ð~G � ð~n�~uÞ=RT Þf eq with ~G being the
external force acting per unit mass [13]. In a natural con-
vection problem, ~G ¼ qbgðT � TmÞ~j, where~j is in a direc-
tion opposite to gravity.

With the Boussinesq approximation, all the fluid proper-
ties are constant except in the body force term where the
fluid density varies as q ¼ �q½1� bðT � TmÞ� where �q is
the density of the fluid at the mean temperature Tm. In
the case of natural convection, the flow and the tempera-
ture field depend on two non-dimensional parameters,
namely, the Prandtl number and the Rayleigh number.
For the LB simulation these two parameters are not
enough to determine sv and sc because b is not known
for a lattice fluid. However, in the case of LB simulations
an additional dimensionless parameter, namely, Mach
number is also relevant. For all the simulations presented
here, the Mach number is set to be equal to 0.1 to make
sure that the flow is fully in the incompressible regime.
The Mach number is given as Ma ¼ j~uj=Cs, where j~uj and
Cs are the characteristic velocity ¼ ½bgDTH �

1
2

� �
of the flow

and the speed of sound respectively. This relation is used to

find the value of b. All the velocities obtained in the simu-
lation are normalized with the reference velocity v/H,
which is given as

v
H

¼ bgDTH
RaPr

� �1
2

¼ MaCs

ðRaPrÞ
1
2

ð21Þ

The heat flux along the x-direction at any point in the do-
main is equal to uT � v(oT/ox). Using the above definition,
Nusselt number at various planes can be easily calculated
by employing a numerical integration procedure.

2.2. Boundary conditions

No-slip boundary condition has been imposed on all the
walls (Fig. 2). The horizontal walls are insulated and the
vertical walls are maintained at constant, but different tem-
peratures. In the present work, only Dirichlet type bound-
ary conditions have been considered and the insulated
boundary condition is simulated by converting it to Dirich-
let type using a second order accurate finite-difference
approximation. The boundary conditions have been imple-
mented by using the counter-slip approach proposed by
Inamuro et al. [20]. Although the suitability of the counter
slip approach has only been established for the hydro-
dynamic boundary conditions [21], in the present work, it
has been utilized for modelling thermal boundary condi-
tions as well. This requires very careful consideration as
it has a tremendous effect on the predicted values of the
wall Nusselt number. It was noted during the current sim-
ulations, that the traditional implementation of the Dirich-
let boundary condition gave rise to a spurious gradient in



H

u=0
v=0

T=Tc 

u=0
v=0

T=Th

u=0; v=0; Insulated

u=0; v=0; Insulated

Fig. 2. Schematic illustration of square cavity with boundary conditions.

Table 1
Grid-dependence study for natural convection in square cavity at
Ra = 104

Mesh (64 · 64) (128 · 128) (256 · 256) de Vahl
Davis [14]

Umax 16.164 16.172 16.179 16.178
Y 0.828 0.820 0.824 0.823
Vmax 19.569 19.599 19.619 19.617
X 0.125 0.117 0.121 0.178
Nu 2.256 2.249 2.245 2.243
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the temperature between the wall and the first point in the
fluid. This gradient was a steep drop in the temperature
near the hot wall and the cold wall and it persisted even
after decreasing the mesh spacing by a factor of 8. This
clearly implies that the source of this phenomenon is the
implementation of the boundary condition and not the grid
spacing. It follows that the simulations would then be effec-
tively for a lower value of Rayleigh number than the one
being prescribed. This, in turn, would yield incorrect values
of wall Nusselt number. To overcome this difficulty, the
counter-slip approach has been used for simulating the
Dirichlet boundary condition also. The implementation de-
tails of the counter-slip approach are given in Ref. [22].

3. Implementation on non-uniform grids

In the traditional LB method, the particles reside on a
uniform lattice with spacing determined by Nchar where
Nchar is the number of grid points along the characteristic
length (which is the height of the cavity, for the present
case) if a uniform grid had been employed. As the Rayleigh
number increases, the value of Nchar increases, making the
lattice spacing finer. At very high Rayleigh numbers, using
a uniform grid increases the number of nodes considerably.
This results in an increase in the operation count as well as
memory requirement. To alleviate this difficulty, a compu-

tational grid which is different from the lattice is utilized
in the Interpolation Supplemented Lattice Boltzmann
method of He et al. [19]. The particle distribution functions
are evaluated and stored only on the nodes of the computa-

tional grid. This grid can be non-uniform and so allows the
computational nodes to differ from the uniform lattice.
Thus the increase in the number of nodes with increasing
Rayleigh number is not quite as high as before. However,
as the particles undergo collision and advection on the lat-
tice, determination of the distribution functions on the
computational grid requires an interpolation procedure.
The particle distribution function at each node of the com-

putational grid can be determined by using second order
accurate upwind (based on the direction of the particle
velocity, not the fluid velocity) interpolation.

In the present study, ISLBM is employed for all the high
Rayleigh number cases, Ra P 106. The non-uniform grid
used in the study follows a geometric progression for the
grid spacing. The finest grid spacing is provided near the
wall so as to properly resolve the boundary layers. It is
important to use a smoothly varying grid with the finest
grid spacing decided based on stability requirements. Dur-
ing each time step, the particles on the lattice undergo col-
lision followed by advection as dictated by the lattice-BGK
model. The particle distribution function at each node of
the computational grid can then be determined by using
second order accurate Lagrangian interpolation. This oper-
ation is carried out for both the density as well as internal
energy distribution functions. The particle distributions on
the boundary nodes of the computational grid are modified
next according to the imposed boundary conditions. The
operation count of the thermal ISLBM approach used here
comes out to be about 500 floating point operations per
node per time step. Of these, 200 operations arise from
the interpolation operation. Thus, the use of a non-uniform
grid, results in an increase of 66% in the number of floating
point operations. However, the savings in the number of
nodes more than offsets this increase, as will be shown in
the next section.

4. Results and discussion

This section is divided into two parts. The first part deals
with laminar natural convection studies on a uniform grid.
The next part deals with higher Rayleigh number simula-
tions using the ISLB scheme. The two main attractive fea-
tures of the present implementation are (a) the absence of
any turbulence model and, (b) the ability to use non-uni-
form grids.

Grid independence of the results has been established
for two different Rayleigh numbers, namely, 104 and 108.
The variation of the magnitude and the location of the
maximum x-velocity along the vertical centerline, the
y-velocity along the horizontal centerline and the average
Nusselt number with changing grid size are shown in
Tables 1 and 2.

Table 1 gives the results obtained for the simulation of
Ra = 104 on three grids and these have been compared with
the benchmark results of de Vahl Davis [14] and Table 2



Table 2
Grid-dependence study for natural convection in square cavity at
Ra = 108

Mesh (256 · 256) (512 · 512) Henkes and
Hoogendoorn [15]

Le Quéré [17]

Umax 389.877 373.843 304.059 321.9
Y 0.937 0.933 – 0.928
Vmax 2241.37 2256.48 2229.55 2221.9
X 0.0112 0.0112 – 0.012
Nu 29.540 30.156 30.20 30.225
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compares the results obtained for Ra = 108 on two different
grids with the work of Henkes and Hoogendoorn [15] and
Le Quéré [17]. The maximum change in these metrics as a
result of using the finer mesh is only 0.5% for Ra = 104 and
about 2% for Ra = 108. Hence the results can be taken to
be grid independent.

4.1. Salient features of the flow field

The problem of natural convection in a square cavity
has been studied extensively and detailed explanations for
various flow structures can be found in the literature. A
unified description of the flow field from the laminar
through the transitional to the turbulent regime is provided
here. The flow is characterised by fluid moving up the hot
wall and down the cold wall with a central region called the
�core� which becomes distinguishable at higher Rayleigh
numbers.

At low Rayleigh numbers (Ra � 103), the flow is pre-
dominantly conduction dominated. This can be inferred
from the relative magnitude of the diffusion term in the
Navier–Stokes equation in comparison to the convection
term which scales as 1/Ra. As the Rayleigh number is
increased, the relative magnitude of the convective term in-
creases resulting in a shift from the conduction type flow.
At these Rayleigh numbers (Ra P 105), the flow is charac-
terised by distinct boundary layers along the hot and cold
walls. The flow in the core region becomes parallel as de-
picted by the streamlines which are horizontal. As the Ray-
leigh number is further increased (Ra P 107), the bulk of
the fluid motion takes place in the thin boundary layer
along the hot and cold walls. Thinning of boundary layer
occurs with an increase in Rayleigh number resulting in
steeper velocity and temperature gradients. The tempera-
ture in the core region becomes increasingly stratified with
very little vertical velocity in this region compared to the
velocity in the boundary layers as depicted by horizontal
streamlines in the core. Also, the maximum velocity posi-
tion moves closer to the wall.

The upper-left and bottom-right corners form a barrier
to the fast moving fluid resulting in flow separation down-
stream of the flow. At very high Rayleigh numbers, flow
reversal occurs resulting in the formation of strong vortices
at these corners. The core region and the adiabatic walls
are connected through the horizontal boundary layers.
The horizontal boundary layers along the adiabatic walls
are distinct from vertical boundary layers and boundary
layer approximations cannot be used in this region. More
detailed discussion on the flow field and the associated scal-
ing can be found in Henkes and Hoogendoorn [15].
4.2. 103 6 Ra 6 106

Table 3 compares the predictions from the present calcu-
lation with the literature results. The maximum horizontal
velocity on the vertical midplane of the cavity, Umax, and
the corresponding y-coordinate, the maximum vertical
velocity on the horizontal midplane of the cavity, Vmax,
and the corresponding x-coordinate, and the average Nus-
selt number throughout the cavity Nu, Nusselt numbers at
the mid-plane and the left wall are compared for Rayleigh
numbers less than 106. The grid used for these simulations
is also given in the table. All these results are in excellent
agreement with the benchmark results of de Vahl Davis
[14]. Figs. 3 and 4 show the isotherms and streamlines for
Ra = 103, 104, 105 and 106. The thermal and the flow fields
also agree very well with those reported in the literature.

Fig. 5 shows the variation of non-dimensional tempera-

ture, ¼ T�T c

T h�T c

� �
along the horizontal centerline of the cavity

for the laminar flow simulations. It can be clearly seen that
the steep variation of the temperature near the walls is
resolved quite well.

4.3. 107 6 Ra 6 1010

As mentioned in Table 3, a 512 · 512 grid has been em-
ployed in the present work for simulating Ra = 106.
Though this grid size bigger than usual for this Rayleigh
number, the same Rayleigh number can be simulated on
a grid as small as 128 · 128 when using ISLBM, as shown
in Table 4. It is possible to use higher order interpolation
schemes to obtain more accuracy, but the results shown
here demonstrate that a second order interpolation is suffi-
cient for these kinds of simulations.

Table 4 compares the results from the present calculations
with those available in the literature for Rayleigh numbers
up to 1010. The agreement is within 5% for each metric con-
sidered, demonstrating the accuracy of the present calcula-
tions. A non-uniform grid with very fine mesh spacing at
the walls have been used for the present simulations which
results in very low values for the wall y+. These low values
for y+ (<0.3) imply that the present calculations are able to
resolve even the laminar sub-layer. More details regarding
the wall resolution will be discussed in Section 4.4.

Values of Nchar for each case are also given in Table 4.
From the definition of Nchar given earlier, it is easy to see
that if a uniform grid had been employed for these calcula-
tions, the grid size would have been Nchar · Nchar. For the
values of Nchar indicated in Table 4, and based on the oper-
ation count given in the previous section, it is evident that
the uniform grid calculations will be prohibitively expen-
sive for these Rayleigh numbers.



Table 3
Comparison of the numerical results of the present study with the benchmark solution of de Vahl Davis [14]

Ra 103 104 105 106

Grid used (64 · 64) (64 · 64) (256 · 256) (512 · 512)
Umax [14] 3.469 16.178 34.730 64.630

Present 3.6529 16.163 35.521 64.186

Error (%) 5.301 0.09 0.599 0.685
Y [14] 0.813 0.823 0.855 0.850

Present 0.8125 0.828 0.8554 0.8496

Error (%) 0.06 0.622 0.05 0.045
Vmax [14] 3.697 19.617 68.590 219.36

Present 3.682 19.569 68.655 219.866

Error (%) 0.405 0.24 0.095 0.23
X [14] 0.178 0.119 0.066 0.0379

Present 0.17183 0.125 0.0664 0.0371

Error (%) 3.44 5.04 0.615 2.08
Nu [14] 1.118 2.243 4.519 8.800

Present 1.121 2.286 4.5463 8.652

Error (%) 0.278 1.95 0.604 1.68
Nu1/2 [14] 1.118 2.243 4.519 8.799

Present 1.118 2.256 4.519 8.5074

Error (%) 0.053 0.579 0 3.31
Nu0 [14] 1.117 2.238 4.509 8.817

Present 1.1272 2.247 4.5226 8.805

Error (%) 0.193 0.408 0.3 0.135
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Fig. 3. Isotherms for (a) Ra = 103, (b) Ra = 104, (c) Ra = 105 and (d) Ra = 106.
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Figs. 6 and 7 show the isotherms and stream lines for
high Rayleigh number flows. It can be observed that, qual-
itatively they conform very well with the work of earlier
groups using conventional CFD techniques employing tur-
bulence models. The location of the separation and reat-
tachment points as well as other major features of the
flow field have been captured quite accurately by the
ISLBM calculations.

Fig. 8(a) shows the variation of non-dimensional tem-
perature, along the horizontal centerline of the cavity for
the transitional and turbulent flow simulations. A close-
up view of the boundary layer near the left wall has been
provided in Fig. 8(b). From this view, it can be observed
that the steep gradients in the boundary layers are very well
resolved.

4.4. Wall boundary layer profiles

With reference to the left wall of the cavity, the conven-
tional scalings for the mean velocity profile in a turbulent
boundary layer are given as x+ = xv*/m and v+ = v/v*. Here
v* is the friction velocity defined as v* = (m · ov/ox)1/2.
Upon using the reference quantities given earlier, it can
be easily shown that x+ = x(1/Pr · ov/ox)1/2 and v+ =
v/(Pr · ov/ox)1/2. Here, all the quantities in the right hand
side are dimensionless quantities. In this paper, x+ has
sometimes been referred to as y+ with the usual connota-
tion. Since the mean velocity profile is quite steep near
the wall, the slope has to be estimated quite accurately.
Here, the slope has been evaluated by fitting a linear regres-
sion line through the first 10 points.

Fig. 9 shows the variation of v+ plotted against x+ at
y/H = 0.1, 0.5 and 0.8 on the hot wall. The local Grashof
number is a function of y/H. It can be observed that the
maximum value of v+ at y/H = 0.8 is less than v+ at
y/H = 0.5, even though the corresponding Grashof number



Table 4
Comparison of the numerical results of the present study with the benchmark solution of Le Quéré [17] and Markatos and Pericleous [16]

Ra 107 108 109 1010

Grid used (256 · 256) (256 · 256) (512 · 512) (512 · 512)
Nchar 2048 3378 5440 12,000

Umax [16] – 514.3 – 2.323 · 103

[17] 148.58 321.876 – –
Present 164.236 389.877 503.24 2.323 · 103

Y [16] – 0.941 – 0.9625
[17] 0.879 0.928 – –
Present 0.851 0.937 0.966 0.940233

Vmax [16] – 1812 – 1.689 · 104

[17] 699.236 2222.39 – –
Present 701.922 2241.374 6820.07 2.1463 · 104

X [16] – 0.0135 – 0.0055
[17] 0.021 0.012 – –
Present 0.020 0.0112 0.0064 0.49072

Nu0 [16] – 32.045 – 156.85
[17] 16.523 30.225 – –
Present 16.79 30.506 57.350 103.663

(a)
X

Y

0 1
0

1

(b)
X

Y

0 1
0

1

(c)
X

Y

0 1
0

1

(d)
X

Y

0 1
0

1

Fig. 6. Isotherms for (a) Ra = 107, (b) Ra = 108, (c) Ra = 109 and (d) Ra = 1010.
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at y/H = 0.8 is higher. This can be attributed to the pres-
ence of the top wall which causes the flow to slow down
resulting in a lower value of v+. The variation of v+ along
the cold wall for the same Grashof numbers as plotted for
the hot wall are shown in Fig. 9. The corresponding values
of y/H are 0.2, 0.5 and 0.9 (it should be kept in mind that
the boundary layer develops from the top to the bottom
now). It is clearly seen that the boundary layer profiles
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on both the walls are identical. Again in this case, the pres-
ence of bottom wall results in a lower value for v+ for
y/H = 0.2 when compared with y/H = 0.5. Fig. 10 shows
the variation of v+ with x+ at different values of y/H on
the hot and cold walls for Ra = 1010. The trends are very
similar to those seen before for Ra = 109. Two striking
features that are seen in Figs. 9 and 10 are

• wall x+ values less than 0.3 and
• the collapsing of the profiles for x+ < 10.
A comparison of the predicted profile of v+ (y/H = 0.5)
with the experimental results of Tsuji and Nagano [23] for
natural convection over a vertical flat plate is given in
Fig. 11. The experimental data also show the universal
structure of the mean velocity profile for values of x+ less
than 10. The agreement between the current numerical pre-
dictions and the experimental data for x+ < 10 is extremely
good. This clearly demonstrates the ability of the LBM to
predict such behavior ab initio, without resorting to turbu-
lence models. The accurate prediction of the mean velocity



(a)
x+

v+

0.1 1 10 100 1000
0
1
2
3
4
5
6
7
8
9

y/H = 0.1
y/H = 0.5
y/H = 0.8

0.1 1 10 100 1000
0

1

2

3

4

5

6

7

(b)
x+

v+

y/H = 0.2
y/H = 0.5
y/H = 0.9

Fig. 9. Variation of v+ for Ra = 109 along the wall: (a) hot wall and (b) cold wall.

(a)
x+

v+

0.1 1 10 100 1000
0
1
2
3
4
5
6
7
8
9

y/H = 0.1
y/H = 0.5
y/H = 0.8

(b)
x+

v+

0.1 1 10 100 1000
0
1
2
3
4
5
6
7
8
9

y/H = 0.2
y/H = 0.5
y/H = 0.9

Fig. 10. Variation of v+ along the hot wall for Ra = 1010.

x+

v+

0.1 1 10 100 1000
0

2

4

6

8

10

12
Present (Gr=1.76e8)
Present (Gr=1.76e9)
Expt.(Gr=1.56e10)
Expt.(Gr=1.8e11)

Fig. 11. Comparison of v+ along the hot wall for Ra = 109 and 1010 with
experimental results of Tsuji and Nagano [23].

H.N. Dixit, V. Babu / International Journal of Heat and Mass Transfer 49 (2006) 727–739 737
profile in the turbulent layer is possible due to two reasons:
one, the fine mesh near the wall, and two, accurate imple-
mentation of the no-slip and isothermal boundary condi-
tions using the proposed extension of the counter-slip
approach. An interesting aspect of the mean velocity pro-
file in the present case is that the universal structure is seen
for values of x+ < 10 only, as opposed to x+ � 300 in shear
driven flows. This has important implications on the re-
quired refinement near the walls (i.e., wall y+) for simula-
tions of natural convection using standard wall functions.
It is also important to note that such a comparison with
experimental data has hitherto not been reported.
5. Summary and conclusions

Simulations of flow and temperature fields that arise due
to natural convection in square and shallow cavities have
been carried out using the lattice Boltzmann method. The
salient features of the simulations are:

• the use of a non-uniform grid in conjunction with LBM,
• the proposed extension of the counter-slip approach for
accurate implementation of the no-slip and isothermal
boundary conditions,

• the absence of a turbulence model for the turbulent flow
calculations,

• wall y+ values less than 0.3.

The numerical solutions are able to capture the velocity
and temperature gradients accurately owing to the fine
grids used. Laminar results compare very well with the
bench-mark results of de Vahl Davis [14] and the turbu-
lent results compare favorably with the work of Markatos
and Pericleous [16] and bench-mark results of Le Quéré
[17].

The accuracy of the present simulations are extremely
good till Ra = 108. Beyond this, there is a small discrep-
ancy in the calculated values of Nusselt number, though
the maximum values for velocities are fairly accurate. This
is most likely due to the unsteadiness of the flow at these
Rayleigh numbers. Another contributing factor could be
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the polynomial equilibrium distribution for temperature
which is only O(u) accurate unlike the isothermal model
which is accurate up to O(u2).

Use of the ISLBM, alleviated this difficulty to a large ex-
tent. Even though only second order Lagrangian interpola-
tion has been used in the present study, the results are
accurate enough for engineering simulations. But at higher
Rayleigh numbers, especially for Ra = 1010, the conver-
gence was extremely slow. Since no turbulence modeling
is employed in the present simulations, the times taken
for the high Rayleigh number simulations are on the higher
side. This is partially mitigated by the inherent parallelism
of the ISLBM computations [24], which allows machine
speeds for scalar computations and super-linear speedup
for parallel computations to be realized. For lower Ray-
leigh number flows, especially up to 108, the method is
extremely competitive for these kind of flows both in terms
of accuracy and speed.

The most significant finding of this work is the capabil-
ity of the LBM to predict the mean velocity turbulent
boundary layer profile accurately. The present LBM calcu-
lations are akin to DNS on account of the fact that no tur-
bulence model has been used. It is well known that
buoyancy induced turbulence is even more difficult to sim-
ulate numerically than shear induced turbulence. In this
light, the above finding represents a significant break-
through in numerical simulations of such flows. It is very
interesting to note that LBM calculations should be able
to predict not only mean quantities but fluctuating quanti-
ties, such as TKE, turbulent shear stresses etc., as well. Of
course, this would require enormous amount of data stor-
age and processing. For example, a 512 · 512 grid will
require 4 MB of data to be stored per time step (two veloc-
ity components each requiring eight bytes in double preci-
sion and quarter-of-a-million points). The calculations are
usually run for millions of time steps. With SANs of stor-
age capacity of several Terabytes and high band-width con-
nections available these days, the above mentioned task
should be possible in the near future.

Though many of the advantages of LBM are due to the
simplicity of the BGK collision model, it is also a serious
limitation, since Prandtl numbers that can be simulated
are restricted to be around 1/2. More sophisticated colli-
sion operators like the multiple-relaxation time collision
operator proposed by d�Humiéres [25] can be employed
where individual relaxation parameters could be tuned to
achieve variable Prandtl numbers, or the two-step relaxa-
tion process where the problem of fixed Prandtl number
can be alleviated to a certain extent. Another limitation
of LBM is the use of polynomial expressions for the
equilibrium distribution. It has recently been shown that
H-theorem is not satisfied if a polynomial equilibria is used
[26]. Better models obeying the H-theorem [27] are being
developed where a non-polynomial equilibria is employed.
Rigorous numerical tests need to be carried out to prove
the usefulness of these models.
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