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Drops bouncing on an ultra-smooth solid surface can either make contact with the sur-8

face or be supported on a thin cushion of gas. If the surface is superhydrophobic, either9

complete or partial rebound usually occurs. Recent experiments have shed light on the10

lubrication effect of the underlying gas layer at the onset of impact. Using axisymmetric11

direct numerical simulations, we shed light on the energetics of a drop bouncing from a12

solid surface. A complete energy budget of the drop and the surrounding gas during one13

complete bouncing cycle reveals complex interplay between various energies that occur14

during impact. Using a parametric study, we calculate the coefficient of restitution as a15

function of Reynolds and Weber numbers and the results are in good agreement with re-16

ported experiments. Our simulations reveal that Weber number and not Reynolds number17

has a stronger effect on energy losses as the former affects the shape of the drop during18

impact. At higher Weber and Reynolds numbers, a tiny gas bubble gets trapped inside the19

drop during impact. We show that a large amount of dissipation occurs during bubble en-20

trapment and escape process. Finally, analysis of the flow field in the underlying gas layer21

reveals that maximum dissipation occurs in this layer and a simple scaling law is derived22

for dissipation that occurs during impact.23
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I. INTRODUCTION25

Understanding the dynamics of drop impact near a solid surface offers insights into a diverse26

range of applications ranging from ink-jet printing1,2 to heat transfer through spray cooling3. Ex-27

cellent reviews by Yarin4 and Josserand & Thoroddsen5 cover many aspect of drop impact dynam-28

ics. In the last two decades a number of new and surprising discoveries have been made starting29

with the seminal work of Xu et al.6 who showed that pressure of the surrounding gas plays a cru-30

cial role during the splashing process. This discovery prompted Mandre et al.7 and Mani et al.831

to develop a theory to examine the role of gas and lubrication effects near the solid surface at the32

onset of impact. Experiments by Kolinski et al.9 indeed found that drop tends to skate on a thin33

layer of gas before touchdown. Another important discovery made in recent years is that drops can34

bounce on a smooth surface without ever making contact with it10,11. A thin layer of gas cushions35

the impact and lubrication pressure provides the necessary repulsion force for the drop to bounce36

back. Using interferometric techniques, de Ruiter et al.11,12 characterised the gas film beneath the37

drop in great detail and showed that gas films of thickness in the micrometer and nanometer range38

is trapped beneath the drop.39

In a companion paper, we recently conducted an exhaustive numerical study of a drop im-40

pacting a solid surface assuming the gas to be incompressible13 and key results of this work is41

briefly summarized below. Through a parametric study, the simulations revealed that wettability-42

independent (WI) or non-contact bouncing and wettability-dependent (WD) or bouncing with con-43

tact are separated by a transition boundary in the We−Re plane. The simulations also revealed44

that WI bouncing is favoured at low Re for a wide range of Weber numbers. In such cases, the drop45

spreads on a thin layer of gas beneath it. Kolinski et al.10 noted that large shear rates generated46

in this gas layer can lead to excessive dissipation reducing the coefficient of restitution, always47

below 0.65 in their experiments, in spite of the low viscosity of air. In contrast, Richard & Quéré14
48

report a coefficient of restitution close to 0.9 for a drop bouncing on a superhydrophobic surface.49

Such a large value in their experiments was attributed to very short contact times during which50

dissipation is negligible. The results of Kolinski et al. is also in contrast to similar experiments by51

de Ruiter et al.11 who reported a very high coefficient of restitution of 0.96±0.04. Using careful52

estimation of the energy budget for a wide range of We and Re, we show later that the apparent53
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discrepancy in the coefficient of restitution between Kolinski et al.10 and de Ruiter et al.15 can be54

resolved by examining the role of Weber and Reynolds numbers. To determine the coefficient of55

restitution (rc) accurately, it is necessary to precisely compute the energy budget of a drop during56

a bouncing event. Closely connected to rc is the contact time, τ , which is defined as the duration57

for which the drop stays in contact with the solid surface.58

For water drops of about 1 mm at moderate impact velocities typically in the range of 0.2 to 259

m/s, Richard et al.16 show that contact time scales with radius of the drop as τ ∼ R3/2, obtained60

by balancing inertia of the drop with surface tension and is independent of velocity. Okumura61

et al.17 showed that drop deformation and contact time depends on a delicate balance of inertia,62

gravity and surface tension. At lower impact velocities, they show that contact time increases63

with decreasing velocity and drop deformation scales as We1/2. A more sophisticated quasi-static64

model of drop impact was developed by Molác̆ek & Bush18 who showed that contact time and65

coefficient of restitution depend on both Weber and Ohnesorge numbers.66

Understanding the energetics of drop impact also helps determine the radial extent of drop67

spreading upon impact. Kim & Chun19 performed experiments using a variety of drop and solid68

combinations to study spreading and recoiling dynamics. They used an empirically determined69

dissipation factor to account for viscous dissipation during drop spreading and found that increas-70

ing Weber number promotes faster recoil. Not surprisingly, drops with large equilibrium contact71

angle were found to have very short contact times, a result consistent with the finding of Richard et72

al.14. For drops bouncing on superhydrophobic surfaces at higher Weber numbers, contact dissi-73

pation may be small, but such drops undergo pronounced oscillations after lift-off which generates74

vigorous motion inside the drop leading to additional viscous dissipation. Richard et al.16 argue75

that in their experiments, bulk of the dissipation is due internal motion inside the drop caused by76

damped surface oscillations after lift-off. We later quantify such internal dissipation in relation to77

surface oscillations as a function of Weber and Reynolds numbers. Pasandideh-Fard et al.20 de-78

veloped a simple model for the maximum extension diameter of the drop, Dmax, assuming that all79

the initial kinetic and surface energy is converted to surface energy and viscous dissipation when80

the drop spreads to its maximum extent. Their model improves upon an earlier model by Chandra81

& Avedisian21 which overestimated the value of Dmax. Clanet et al.22 performed experiments with82

a low-viscosity drop impacting a superhydrophobic surface for moderate values of Weber num-83

ber (2 <We < 900) where We = ρlV 2
0 R0/σ is the Weber number associated with impact velocity84

V0(=
√

2gH0) for drop of radius R0 with density and surface tension denoted by ρl and σ respec-85
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FIG. 1. (a) Schematic of the problem set-up showing all the relevant parameters in the problem. (b)

Schematic view of the typical shapes assumed by the drop during one complete bouncing cycle. The solid

curves (i, ii) show the shape of the drop at t = 0 and at the onset of impact. The other shapes shown with

dashed lines at (iii), (iv) and (v) correspond to shape at maximum deformation on the surface, at the instant

of lift-off from the surface and at the maximum height after impact, respectively.

tively, and showed that Dmax ∼We1/4. This differs from the low Weber number experiments for86

drops on superhydrophobic surfaces where a different scaling is observed, Dmax ∼We1/2.87

In this study, we use direct numerical simulations to calculate the energy budget of an impact-88

ing drop with emphasis on how various exchanges of energies differ as a function of Weber and89

Reynolds numbers. We further show how coefficient of restitution varies with We and Re which90

will help resolve the discrepancy between the values reported by de Ruiter et al.11 and Kolinski et91

al.10.92

II. NUMERICAL SET-UP AND ENERGETICS93

We numerically simulate a falling drop using the open source code Gerris in an axisymmet-94

ric configuration. The code, developed by Popinet23 uses an advanced quatree adaptive mesh95

refinement and is well know for its accurate interface capture algorithm and surface tension96

implementation24. The geometry used in the current study is identical to a recently completed97

4



study for drop impact on solid surface13. For suitability of the solver to drop impact dynamics and98

validation studies, the reader is referred to our companion paper13.99

A drop of radius R0 is released from an initial height H0 and a schematic of the problem set-100

up is shown figure 1. The viscosity ratio between the drop and the surrounding gas is fixed at101

µl/µg = 55.5 mimicking a water drop falling in air. For numerical stability, we keep the density102

ratio fixed at ρl/ρg = 100 though a value of 1000 showed no appreciable difference in the results.103

Further, since the focus will be on collision dynamics near the solid surface, viscosity ratio plays104

a more important role than density ratio. To facilitate complete rebound, the contact angle is105

kept fixed at 170◦ inspired by the experiments of Richard & Quéré14. For low We and Re, drop106

bounces without ever making contact with the solid surface. In such cases, the impact is cushioned107

by a thin film of gas beneath the drop and is referred to as wettability-independent bouncing.108

In Sharma & Dixit13, we show that the drop shapes as well as the drop-gas interface profiles109

during contact are in good agreement with experiments for water in air scenario. Moreover, the110

numerical results were found to be in excellent agreement with well established scaling laws for111

the height of the drop when it undergoes its first deformation before impact, Hd ∼Ca1/2
g derived112

by Pack et al.25, and the minimum thickness of gas film, hmin ∼ St−8/9We−2/3 derived by Mandre113

et al.7 where St = ρlV0R0/µg is the Stokes number. A phase-diagram in the We− Re plane,114

shown in figure 2, shows two distinct regimes of impact referred to as wettability-independent115

(WI) contact and wettability-dependent (WD) contact. In the WI regime, the drop is supported on116

a thin gas layer whose thickness scales with We and St. In the WD regime, contact occurs either117

at the outer periphery of the drop or near the axis of symmetry. To enable complete rebound,118

all our simulations are carried out at a fixed contact angle of 170◦ representing bouncing from119

superhydrophobic surfaces similar to the experiments of Richard & Quere14.120

The primarily goal of this study is to obtained detailed energy budget as the drop completes121

one bouncing cycle, i.e., drop from an initial release height H0 impacts the surface and reaches122

a new height after lift-off, H1. During this motion, potential energy of the drop, EP(t), converts123

to kinetic and surface energies, EK(t) and ES(t). Drag due to surrounding gas as well as internal124

motions within the drop contributes to viscous dissipation. Let E0 be the initial energy of the drop125

given by E0 = E(0)
p +E(0)

S . Applying the principle of energy conservation, the drop has to obey the126

following relation:127

EP(t)+EK(t)+ES(t)+D(t) = E0, (1)128

where D(t) represents viscous dissipation of energy. It is instructive to combine energies associ-129
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FIG. 2. Phase-diagram in the Re−We plane showing two distinct regimes, the wettability-independent

regime (WI) (also shown with a shaded region) and the wettability-dependent regime (WD). The symbols

correspond to parameter values where simulations are carried out for one complete bouncing cycle. The

transition between the two regimes is grid dependent (see companion paper13 for more details).

ated only with the drop to highlight the role played by the gas. We therefore define130

E(t) = EP(t)+EK,d(t)+ES(t), (2)131

where the subscript d in the kinetic energy shows that this energy is only associated with the drop132

motion. All the energies defined above can be calculated in terms of the flow fields and drop shape133

numerically using the integrals134

EP(t) =
∫

Ω

ρl BghdΩ, (3)135

EK,d(t) =
1
2

∫
Ωd

ρl (u2 + v2)dΩ =
1
2

∫
Ω

ρl B(u2 + v2)dΩ, (4)136

EK,g(t) =
1
2

∫
Ωg

ρg (u2 + v2)dΩ =
1
2

∫
Ω

ρg (1−B)(u2 + v2)dΩ. (5)137

In the above expressions, u and v are radial and axial velocities and B is the volume fraction of138

liquid with B = 1 representing the liquid phase and B = 0 representing the gas phase. In the139

volume-of-fluid method adopted in the current study, the interface cells have a value of B between140

0 and 1 such that density of any cell is given by ρ = Bρl +(1−B)ρg. When the drop is not in141
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contact with the solid surface, surface energy is simply the product of surface tension (liquid-gas142

free energy, σ ) and surface area of the drop. But when the drop is in contact with the solid,143

additional interfacial energy between the drop and the solid, σsl , needs to be taken into account.144

For a contact angle, θ = θe, and using Young’s law, the surface energy can be defined as,145

ES(t) =

σAs(t) during flight,

σ (As(t)−as(t) cos(θe)) during contact,
(6)146

where σ is the surface tension of the drop-gas interface, As(t) is the surface area of the drop-gas147

interface and as(t) is the surface area of the drop-solid interface.148

Energy lost through viscous dissipation in equn. (1) is obtained by integrating the rate of149

dissipation of mechanical energy, per unit mass of the fluid, due to viscosity, Φ, as150

D(t) =
∫ t

0
Φ(s)ds, (7)151

where Φ(t) can be written in terms of the stress tensor T and rate-of-strain tensor S as152

Φ =
∫

Ωd ∪Ωg

T : SdΩ,153

=
∫

Ω

[
2µ

((
∂u
∂ r

)2

+

(
∂v
∂y

)2

+
(u

r

)2
)
+µ

(
∂v
∂ r

+
∂u
∂y

)2
]

dΩ. (8)154

Here Ωd and Ωg representing the drop and gas phases, respectively, and µ = Bµl +(1−B)µg is155

average viscosity in a cell. Since some of the drop’s energy is lost to the kinetic energy of the gas,156

EK,g, we define two new energy terms:157

ED(t) = E(t)+D(t), (9)158

ET (t) = ED(t)+EK,g(t). (10)159

The first expression, ED(t), represents total energy of the drop including viscous dissipation (in160

drop and gas) while the second expression, ET (t) is the total energy of the system accounting for161

all losses, thus ET should be equal to E0 at all times. Apart from minor numerical errors, ET is162

practically indistinguishable from E0 in our simulations guaranteeing the numerical accuracy of163

the solver.164

Having defined all the relevant energy quantities, we define two new quantities to quantify165

energy loss during drop impact. The total energy loss during one complete bouncing cycle, for a166
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TABLE I. Glossary of important parameters used in the study

Initial energy of the drop (t = 0) E0 = EP(t)+EK(t)+ES(t)+D(t) Equn. (1)

Total energy of the drop E(t) = EP(t)+EK,d(t)+ES(t) Equn. (2)

Potential energy of the drop EP(t) Equn.(3)

Kinetic energy of the drop EK,d(t) Equn.(4)

Kinetic energy of the gas EK,g(t) Equn.(5)

Surface energy of drop-gas interface ES(t) Equn.(6)

Viscous dissipation D(t) Equn. (7)

Total energy loss LT (t) Equn. (11)

Energy loss in contact Lc(t) Equn. (12)

Coefficient of restitution rc =
√
|V1|/|V0| Equn. (14)

Reynolds number Re
ρlV0R0

µl

Stokes number St
ρlV0R0

µg

Weber number We
ρlV 2

0 R0

σ

drop starting at height H0 till it again attains a new maximum height H1 after its first impact can167

be calculated in terms of the total loss, LT , defined by168

LT = E0−E1. (11)169

Similarly, loss of energy during impact can be calculated as170

Lc = Eb−Ea (12)171

Eb and Ea are the total energies of the drop before (taken to be the instant of time at when the drop172

undergoes its first deformation) and after impact, respectively. Table I summarizes all the energies173

and parameters used in this work.174

III. RESULTS AND DISCUSSION175

A. Energy budget176

All energies are non-dimensionalized by the initial total energy, E0, and their variation with177

time is shown in figure 3 as the drop completes one complete rebound cycle for We = 3.21 and178
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FIG. 3. Energy budget for one complete bouncing cycle for We = 3.21 and Re = 207 showing various

energies associated with the drop and the gas non-dimensionalized with the initial energy E0. The kinetic,

ĒK,d , and potential energies, ĒP, are shown on the left y-axis while surface energy, ĒS, energy of the drop

without viscous dissipation, Ē, energy of the drop with viscous dissipation, ĒD, and total energy of the drop

and gas, ĒT , are shown on the right y-axis. See text for more details. Note the difference in scale on both

the y-axis. The vertical dash-dot lines shown with (a), (b), (c) and (d) represents time at the onset of impact,

at maximum deformation of the drop, at the onset of lift-off and at maximum height, respectively.

Re = 207, a case in the wettability independent regime of figure 2. Variations in energy budget179

is punctuated by distinct phases in drop’s evolution during the impact process which are shown180

by vertical lines marked (a) through (d). The corresponding drop shapes at each of these times is181

shown in figure 4. At t = 0, drop descends from rest possessing only potential and surface energy.182

The ratio of these two energies is given by183

E(0)
P

E(0)
S

=
We
6
. (13)184

In this particular case, E(0)
S > E(0)

P due to the small Weber number used. At the instant shown by185186

(a) in figure 3, drop begins to deform from its spherical shape indicated by a concomitant increase187

in surface energy. At this instant of time, the kinetic energy of the drop is at its maximum and188
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the drop shape is shown in figure 4(a). A region of high pressure is developed beneath the drop189

which rapidly decelerates the drop’s motion. The drop soon makes ‘touchdown’, but in this case,190

supported on a thin cushion of gas below it. The kinetic energy of the drop then rapidly reduces191

at the expense of its surface energy and the drop deforms to its maximum radial extent at time192

shown by (b). The drop shape along with the pressure field inside it at this time is shown in figure193

4(b). Even at the drop’s maximum extent, internal circulation does not completely cease giving194

rise to a non-zero kinetic energy. In Sharma & Dixit13, we show that maximum spreading diameter195

obeys the scaling, Dmax ∼We1/2. This scaling was first derived by Richard & Quéré14 using the196

argument of exchange of kinetic and surface energy during impact and the results in figure 3 are197

consistent with their findings. Surface tension then causes the drop to retract and it eventually198

achieves lift-off from the solid surface at time (c). The drop takes the shape of a distorted prolate199

spheroid as shown in figure 4(c). Most of the viscous dissipation occurs during impact as evident200

from a large decrease in drop’s energy, E(t), given in equn. (2), between times (a) and (c). The201

drop continues to oscillate during its ballistic motion causing additional viscous dissipation due to202

internal circulation inside the drop. As a result, both kinetic and surface energy exhibit damped203

oscillations providing a route for continuous loss of drop’s energy during its flight. In section IV,204

we return to the issue of energy loss and compare loss during contact and during flight in greater205

detail. It has to be noted that only a small fraction of the drop’s energy is exchanged with the gas,206

shown as EK,g, in this case, less than 2.5%. During drop’s upward motion, we observe a nearly207

perfect exchange of kinetic and surface energies as shown in figure 5. To compare these energies,208

we plot only the fluctuating part of the energies obtained by subtracting out the moving-average209

value. The drop eventually reaches a new maxima, H1, losing approximately 20% of its total210

energy E0, and the drop shape at the new height is shown in figure 4(d).211

We now examine how energy budget for a falling drop changes with time for a sample case212

in the wettability-dependent regime of the phase diagram 2. The energy budget with We = 3.21213

and Re = 1035 is shown in figure 6 and has to be viewed in conjunction with evolution of drop214

shapes shown in figure 7 as well as three-dimensional and streamline plots showing bubble capture215

and escape shown in figures 8, 9 and 10 respectively. The evolution of all energies until the first216

deformation of the drop, shown with vertical dash-dot line at (a), is identical to the previous case217

at Re = 207. Inertia causes the drop to rapidly spread on the surface until time (b) when surface218

energy reaches a maximum at the expense of kinetic energy. The interface at the axis of symmetry219

continues to move downwards while the drop retreats inward radially. Capillary waves generated220
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(a) (b) (c) (d)

FIG. 4. Drop shapes for We = 3.21 and Re = 207 at four different times: (a) t̄ = 1.9719, (b) t̄ = 2.075,

(c) t̄ = 2.26 and (d) t̄ = 3.349. The colour contours show the variation of non-dimensional pressure, P̄ =

P/(σ/R0). The four panels corresponding to time instants shown with vertical dash-dot lines in the energy

budget 3. Note that contour levels are different in the four panels.

FIG. 5. A close-up view of the fluctuating part of the kinetic and surface energies of the drop after rebound,

from figure 3, showing perfect exchange of energies between the two. ÊK,d represents the moving-average

value of the kinetic energy and ĒS,0 is initial surface energy of the drop.

near the surface travel azimuthally along the drop’s surface amplifying in the process. These waves221

focus at the axis of symmetry resulting in vigorous vertical oscillations of the upper interface of222
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FIG. 6. Energy budget for one complete bouncing cycle for We = 3.21 and Re = 1035 showing various

energies associated with the drop and the gas non-dimensionalized with the initial energy E0. All quantities

are the same as defined in figure 3. The vertical dash-dot lines shown with (a), (b), (c), (d), (e) and (f)

represents times at the onset of impact, at maximum deformation of the drop, at the instant of bubble

entrapment, at the onset of lift-off, at bubble escape and at maximum height after impact, respectively.

the drop as shown in figure 8(a). The interface then descends downwards and undergoes necking.223

This process traps a gas bubble inside it as shown in 8(d). Cusp-like regions are formed at the224

axis of symmetry which results in localised regions of high pressure, figure 7(c). Fluid rapidly225

moves away from this high pressure zones resulting in the formation of a high speed jet. On the226

upper side, the high speed jet breaks up into tiny drops due to rapid acceleration, whereas on the227

lower side, this jet can collide with the trapped bubble generating tiny secondary bubbles inside228

the bubble (see supplementary movie-1). The intense motion results in some of the drop’s energy229

to be lost to accelerate the gas, some to viscous dissipation due to rapid and vigorous motions230

inside the drop and a small portion to mass lost from ejection of tiny droplets. This process occurs231

over a very short timescale, shown at time (c), and causes a sudden drop in the drop’s energy,232

shown as ∆Ēbub,F , which represents the energy lost during bubble entrapment. We show later that233

bubble entrapment and escape result in a sudden increase in viscous dissipation. Figure 9 shows234

the sequence of events leading to trapping of the bubble. Large scale inward motion of the drop235
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as shown in figures 9(a)-(c) shows trapping of a gas bubble inside the drop. Strong vortical flow236

is generated inside bubble as revealed in close-up views shown in figures 9(e)-(f) consistent with237

the findings of Tripathi et al.26 who noted that vorticity tends to concentrate in the lighter fluid. At238

the end of the bubble entrapment process, the upper interface of the drop tends to violently recoil239

releasing a high speed jet. Contours of velocity magnitude in figure 9 reveals that significantly240

high velocities are generated in the gas phase, particularly after the complete enclosure of the241

bubble inside the drop. In physical terms, consider a 1mm water drop impacting a surface with the242

same We as given in figure 9. This translates to impact speed, V0 ≈ 0.46m/s which leads to gas243

velocity of about 46m/s.244245246

The trapped bubble remains lodged inside the drop during lift-off at time (d) in figure 6 and247

also shown in figure 7(d) and in some cases even stays inside the drop until drop undergoes its248

second bounce. In this particular case, the trapped bubble slowly drifts upwards and eventually249

emerges out of the drop in a violent escape at time (e). During its emergence, the bubble traps a250

thin curved film of liquid between its upper surface and the drop’s surface. This thin film ruptures251

at its periphery as shown in figure 7(e) similar to the process described in Manica et al.27. Very252

large pressures are generated at the tip of the filament due to tiny curvatures there (see inset of253

figure 7(e)). This causes the tip to rapidly retract allowing pressurised gas inside the bubble to254

rapidly escape imparting kinetic energy to the gas. Figure 10 shows bubble escape process in finer255

detail. A thin film of liquid is trapped between the upper surface of the drop and the escaping256

bubble as shown in figure 10a. As soon as the rupture is initiated, pressurised gas inside the257

bubble rapidly escapes as evident from the contours of velocity magnitude shown in figure 10(b,c).258

Simultaneously, the thin liquid film shown in 10d, now in the form of a filament, rapidly retreats259

radially in a time of approximately ∆t̄ ≈ 8×10−4. In dimensional terms, this amounts to a time of260

about 30 µs. A counter-rotating toroidal vortex pair, figure 10e, is generated in the gas generating261

a great deal of viscous dissipation. The retracting filament collapses upon itself resulting in a262

vertically accelerating jet (figure 10f) which can hit the drop during its rebound and entrap tiny263

gas bubbles again. These tiny secondary bubbles as seen in figure 7(f) may again create tertiary264

bubbles, but our simulations do not have sufficient resolution to track escape of these bubbles. See265

supplementary movie - 2 to see a 3D visualization of an escaping bubble. The process of bubble266

escape causes a sudden drop in the drop’s total energy, ∆Ebub,E as shown at time (e) in figure 6267

where the subscript E denotes an escaping bubble.268
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Drop shapes for We = 3.21 and Re = 1035 at six different times: (a) t̄ = 1.959, (b) t̄ = 2.047,

(c) t̄ = 2.09, (d) t̄ = 2.241, (e) t̄ = 3.071 and (f) t̄ = 3.374. The colour contours show the variation of

non-dimensional pressure, P̄ = P/(σ/R0). The six panels corresponding to time instants shown with ver-

tical dash-dot lines in the energy budget 6. Note that contour levels are different across the panels. See

supplementary online material showing a three-dimensional evolution of bubble entrapment and escape.

B. Coefficient of restitution269

In the above discussion, energy budgets were presented for two specific parameter values, viz.,270

Re = 207,We = 3.21 and Re = 1035,We = 3.21. A number of interesting facts emerged from this271

analysis which are briefly listed below: (i) energy loss occurs when the drop is in contact with the272
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FIG. 8. Three-dimensional representation of drop shapes showing the process of bubble entrapment during

drop impact. The four panels are in sequence (from left to right) at non-dimensional time t̂ = (t− t0)/τ:

(a) 0.82 at maximum spreading, (b) 1.01, at intermediate stage of downward motion of upper interface, (c)

1.06 at the onset of necking of the cylindrical filament, and (d) 1.12, high speed jet ejection at the axis

of symmetry, where t0 is time of first deformation. Parameters used are We = 3.21 and Re = 1035. See

supplementary online material showing a three-dimensional evolution of bubble entrapment.

solid surface, (ii) energy loss occurs when the drop is in motion after bouncing from the surface.273

The former occurs primarily due to large shear stresses generated near the solid surface, both in274

the gas and the drop, while the latter occurs due to surface oscillations-induced internal motions275

inside the drop which generates additional viscous dissipation. We estimate both these energy276

losses for the entire range of We and Re shown in the phase diagram 2. Conventionally, energy277

loss during impact is represented through the coefficient of restitution defined as278

rc =
|V1|
|V0|

, (14)279

where V1 is the velocity after impact and V0 is the velocity of the drop before impact. In the280

case of a drop which is undergoing large shape changes, velocity is often difficult to determine in281

experiments. In such cases, a height-based coefficient of restitution has sometimes been used:282

rh =

√
H1

H0
, (15)283

where H1 is the maximum height attained by the drop after the impact and H0 is the initial release284

height at t = 0.285

The two definitions of restitution coefficient will be the same if viscous dissipation in the drop286

during its ballistic motion before and after impact as well as drag from the surrounding gas is287

negligible.288

De Ruiter et al.15 reported a coefficient of restitution, rc ≥ 0.88 and in some cases, reported289

values as high as 0.96± 0.04. This value is in contrast to the value reported by Kolinski et al.10
290
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FIG. 9. Flow field during bubble entrapment process for We = 3.21 and Re = 1035 showing instantaneous

streamlines and contours of velocity magnitude at (a) t̄ = 2.0902, (b) t̄ = 2.0904, (c) t̄ = 2.0908. Close-up

views shown in panels (d), (e) and (f) shows vortical motion inside the trapped bubble. The high speed

jet generates intense velocities near the axis of symmetry imparting kinetic energy to the gas and also

causes viscous dissipation during bubble entrapment. See supplementary online material showing a three-

dimensional evolution of bubble entrapment.

who reported rh ≤ 0.65 based on a height-based measurement and it was suggested that such low291

values in rh are due to formation of a strong shear-layer in the gas cushion beneath the drop. De292

Ruiter et al.15 use water drops in their experiments whereas Kolinski et al.10 use water-glycerol293

mixtures which increases the viscosity of the drops. Further, the impact velocities are lower in294

the latter case which results in lower Re values. In both the studies, the surfaces are hydrophilic295

and the drops never make physical contact with the solid surface for the entire range of Re and296

We considered in the present study. The large variation in the value of restitution coefficient in297

the two studies can be reconciled by examining the role of Re and We in these experiments. High298

values of rc were also reported in the works of Foote28 and Richard & Quéré14, the former being299

a numerical study for head-on collision of two drops while the latter is an experimental study of300

drops bouncing on superhydrophobic surfaces. De Ruiter et al.15 attributed such high values to301
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FIG. 10. A close-up view of the fluid motion generated during escape of the entrapped bubble. A thin

liquid film trapped between the escaping bubble and the upper surface of the drop ruptures (a,b) and rapidly

retreats (c,d). This generates another high speed jet at the axis of symmetry (e,f). The panels are shown in

sequence at non-dimensional times, t̄: (a) 3.0705, (b) 3.071, (c) 3.0711, (d) 3.0718, (e) 3.0724, (f) 3.0737.

See supplementary online material showing a three-dimensional evolution of bubble escape.

the absence of contact line and the strong repulsion force provided by lubricating gas layer while302

Richard & Quéré14 attributed high values of rc to the low contact time in their experiments. It is303

possible that contact-less bouncing also occurred in Richard & Quéré14, but there is no evidence304

of this in their paper. Richard & Quéré14 suggest that a great deal of energy loss occurs when the305

drop is in flight. By calculating the kinetic energy based on the centre of mass of the drop as well306

as kinetic energy due to internal motions inside the drop, de Ruiter et al.15 obtained a detailed307

energy budget of the drop. Major losses during each bounce was attributed to viscous losses in308

the thin lubricating gas layer. This is consistent with the reason provided by Kolinski et al.10 who309

attributed low rc in their experiments to large dissipation in the gas layer.310

The above survey suggests that viscous losses in the thin intervening gas layer varies as a311
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FIG. 11. Variation of coefficient of restitution, rc, on the We−Re plane. The experimental values obtained

by de Ruiter et al.15 (water droplet impact on glass) and Kolinski et al.10 (water-glycerol drop on mica) are

shown along with simulation shown in brackets. Simulation values are within 10% of the experimentally

obtained values.

function of St and We, where St = Re/λ is the Stokes number and λ = µg/µl is the viscosity ratio.312

To reconcile differences between the above studies, we extract the coefficient of restitution rc from313

our simulation data and plot it in the We−Re plane as shown in figure 11. The experimental values314

of restitution coefficient in de Ruiter et al.15 and Kolinski et al.10 are shown with symbols while315

the simulation values at the same Re and We are shown alongside in brackets. It is clear that the316

agreement with simulations and experiments is satisfactory. More importantly, our simulations317

reveal that restitution coefficient strongly varies with both Re and We. The differences observed in318

the two sets of experiments can thus be attributed to very different experimental parameters used319

in the two studies. Figure 11 also reveals that for We ' 1, rc becomes less sensitive to Reynolds320

number and rapidly decreases with increase in We. At higher We, drop undergoes large scale321

deformation generating a great deal of vigorous motions inside the drop. This motion coupled322

with lower values of surface tension at higher We causes the drop to spread to greater extent on the323

solid surface obeying the scaling law rk ∼We1/4 where rk is the radial extent of the gas layer (see324

Sharma & Dixit13). This generates a strong shear in the gas layer generating excess dissipation325
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FIG. 12. Contours of non-dimensional rate of dissipation (Φ/Φ∗) during spreading and receding stages of

the drop for We = 1.07 and Re = 207 at (a) t̂ = 0.19 and (b) t̂ = 2.372. The inset shows drop-gas interface

profile near the solid surface where the rate of dissipation is maximum.

at the location of hmin, i.e. where the gas layer is at its thinnest. This can be easily verified by326

determining non-dimensional rate of dissipation written as Φ/Φ∗ where Φ is given by equn. (8)327

and Φ∗ is the characteristic value of dissipation. Using impact velocity V0 and gas layer thickness328

when the drop undergoes its first deformation, Hd ∼R0Ca1/2
g

13, we have Φ∗=V0σ/λR2
0. Contours329

of Φ/Φ∗ shown in figure 12 at two different times show that dissipation indeed assumes large330

values in the thin gas film, both during spreading and receding stages. Low values of dissipation331

are found inside the drop consistent with the observation in Gopinath & Koch29 who noted that332

for Re�We1/2, viscous dissipation inside the drop can be neglected.333

At lower We, figure 11 shows that rc strongly depends on the value of Re at lower Reynolds334

numbers and weakly depends on Weber number. This is a direct consequence of increased viscos-335

ity at lower Re which causes large dissipation in the gas film. At low We, deformation of the drop336

is also reduced, thus rc values remain relatively high in this region for a wide range of Reynolds337

numbers as seen in figure 11. The role of We and Re becomes even more evident in figure 13 where338

non-dimensional viscous dissipation, D̄ = D/E0 is plotted for four different parameter combina-339

tions. This can be explained using the simple analogy of a mass-spring-damper system given by340
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FIG. 13. Variation of non-dimensional viscous dissipation, D̄ = D/E0 for four combinations of Re and We.

The vertical dash-dot and dashed lines, common for the same value of We, shows the time instant when

contact begins (shown as A) and when the drop departs the surface (shown as B).

341

mÿ+ γ(We,Re)ẏ+ k(We)y = F(t), (16)342

where damping coefficient γ is a function of both Re and We whereas stiffness k is a function343

of We alone. For very low We, surface tension dominates over inertia and the drop does not344

exhibit large scale oscillations on its surface. In this limit, the drop largely remains spherical345

and dissipation/damping simplifies to γ ≈ γ(Re). But at higher We, large scale oscillations inside346

the drop induces undulations in the underlying gas layer beneath the drop13. The radial extent347

of the gas layer is large at high We which generates strong shear stress in the gas layer causing348

viscous dissipation. Further, surface oscillations induced motions contributes to additional viscous349

dissipation during drop motion in flight.350351

The effect of We and Re or St on viscous dissipation can be understood through a simple scaling352

law derived below. Viscous dissipation during contact given in equn. (8) scales as353

D∼ µg

(
V
h

)2

Ω T, (17)354

where V and h are characteristic velocity and length scales in the gas film, Ω is the volume of355

the gas film beneath the drop and T is the characteristic time scale. Using impact velocity V0 for356

velocity, gas thickness at the drop’s first deformation, Hd , for thickness and inertia-capillary time357
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FIG. 14. Scaling for non-dimensional viscous dissipation as a function of (a) Stokes number, (b) Weber

number. The symbols in each plot correspond to three different values of Weber numbers (a) or Reynolds

numbers (b). The dashed line shows the scaling law given by equation (19).
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scale τ ∼ (ρlR3
0/σ)1/2 for time, we have358

D∼ µg

(
V0

Hd

)2

π r2
k Hd τ,

∼ µg
V 2

0
Hd

r2
kτ

,

(18)359

where Ω is taken to be the volume of a uniform gas film of thickness Hd and radius rk. In Sharma360

& Dixit13, we show that Hd ∼ R0Ca1/2
g where Cag = We/St is capillary number based on gas361

viscosity and rk ∼ R0We1/4. Using these expressions, viscous dissipation reduces to362

D∼ µgV0R2
0 We1/2St1/2. (19)363

Figure 14(a) and 14(b) shows variation of non-dimensional viscous dissipation with Stokes number364

(at fixed We) and Weber number (at fixed St) and the agreement with the scaling law derived365

in equn. (19) is excellent except for low values of We. Our scaling law derivation makes two366

important assumptions, (i) validity of the lubrication approximation, (ii) time scale T ≈ τ . At367

very low We, the extent of the gas film, defined as the radial location of the outer minima in368

gas film thickness, follows the scaling rk ∼ R0We1/4. Hence in the low We cases, lubrication369

approximation becomes questionable. Following the work of Molác̆ek & Bush18 who showed370

that, at low We, time of contact increases with decrease in Weber number, our second assumption371

becomes questionable at low We. These two reasons explain the deviation of our results in figure372

14(b) from the scaling law (19).373

IV. ENERGY LOSSES DURING A BOUNCING CYCLE374

In the previous section, coefficient of restitution was estimated based on the velocities before375

and after impact. Richard & Quéré14 estimated that most of the energy lost in their experiments376

were due to viscous dissipation during flight. This can occur owing to drag from the surrounding377

gas and internal motions generated inside the drop due to surface oscillations. It is also relevant to378

note that Kolinski et al.10 calculate coefficient of restitution based on maximum drop heights given379

in equn. (15). Large amplitude multi-mode drop oscillations generates large internal circulations380

inside the drop which leads to viscous dissipation which cannot be accounted for in restitution381

coefficient based on change in velocity during impact. In figure 15(a), we first plot the total energy382
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loss, LT = E0−E1, that occurs during one complete bouncing cycle, i.e. till the centroid of the383

drop attains a maxima after impact. The contour of energy loss, LT , strongly depends on We as384

evident from the nearly vertical contours. At large We, energy loss reaches to about 0.4, i.e. 40%385

of drop’s energy is lost in one bouncing cycle.386387

To investigate whether this loss occurs during contact or during flight, we plot the ratio of388

energy lost during contact to total energy lost, Lc/LT , as shown in figure 15(b). We are primarily389

interested in the wettability-independent region which occurs below the dotted curve in 15(b).390

Consistent with the discussion in the previous section, at high We energy lost during contact is the391

primary contributor for total energy loss and can be upto 80% of the total loss. At high Weber392

number, which is also the region of interest in Kolinski et al.10, the drop assumes complex shapes393

generating a great deal of internal motion inside the drop13. This results in significant energy loss394

during contact. But at very low We where the contact time is also very short, most of the energy395

is lost during flight. At We ≈ 1, the loss of energy is nearly equipartitioned between loss during396

contact and loss during flight. Figure 15(b) is one of key findings of this study and establishes397

the role of We unequivocally on energetics of drop impacts. The patchy region that occurs in the398

wettability-dependent region at high Re and We is also the region where bubble entrapment and399

escape occurs. Energy loss during contact in this region depends on the precise nature of bubble400

entrapment process which requires further study.401

The role of Weber number is best illustrated by examining its effect on the drop shape during402

impact. We illustrate this with one specific example taken at Re = 51.7 and at We = 2.14,3.21.403

Modal decomposition is carried out by expanding the drop shape in terms of Legendre polynomi-404

als:405

R(t,θ) = R0 +
∞

∑
n=0

cn(t)Pn(cosθ), (20)406

where n is the mode number, Pn(·) is Legendre polynomial of order n and cn(t) is the corresponding407

coefficient. We use the orthogonality of the Legendre polynomials, to estimate cn in terms of drop408

shapes:409

cn(t) =
2n+1

2

∫ 1

−1
(R(t,θ)−R0)Pn(cosθ)d(cosθ). (21)410

411412

We extract the coefficients cn for two different Weber numbers at various times as shown in413

figure 16 for the first 10 modes. At We = 0.53, dominant surface mode of the drop occurs at n = 2414
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(a)

(b)

FIG. 15. Variation of (a) energy loss during one complete bouncing cycle, LT/E0 and (b) relative contribu-

tion of energy loss during contact vis-à-vis total energy loss, Lc/LT . Panel (a) shows that maximum energy

loss occurs at high Weber numbers and is only weakly dependent on Reynolds number. Panel (b) shows that

at higher Weber numbers, contact losses dominate over energy loss that occurs during flight. The symbols

correspond to experimental parameters used in de Ruiter et al.15(∗) and Kolinski et al.10(N).
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(a)

(b)

FIG. 16. Modal decomposition for two different cases: (a) We = 0.53, Re = 51.7, (b) We = 3.21, Re = 51.7

at various times during drop evolution. For lower values of Weber numbers, the fundamental oscillation

mode n = 2 absorbs most of the energy whereas at higher Weber numbers, energy is distributed to higher

modes too. Three-dimensional drop shapes shown in each panel correspond to the instants of time when

decomposition is carried out.

which corresponds to a prolate-oblate shape transition throughout the contact process while higher415

modes have a significantly lower amplitude. But at We = 3.21, significant energy is transferred416

to higher modes which also leads to faster decay of energy of the drop at this Weber number.417
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Propsperetti30 studied the viscous decay of an oscillating drop and obtained the decay rate of418

surface oscillations as419

b0 = (n−1)(2n+1)
µl

ρlR2
0
. (22)420

This is consistent with the expression for viscous dissipation obtained by Molác̆ek & Bush18 as-421

suming the flow is approximately irrotational inside the drop:422

D = 8πµR3
0 ∑

(
n−1

n

)
c2

n (23)423

As one may expect, higher modes indeed decay more rapidly than lower modes as is also found in424

our simulations.425

V. SUMMARY AND CONCLUSIONS426

In the current work, we present an axisymmetric numerical study of drop impacting a dry solid427

surface. In a related study by Sharma & Dixit13, it was shown that drop impact dynamics can428

be divided into a wettability-dependent and wettability-independent regimes depending upon the429

value of Reynolds and Weber number. The present study explores energetics of drop impact with430

the aim of investigating role of Reynolds and Weber numbers on the coefficient of restitution. A431

parametric study is carried out for a wide range of Re and We at fixed density and viscosity ratios.432

In each case, potential, kinetic and surface energies as well as viscous dissipation is calculated433

for one complete bouncing cycle. Detailed energy budget is presented for two special cases at434

We = 3.21 and Re = 207,1035 shown in figures 3 and 6. Before impact, surface energy remains435

constant while gravitational potential energy is converted to kinetic energy. Due to low values436

of gas viscosity used in the current study (equivalent of an air-water system), viscous dissipation437

due to drag is negligible. The onset of impact is indicated by a steep rise in surface energy at438

the expense of the drop’s kinetic energy until the drop spreads to its maximum radial extent. In439

the wettability-independent bouncing process where the drop is supported on a thin cushion of440

gas, rapid recoil occurs resulting in sharp decline of surface energy. In the wettability-dependent441

process, recoil occurs only for hydrophobic and superhydrophobic surfaces like in the present442

study. Even for such impacts, drop first spreads on a thin gas film sometimes referred to a ’skat-443

ing process’9 before contact eventually occurs. Strong shear is generated in the gas layer below444

causing a large amount of viscous dissipation. The drop eventually lifts-off completing the contact445

process. The energy loss that occurs during contact, Lc, is the major contributor in total loss, LT ,446
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FIG. 17. A schematic view showing various types of drop-solid interactions as a function of We and Re.

Physical contact with the solid surface occurs at higher values of Re while surface-oscillations-induces

dissipation occurs at higher Weber numbers. Region-4, at higher values of We and Re, corresponds to

bubble entrapment cases.

for high Weber number cases, and is weakly dependent on Reynolds number. Viscous dissipation447

is found to follow a simple scaling law given by D ∼ µgV0R2
0We1/2St1/2. For high We and Re,448

bubble entrapment can often occur as shown in figures 8 and 9. During this process, drop assumes449

complex shapes and involves ejection of high speed jets causing additional viscous dissipation. As450

the drop rises after contact, strong surface oscillations result in vigorous internal motions inside the451

drop. Such motions cause additional viscous dissipation which can be obtained as (LT −Lc). As452

is clearly evident in figure 15(b), for low We, bulk of the energy loss occurs during flight whereas453

at high We, bulk of the energy loss occurs during contact. This is consistent with the experiments454

of Kolinski et al.10 carried out for We > 1 who noted that shear in the gas layer causes bulk of the455

dissipation clearly suggesting the Lc is the dominant contributor in total energy loss for high We456

impacts.457

A key result of the paper is a detailed quantification of coefficient of restitution, rc, shown in458

figure 11. Low Weber number impacts were found to have a high value of rc whereas high Weber459

number impacts were found to have lower values of rc. Satisfyingly, the simulations were found460

to be excellent agreement with both Kolinski et al.10 and de Ruiter et al.15. For the first time, our461

study systematically showed how energetics of a bouncing drop subtly depends on the value of462
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Weber and Reynolds number. The main findings of the paper can be summarised with a simple463

schematic shown in figure 17.464

A number of open questions remain which needs careful experiments and further numerical465

studies. Our simulations fail to capture dynamics if gas film thicknesses reach sub-micron lev-466

els. For high speed impacts, it is well known that gas films can easily reach nanometer ranges467

where both rarefaction as well as non-continuum effects become important. Their role is ener-468

getics of impact is unclear and requires further investigation. Our simulations also assume that469

the impact, even in wettability-dependent regimes, is axisymmetric, but a number of experiments470

have revealed that localised contacts first occur and the subsequent contact line motion is highly471

non-axisymmetric. Roughness of the substrate is another important feature which requires further472

investigation, mainly with regards to its effect on the coefficient of restitution. Some of these473

topics are currently under investigation and will be presented in future studies.474
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