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ABSTRACT
The stability of a thin liquid film bounded by two free surfaces is examined in the presence of insoluble surface-active agents. This study is
broadly aimed at understanding enhanced stability of emulsions with the increasing surface concentration of surface-active agents. Surface-
active agents not only cause gradients in surface tension but could also render surface viscosity to be significant, which could vary with
surface concentration. We employ two phenomenological models for surface viscosity, a linear viscosity model and a nonlinear viscosity
model. In the latter, surface viscosity diverges at a critical concentration, which is termed the “jamming” limit. We show that rupture can be
significantly delayed with high surface viscosity. An analysis of the “jamming” limit reveals that Γ(nl)i > 3D/M provides a simple criterion for
enhanced stability, where Γ(nl)i , D, and M are the normalized initial surfactant concentration, disjoining pressure number, and Marangoni
number, respectively. Nonlinear simulations suggest that high surface viscosity renders free films remarkably stable in the jamming limit,
and their free surfaces behave like immobile interfaces consistent with experimental observations. Furthermore, it is shown that rupture
times can be arbitrarily increased by tuning the initial surfactant concentration, offering a fluid dynamical route to stabilization of thin
films.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0016282., s

I. INTRODUCTION

Surface-active agents are often used to modify surface rheolog-
ical properties of dispersed media such as liquid foams, emulsions,
and soap films. The interactions of these particle-laden interfaces are
of great interest in several industrial applications such as foams and
detergents, inks,1 Pickering emulsions,2 groundwater treatment,3

and soil remediation.4 Often surface-active agents become impor-
tant through their inadvertent presence, for instance, as contam-
inants in the coating or printing process. They typically alter the
wetting characteristics and hydrodynamics of a system by giving
rise to interfacial stresses and affecting the surface properties of the
system. The relevant surface properties of interest are surface ten-
sion, Marangoni effects, and concentration-dependent surface vis-
cosity. A unified model that can characterize the interplay between
these effects is necessary to truly predict the stability of such sys-
tems. As the subject of the present work, we formulate and solve a

mathematical model that addresses some of this interplay in a thin
free liquid film, covered with insoluble surface-active agents at its
free surface.

The configuration of a free liquid film has direct practical rel-
evance to soap bubbles and cosmetic foams. A soap bubble is a
thin spherical shell of water with air at a slightly elevated pressure
trapped inside. Drainage of the aqueous layer due to gravity would
lead to thinning and van der Waals forces, eventually causing rup-
ture. Similar dynamics are seen in Pickering emulsions,5,6 i.e., emul-
sions stabilized by adsorption of solid particles onto the interface
between the dispersed phase and the continuous medium. Though
the process is conceptually simple, the physics involved in deter-
mining the precise bubble breakup time is complicated. While high
pressure inside the bubble can promote rupture, often leading to
catastrophic breakup, the presence of surfactants creates Marangoni
stresses at the fluid–liquid interface, which will delay the breakup
time.7 However, Marangoni stabilization alone may not provide
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an adequate explanation for the remarkable stability exhibited by
certain surfactant-stabilized emulsions, Pickering emulsions, and
protein-based food colloids. The high surface viscosity at large sur-
factant concentrations can be a more significant factor that affects
the breakup time. Therefore, the stability of bubbly suspensions and
emulsions is a practical motivation for the model being studied here,
though we do not make a distinction between the two. The model
examined in the present work idealizes the space between two bub-
bles in an emulsion as a semi-infinite thin film of liquid in the
longitudinal direction, with two free surfaces above and below it
(see Fig. 1). The free surfaces are covered with a layer of surface-
active agents (hereafter simply referred to as “surfactants”) that are
insoluble in the bulk of the film. We neglect gravitational effects in
the current study owing to the very thin films [O(100 nm)] consid-
ered here. Instead, long range van der Waals forces are included,
and for simplicity, we ignore any stochastic effects such as the
Brownian motion. Our configuration differs from that in the study
of Naire et al.8,9 and Braun et al.10 who studied a vertical free
film undergoing gravitational drainage, but given that very small
gravitational effects could sometimes be important even in thin
films, we believe our work may have relevance to draining films as
well.

Before proceeding further, it is useful to highlight the existing
literature on modeling stability of thin free liquid films. Several prior
investigations11–15 have modeled the dynamics of thin free films in
the framework of lubrication theory, accounting for effects of capil-
larity, evaporation, condensation, and bulk viscosity. Among these,
Hatziavramidis12 was the earliest to explore the role of surfactants,
which illustrated the competition between thermally and surfactant-
induced Marangoni flows. In Hatziavramidis’s work, the dynamics
of a free film were approximated by those of a wall film with half
the thickness of a free film. A detailed presentation of the non-
linear evolution equations using long-wave theory for a clean free
film was first given by Erneux and Davis.14 The concept was later
extended to include insoluble surfactants at the surface by De Wit
et al.,16 in which they arrived at a system of three coupled non-
linear evolution equations governing the film dynamics. Further-
more, this work was extended to soluble surfactants by Chomaz,17

but he ignored the role of surface viscosity. It was not until the
work by Edwards and Oron18 and later by Naire et al.8,9 and Braun
et al.10 that surface viscosity was incorporated into these models.
Naire et al.9 considered the configuration of a vertically draining

film, while Edwards and Oron18 studied a horizontal film without
surfactants and Marangoni effects. Using constant values of sur-
face viscosity, Naire et al.8 showed that the interface approaches
an immobile limit in the limit of high surface viscosity. For drain-
ing interfaces with large surfactant concentrations, Braun et al.19

assumed that the interface becomes completely immobile. We show
later in the current study that regions of large particle concentra-
tion with high surface viscosity do indeed mimic an immobile inter-
face. A model that includes Marangoni effects, surface viscosity, and
bulk solubility of surfactants in horizontal free films was studied by
Matar.20

In the present work, we show a crucial link between surface vis-
cosity, surfactant concentration, interface mobility, and film stabil-
ity, which is missing in the earlier literature. We present a plausible
explanation to the following technologically and fundamentally rel-
evant questions, with detailed fluid mechanical insights: “Why do
many industrial emulsions possess an unusually long shelf-life?” “To
what extent can surface viscosity aid in stabilizing such emulsions or
liquid films?” To do so, we focus on horizontal non-draining films
with surfactant-laden interfaces. We neglect the effect of surfactant
solubility focusing primarily on the surface rheology. In particu-
lar, we use a model framework that allows surface viscosity to vary
with surfactant concentration and show explicitly that if the former
diverges at a sufficiently high concentration of surface-active parti-
cles, it is possible to immobilize the interface and achieve arbitrarily
high breakup time for the film. Thus, we suggest that concentration-
dependent surface viscosity mediated stabilization, a missing ele-
ment in most earlier studies, offers a theoretical tool to analyze long
shelf-life of surfactant-based emulsions. Our model primarily stems
from a need to describe systems where surfactants or colloidal parti-
cles do exhibit large concentration variations on the interface, and
such variations appear to be correlated with system stability. For
example, Vignati et al.21 have shown that densely covered Picker-
ing emulsions with solid particle coverage as high as 50% or more
exhibit low particle mobility on the interface as determined by mea-
suring mean-squared displacement of particles. A similar result was
obtained in the recent experiments of Mayarani et al.22 who showed
suppression of the coffee ring effect due to reduced mobility of
particle-laden interfaces.

With recent improvements in rheometry, concentration-
dependent surface viscosity has been measured accurately and is
summarized in the review by Fuller and Vermant.23 Edwards and

FIG. 1. Schematic of the problem geometry. A free film arises either in a typical soap bubble in air or between two bubbles or droplets in an emulsion. Bubbles deform as they
approach each other forming a flat free film between them.
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Wasan24 developed a simple surface rheological model for a surfac-
tant or particle-laden interface neglecting particle–particle interac-
tions and showed that surface viscosity increases with surface con-
centration. Tambe and Sharma25 extended this result to include
interactions between particles and showed that surface viscosity is
enhanced by orders of magnitude due to particle concentration and
exhibits a divergent behavior as the concentration approaches a crit-
ical value. Danov et al.26 showed that at sufficiently high surfactant
concentrations, the interface appears to form a rigid shell accom-
panied by an enhancement in surface viscosity. Rising spherical
bubbles and sedimenting drops covered with surfactants are known
to have a drag coefficient different from that of a clean interface.
In the limit of Stokes flows, such systems were modeled using the
“spherical cap” approximation27 where a part of the drop surface is
assumed to be rigid (immobile), while the remainder of the drop is
assumed to be devoid of surfactants,28 similar to the immobile model
of a draining film used by Braun et al.19 Diffusion of surfactants
on the interface makes the spherical cap approximation unrealistic,
and one is expected to find a smooth variation in the concentra-
tion continuously reducing from the leeward to the windward side
of the drop/bubble. Thus, in addition to Marangoni effects, we also
introduce surface viscosity effects that depend on the local concen-
tration of surfactants as demonstrated in prior experiments by Lopez
and Hirsa.29 This allows us to have a continuous variation of the
interfacial mobility consistent with diffusion effects of surfactants.
A nonlinear phenomenological model describing this dependence
is incorporated in the governing equations to construct a robust
framework.

We adopt a scaling based on viscous forces balancing the inter-
molecular van der Waals interactions. The lubrication approxima-
tion is used to simplify the governing equations owing to the small
aspect ratio of the free films. It is found that variable surface vis-
cosity leads to new solutions for film evolution in the “dilute” limit
when surface-active agents are sparsely distributed across the surface
and the sensitivity of surface viscosity toward particle concentrations
is weak. In addition, we also find that surfactants could potentially
render a free film remarkably stable in the “jamming” limit.

We first derive a set of governing equations by non-
dimensionalizing the Navier–Stokes equations and interfacial
boundary conditions in Sec. II. We explore the linear stability of
the system in Sec. III and apply perturbation techniques to reveal
an important stability criterion in Sec. III A. A brief discussion of
numerical methods used to solve the governing equations is pro-
vided in Sec. IV. This is followed by self-similar solutions found in
the “dilute” regime in Sec. IV B 2 and important findings in the “jam-
ming” limit in Sec. IV C. Finally, conclusions are made in Sec. V,
connecting our results to prior experiments and findings.

II. PROBLEM FORMULATION
A. Problem geometry and governing equations

Figure 1 shows the idealized two-dimensional problem setup.
A thin film of incompressible liquid, extending infinitely in the lat-
eral direction, is bounded by a passive gas phase above and below it.
The free surfaces on both sides are covered with surface-active agents
that are assumed to be insoluble in the bulk of the film. These agents
could either represent surfactants in the classical sense, significantly

affecting the liquid surface tension, or serve as colloidal particu-
lates that alter the surface rheology. The film has mean thickness 2H
(dimensional), and the liquid has a bulk viscosity and density repre-
sented by μ and ρ (both dimensional), respectively. The free surface
is at a height h̃(x̃, t̃). Furthermore, we let σ̃0 denote the dimensional
mean surface tension of the liquid film when the surface concentra-
tion of surfactants Γ̃ is maintained at a fixed reference concentration
Γ̃0. Table I gives some realistic dimensional values for the various
physical parameters used in our study.

Following prior works,14,16,20 we will consider only the squeez-
ing (or varicose) mode that is symmetric about the horizontal (x̃)
axis and is thus considered the most unstable mode. The dimen-
sional momentum balance in the x̃ and z̃ directions and the conti-
nuity equation may be written as

ρ(ũt + ũũx + ṽũz) = −(P̃x̃ + Φ̃x̃) + μ(ũx̃x̃ + ũz̃z̃), (1)

ρ(ũt + ũṽx + ṽṽz) = −(P̃z̃ + Φ̃z̃) + μ(ṽx̃x̃ + ṽz̃z̃), (2)

ũx̃ + ṽz̃ = 0. (3)

Here, ũ and ṽ denote the velocity components in x̃ and z̃ directions,
while P̃ is the fluid pressure. We have included a disjoining pressure
term Φ̃ in our model, considering films to be thinner than ∼100 nm,
where van der Waals forces are prevalent.18,30 In the present work,
we set Φ̃ = A/6π(2h̃)3, where A is the dimensional Hamaker con-
stant representing van der Waals attraction between the two free sur-
faces separated by the liquid. The attractive van der Waals forces will
be the prime destabilizing factor for the film. The dynamics of the
surface-active species at the free surface neglecting their solubility in
the bulk is governed by a convection–diffusion equation20

Γ̃t + (∇s ⋅ n)Γ̃(n ⋅ u) +∇s ⋅ (usΓ̃) −Ds∇
2Γ̃ = 0. (4)

Here, Ds is the surface diffusivity, treated as a constant,∇s is the sur-
face gradient operator, u is the total velocity vector of the liquid, us
is the velocity vector along the free surface, and n is the unit vec-
tor normal to the free surface. The various terms in (4) represent in
order the local rate of change in surfactant concentration, the con-
centration variation resulting from local changes in the interfacial

TABLE I. Estimates of relevant physical parameters.

Parameter Definition Estimate Units

H Mean film thickness 10−9–10−7 m
M Liquid viscosity 10−3 kg m−1 s−1

ρ Liquid density 103 kg m−3

A Hamaker constant 10−21–10−19 J

σ̃0
Surface tension 10−3–10−2 N m−1
of the clean film

Γ̃0
Mean surfactant 10−6 mol m−2
concentration

Ds
Surface diffusion 10−12–10−8 m2 s−1
coefficient

η̃0 Surface viscosity 10−12–10−6 kg s−1
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area, the advective flux contribution, and the diffusive contribution,
respectively. Note that the second term is a source-like contribution,
expressed as a product of the mean interfacial curvature and the nor-
mal velocity.31 The second and third terms may be combined and
expressed as a single term∇s ⋅ (Γ̃u). The split into two terms results
when u is decomposed into its components that are normal ((n ⋅ u)n)
and tangential (us) to the free surface.27

The boundary conditions at the free surface (z̃ = h̃(x̃, t̃)) are
the normal stress continuity and the shear stress balance. The vector
form of these equations in the presence of variable surface tension
and surface viscosity effects is taken from Ref. 9, written as

− n ⋅ ∥T∥ ⋅ n = 2κσ̃ + 2κ(ks + μs)∇s ⋅ u, (5)

−t ⋅ ∥T∥ ⋅ n = t ⋅∇sσ̃ + (ks + μs)t ⋅∇s∇s ⋅ u + t ⋅∇s(k
s + μs)∇s ⋅ u,

(6)

where t is the unit vector tangent to the free surface, T is the stress
tensor, and ∥T∥ denotes its jump across the liquid–air interface.
Thus, the left-hand sides of (5) and (6) denote, respectively, the net
jump in stress normal to and tangential to the air–liquid interface.
The dilatational (ks) and shear (μs) components of surface viscosi-
ties occur in additive pairs in a 2D system and will hereafter be
written in terms of a single parameter, η̃ = (ks + μs) in the rest of
this paper. Derivation of these equations that is beyond the scope of
this paper can be found in books by Slattery et al.32 and Brenner.33

These equations are a simple extension of the Newtonian interface
model for a constant surface viscosity first derived by Scriven.34 The
first term on the right-hand side (RHS) of (5) denotes the capil-
lary pressure, κ being the mean interfacial curvature and σ̃ being the
dimensional surface tension of the liquid. The second term is a nor-
mal component of the viscous resistance to the deformation of the
surface arising from both dilatational and shear surface viscosities.
Its tangential component is present in the second term on the RHS
of (6), the tangential stress balance condition. In addition, (6) also
contains the contributions from Marangoni stress (the first term on
the RHS) and the spatial variation in surface viscosity (the last term
on the RHS). The latter occurs due to variations in surfactant con-
centration Γ̃, and the specific functional forms used to describe how
η̃ = (ks + μs) varies with Γ̃ will be shown in Sec. II B. The simpli-
fied scalar versions of (5) and (6) in dimensional and dimensionless
forms are shown in Appendixes A 1 and A 2. The other conditions
that complete the system are the kinematic condition at the free sur-
face and the symmetry condition at the centerline (z̃ = 0). These are
written as

h̃t̃ + ũh̃x̃ = ṽ (kinematic), (7)

ũz̃ = 0 and ṽ = 0 (squeezing mode symmetry). (8)

B. Scalings and non-dimensionalization
The scalings for the different variables are explained next,

where symbols with the tilde (∼) decoration denote dimensional
versions. The spatial coordinates z̃ and x̃ are scaled as

z =
z̃
H

, x =
x̃
L

, (9)

where L is the characteristic length along x̃ (e.g., the wavelength of
a typical interfacial perturbation). We further assume that ϵ = H/L
≪ 1, i.e., a small aspect ratio film, which would permit us to employ
the lubrication approximation. The velocity components and the
fluid pressure are scaled as follows:

u =
ũ

A/6πμϵL2 , v =
ṽ

A/6πμL2 , P =
P̃

A/6πϵL3 . (10)

The scalings in (10) reflect a balance between viscous stresses and
the disjoining pressure gradient due to van der Waals forces. We
note that our choice of scalings is different from that in Ref. 20
(extensional viscous stresses ∼ Marangoni stresses) and would be
more apt for ultra-thin films (≤100 nm).18,30,35 The natural choice
for the characteristic timescale is the ratio of the characteristic scales
of velocity and length. Thus, the dimensionless time variable is
expressed as

t =
t̃

6πμϵL3/A
. (11)

Since surface properties depend on surfactant concentration, suit-
able scales are needed for the concentration, surface tension, and
surface viscosity given by

Γ(x, t) =
Γ̃(x̃, t̃)
Γ̃ref

, σ(x, t) =
σ̃(x̃, t̃)
σ̃ref

, η(x, t) =
η̃(x̃, t̃)
η̃ref

. (12)

The reference surface tension, σ̃ref, is taken to be the value of surface
tension for a clean interface that is devoid of any surface concentra-
tion [i.e., in the limit Γ̃(x̃, t̃) → 0]. The surface viscosity, η̃, is scaled
with η̃ref, the choice of which depends on the type of model used for
η̃ as explained below. The reference surfactant concentration (Γ̃ref)
could be an initial equilibrium surface concentration in the dilute
limit (Γ̃dil), or a critical concentration of colloidal surface-active
agents in a jammed-state interface (Γ̃max).

Several dimensionless characteristic numbers appear upon
rewriting (1)–(8) using the scalings mentioned above. These are
summarized in Table II along with their typical order of magnitude
estimates based on physical values given in Table I. Among these, the
parameters representing dominant effects are B (non-dimensional
surface viscosity) and D (non-dimensional ratio of disjoining forces
to surface tension forces). Furthermore, the Marangoni number
M and the surface viscosity gradient parameter, β, represent the
variation of surface tension and surface viscosity with surfactant
concentration. For simplicity, we assume a linear variation with
concentration for surface tension, given by

σ = 1 −MΓ(x, t). (13)

To shed light on the effect of surface viscosity and its dependence on
concentration, especially near the jamming limit, we use two phe-
nomenological viscosity models: (i) linear viscosity model (LVM)
given by

η = 1 + β[Γ(x, t) − 1] (14)

and (ii) nonlinear viscosity model (NVM) given by

η =
1

[1 − Γ(x, t)]α
. (15)
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TABLE II. Estimates of non-dimensional system parameters evaluated using the char-
acteristic velocity scale and dimensional estimates from Table I. Reference quantities
such as η̃ref, σ̃ref, and Γ̃ref are given in Table I.

Order of magnitude
Parameter Definition estimates

ϵ =
h̃0

L
Aspect ratio 10−3–10−2

B = η̃ref

μh0
Boussinesq number 10−1–101

D = A
6πσ̃refϵL2 Disjoining pressure number 10−3–10−2

M =
Γref

σ̃ref
(
∂σ̃
∂Γ̃
) Marangoni number 0–5 × 10−3

β =
Γref

η̃ref
(
∂η̃
∂Γ̃
)

Surface viscosity gradient 0–1number

Pe =
A

6πμh0Ds
Peclet number 10−1–102

Re =
ρA

6πμ2ϵh̃0
Reynolds number 10−2–1

The relevant characteristic scales for surface tension, concentration,
and viscosity for the LVM and NVM are given in Table III.

The form of the LVM given in Eq. (14) allows us to define a lin-
ear variation in surface viscosity at any non-zero concentration. This
enables us to establish equivalence between the two viscosity models
at a specific reference concentration as discussed in Appendix B. In
general, a linear viscosity model is best suited to an interface with a
sparse distribution of surfactants or particles. The reference concen-
tration Γ̃ref can be interpreted as a reference equilibrium concentra-
tion in the dilute limit. For the nonlinear model (15), the jammed
state concentration value Γ̃max of the system would intuitively be the
suitable non-dimensionalizing factor for Γ̃ as the surface viscosity is
expected to diverge in the jammed state, analogous to bulk viscos-
ity.36–38 The nonlinear model employed in the current study agrees
well with the theoretical prediction of Tambe and Sharma25 for a
particle-laden interface shown in Fig. 2. Note that the nonlinear vis-
cosity model (NVM) can be reduced to a linear model in the limit of
dilute surfactant concentration (Γ̃dil ≪ Γ̃max). In this limit, the expo-
nent α in (15) is related to the surface viscosity gradient parameter β

TABLE III. Characteristic scales for concentration, surface tension, and surface vis-
cosity. The surface tension at zero concentration is used as a reference for both the
viscosity models. For the LVM, the dilute limit Γ̃dil can be any value of Γ̃ that satisfies
Γ̃ ≤ Γ̃max/(α + 1) (see Appendix B for more details). The subscript “0” indicates that
the parameter is defined for a clean interface where the concentration is zero.

Model Γ̃ref σ̃ref η̃ref

LVM Γ̃dil σ̃0 η̃dil
NVM Γ̃max σ̃0 η̃0

FIG. 2. Effect of surface concentration on surface viscosity. A black line with mark-
ers represents theoretical predictions from the micro-mechanical model of Tambe
and Sharma,25 and the red curve is a fit of the NVM.

in (14) by the relation

Γ̃dil
Γ̃max

=
β

α + β
=
Γ(nl)i

Γ(l)i
, (16)

where Γ(l)i and Γ(nl)i denote the respective non-dimensional base-
state values in the linear and nonlinear models. Further details of
the validity and derivation of equivalence in surface viscosity mod-
els are given in Appendix B. We also note that the system with
the NVM reduces to a system with constant surface viscosity when
Γ→ 0, in accordance with a Newtonian viscosity for a clean interface
discussed in the work of Scriven.34

The disjoining pressure number, D in Table II, defined as
D = A/6πσ0ϵL2 has been deliberately scaled to contain ϵ, so that
capillary effects are retained in the normal stress boundary condi-
tion, as also described in Appendix A 1. It represents the ratio of
inter-molecular van der Waals interactions to surface tension forces.
A disjoining pressure interpretation of the capillary effects is apt as it
represents the overall wetting characteristics of the thin-film system,
as has been done in an earlier work.39 With respect to Marangoni
and surface viscosity effects, we restrict ourselves to the default
regime examined in prior works16,20 in which both Marangoni
effects and surface viscosity only appear in the first order correc-
tion of the tangential stress balance condition. Accordingly, if M is
an O(1) quantity, a “weak Marangoni” limit is defined by rescaling it
as M = ϵ2M̂, where the new O(1) parameter is M̂. Then, Marangoni
effects would drop out in the lubrication limit when O(ϵ2) terms are
ignored. The idea is elaborated further in Appendix C. Following
the definition of σ in (13), the weak Marangoni limit would imply, at
leading order,

σ = 1 and σx = 0. (17)
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For the surface viscosity, η is retained as an O(1) quantity, but it
would still appear only in the first (and higher) order corrections
to the stress balance conditions as shown by Matar.20 To explore
the strong surface viscosity regime (see Appendix C), η may be
rescaled such that it is retained at leading order and the bound-
ary conditions are self-consistent. However, as ϵ (aspect ratio) can
be made arbitrarily small, presenting the surface viscosity terms
at O(ϵ) stress balance conditions (as in the present formulation)
could still be deemed acceptable despite the diverging nature of the
NVM.

C. Evolution equations
With the scalings presented in Sec. II B, the governing

equations (1)–(3) reduce to the following when only the zeroth
(leading) order terms are considered, denoted with the superscript 0:

u(0)zz = 0, (18)

P(0)z = v
(0)
zz , (19)

u(0)x + v
(0)
z = 0. (20)

Rewriting the symmetry conditions in (8) at z = 0 gives

u(0) = c(x, t), (21)

v(0) = −cxz, (22)

where c(x, t) is still an unknown function independent of z. We
see in (21) that the horizontal velocity is a plug flow varying spa-
tially and temporally. The leading order normal stress balance (see
Appendix A 1) is written as

− P(0) = D−1hxx + 2hxuz − 2vz . (23)

Integrating (19), comparing it with (23), and substituting (21) and
(22), we obtain

P(0) = −2cx −D−1h(0)xx . (24)

The leading order tangential stress balance (see Appendix A 2), on
the other hand, simplifies to [using (17)]

u(0)z = D−1σx = −ϵ2D−1MΓ(0)x = 0. (25)

This is also consistent with (21). The kinematic condition (7) and
the surfactant transport equation (4) provide two nonlinear evolu-
tion equations for h(0) and Γ(0), with c(x, t) still undetermined. As
discussed by De Wit et al.16 and Matar,20 the system can be com-
pleted only through a third equation obtained by considering the
first order corrections of (18) and (25) (refer to Appendixes A 2 and
A 3). To these, we substitute (14) or (15) to account for variable
viscosity.

The final system of three nonlinear evolution equations reads

ht + (ch)x = 0, (26)

Γt + (cΓ)x =
Γxx
Pe

, (27)

Re(ct + ccx) −D−1hxxx −
3

8h4 hx

= 4
(hcx)x

h
+ B(η) cxx

h
+ B(dη

dΓ
)
cxΓx
h
−D−1M

Γx
h

. (28)

The above set of evolution equations is valid for both linear and non-
linear viscosity models with only the value of η and its variation
chosen based on either (14) or (15). Non-dimensional parameters
such as Re, Pe, M, B, and D are defined in Table II. The superscript
0 has been omitted in (26)–(28) and in the remainder of this paper
for easy readability. We note that these equations reduce to those
derived by De Wit et al.16 in the limit B = 0 and to those derived by
Matar20 when we set dη/dΓ = 0, in the absence of surfactant solubil-
ity. The key augmentation of the present work is the term containing
dη/dΓ, which plays a role through the tangential stress at first order.

While (26) and (27) have the more familiar form of evolu-
tion equations at leading order, (28) has been derived by consider-
ing the first order correction [O(ϵ2)] of the velocity u. Physically,
(28) may be construed as a form of conservation of linear momen-
tum applicable at first order. Its first term on the left-hand side
(LHS) contains the material derivative of the velocity function c,
with the ccx term representing the convective acceleration contribu-
tion. The second and third terms on the LHS can be reformulated
as a pressure gradient, as in the typical Navier–Stokes equations,

if we identify the pressure field as P = D−1hxx −
1

8h3 , which is
a sum of contributions from surface tension (capillary pressure)
and the van der Waals forces (disjoining pressure). On the RHS,
the first term is an equivalent “viscous” stress term, with h and
hx accounting for variable viscous resistance offered by the fluid
particles at first order as the film undergoes local thinning. The
factor of 4 has been noted as the ratio of the elongational to the
shear viscosity in planar Newtonian viscous flows, and 4h is termed
the “Trouton viscosity.”14 The remaining terms on the RHS arise,
respectively, from the surface-viscous resistance, its dependence on
the surfactant concentration, and the surface tension gradients or
Marangoni flow. The latter has a finite contribution to the tan-
gential stress only at first order in the “weak Marangoni” limit,
as explained in Appendix C. The appearance of the concentration
dependence of surface viscosity in (28) suggests that spatial gradi-
ents in surface viscosity do generate linear momentum flux at first
order.

III. LINEAR STABILITY ANALYSIS
We linearize the system of three nonlinear equations (26)–(28),

by perturbing the dependent variables about a uniform base state as
follows:

h(x, t) =
1
2

+ ĥe(ikx+st), (29)

Γ(x, t) = Γi + Γ̂e(ikx+st), (30)

c(x, t) = ĉe(ikx+st). (31)

Here, s is the growth rate and k is the wavenumber of the pertur-
bation. Using standard linear stability analysis, the following disper-
sion relation is obtained for the linear and nonlinear surface viscosity
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models:

s3 + s2k2
(

1
Pe

+
4
Re

+
2Bηi
Re
)

+ sk2
(

4k2

PeRe
+
D−1k2

2Re
−

3
Re

+
D−1MΓi

Re
+

2Bηik2

PeRe
)

+
k4

PeRe
(
D−1k2

2
− 3) = 0, (32)

where Γi is the non-dimensional base-state surface concentration
and can be taken to be either Γ(l)i or Γ(nl)i depending on whether the
LVM or NVM is used. It has to be noted that only a base-state value
of surface viscosity affects linear stability whose value is given by Bηi,
where ηi is calculated by either (14) or (15) at surface concentration
equal to Γi and B is the Boussinesq number given in Table II. Since
variable surface viscosity effects do not appear in the linear stabil-
ity analysis, the above dispersion relationship reduces to that in the
constant viscosity study of Matar.20 In addition, the above disper-
sion relation is also in agreement with that in earlier studies14,16 in
the absence of surface viscosity, i.e., ηi = 0. We show later that the
functional form of surface viscosity models plays an important role
in nonlinear evolution of the thin film.

The dispersion curves for three different values of “effective vis-
cosity” corresponding to a base-state surfactant concentration rang-
ing from the dilute to the concentrated limit are shown in Fig. 3(a).
Other parameter values are chosen from Table II and are similar to
values chosen by Matar.20 All the curves exhibit a fastest growing
mode, kmax, and a cut-off wavenumber, kc, given by

kc =
√

6D, (33)

above which the film is stable. The qualitative trends seen in the
dispersion curves were similar to observations reported in earlier
works.14,16,20 In all our cases, the dispersion relation is a cubic poly-
nomial with one growing root and two decaying roots, and only the
growing root is shown in the dispersion curves in all the plots below.

For the sake of completeness, the role of various non-
dimensional parameters is briefly discussed below. Separate dis-
persion curves for each of these cases can be easily generated and

are discussed in the work of Matar.20 A decrease in D results in
greater opposition from surface tension toward film breakup and
a smaller driving force from intermolecular van der Waals attrac-
tions, leading to reduction in maximum growth rates. As regards
Pe, a higher surface diffusivity of the surfactants (lower values of
Pe) diminishes gradients in surfactant concentrations to destabi-
lize the film. Marangoni stresses are generated due to variations
in surface concentrations, which leads to variations in surface ten-
sion. This creates a mass flux along the interface, which drives the
fluid into regions of high surface tension or low surfactant con-
centration that exists where the interface dips toward rupture. The
mass flux reduces the rate at which the interface recedes, thus
reducing the growth rate. A detailed discussion on Marangoni-
induced stabilization is provided in the work of De Wit et al.16

The role of Re is the most enigmatic among all parameters and
has not been discussed in detail in earlier works. Interestingly, the
Re → 0 limit is singular and does not give the same result as
Re = 0. This is also evident from the growth rate curves given in
Fig. 3(b), which show that the dominant wavenumber moves toward
lower values of k with the decreasing Reynolds number. This is
accompanied by a steep rise in the dispersion curve near k = 0
with a small increase in the dominant growth rate. This can be
explained by noting that as Re decreases, viscosity is most effective
at suppressing growth at small scales. Hence, regions of dominant
growth are pushed toward large scales or low wavenumber. How-
ever, the physical mechanism behind the increase in the growth
rate with the decreasing Re is unclear, and a more careful study is
warranted.

The effects of surface viscosity are determined by the param-
eters B, β, α, and Γi. However, as already discussed, the dispersion
relation only depends upon the effective initial surface viscosity. We
can tune the above four parameters and get the same effective sur-
face viscosity for different models used. The choice of model used
depends upon the system under study. As far as linear stability is
considered, we vary the effective surface viscosity (Bηi) and observe
the behavior of the dispersion relation (32) as shown in Fig. 3(a).
At higher values of surface viscosity, there is an overall decrease in
the growth rate, but the dispersion curves show a boundary layer-
like structure at small wavenumbers. The structure of the dispersion

FIG. 3. Dispersion curves with the (a) varying effective surface viscosity, Bηi, with fixed Re = 10−1 and (b) varying Reynolds number, Re, with fixed B = 10−1 and Γ(l)i = 2.
Other parameters are fixed as Pe = 1, D = 10−2, M = 10−3.
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curves near the jamming limit where surface viscosity assumes very
large values is discussed in Sec. III A.

A. The “jamming limit”
In this section, we show that it is possible to obtain a sim-

ple perturbation solution to the dispersion relation (32) using the
NVM case, (15), in the limit of large surfactant concentration, i.e.,
for Γ(nl)i → 1. In this limit, the surfactant concentration approaches
the jamming limit and the mobility of surfactant molecules reduces
to zero. It will be shown later (see Sec. IV C) that the tangential
velocity indeed reduces to zero as Γ(nl)i → 1. This limit leads to
diverging surface viscosity terms in (32) exhibiting a distinct bound-
ary layer-like structure. It is shown below that the nature of the
cubic equation changes in the jamming limit. To proceed with the
perturbation analysis, it is convenient to define a small parameter,
δ = (1 − Γ(nl)i )

α
. As Γ(nl)i → 1, δ→ 0. The dispersion relation for the

NVM can then be rewritten in terms of δ as

δs3 + s2
[δa1(k) + a2(k)] + s[δa3(k) + a4(k)] + δa5(k) = 0, (34)

where the coefficients a1 to a5 are functions of k and can be obtained
by comparing (34) with (32),

a1(k) = (
1
Pe

+
4
Re
)k2, (35)

a2(k) =
2B
Re

k2, (36)

a3(k) =
⎛

⎝

D−1MΓ(nl)i

Re
−

3
Re

+
4

PeRe
k2 +

D−1

2Re
k2⎞

⎠
k2, (37)

a4(k) =
2B
PeRe

k4, (38)

a5(k) = (
D−1k2

2
− 3)

k4

PeRe
. (39)

In the limit δ → 0, Eq. (34) is a standard singular perturbation
problem for the growth rate s. Figure 4(a) shows plots of the sole
positive root of (34) for different values of δ. It is apparent that the
growth rate s scales with δ and singular root appears in the region
k ≤ δ. We therefore define a rescaled growth parameter Y = s/δ, so
that Eq. (34) now becomes

δ3Y3 +Y2
[δ2a1(k) + δa2(k)]+Y[δa3(k) + a4(k)]+a5(k) = 0. (40)

A standard expansion in δ in the form Y(o) = Y(o)0 + δY(o)1 +⋯ results
in two regular roots in the outer region, i.e., k≫ δ. Focusing on the
root that is unstable, we obtain

Y(o)0 = −
a5

a4
, (41)

Y(o)1 = −
a2a2

5

a3
4

+
a3a5

a2
4

. (42)

To obtain the singular root in the inner region 0 ≤ k ≤ δ that has a
boundary layer-like structure, we define a rescaled variable X = k/δ,
where X ∼ O(1). The solution to the inner region in terms of this
rescaled variable at leading order is

Y(i)0 = −
b2

2
+

1
2

√

b2
2 − 4b3, (43)

where b2 =
2B
Re

X2; b3 = (
D−1MΓ0

Re
−

3
Re
)X2. Figure 4(b) shows a

comparison of the inner solutionY(i)0 (dotted-dashed line), the outer
solution Y(o)0 (dashed line), and the numerical root Y (solid line)
obtained from (40). Examining (43), it can be shown that the nec-
essary condition for stable growth rates (Y(i)0 < 0) is b3 > 0. Hence,

FIG. 4. (a) Unstable root for the dispersion relation (34) with the varying δ = (1 − Γ(nl)i )α. The growth rate scales with δ, and the s(k) curve exhibits a sharp gradient near
k → 0. (b) Inner Y ( i ) (dotted-dashed line) and outer Y (o ) (dashed line) perturbation solutions along with the full dispersion relation from Eq. (40) compared with numerical
roots (solid line). Other parameters are fixed as D−1 = 100, M = 10−3,Pe = 1,Re = 10−2,α = 2.
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we arrive at a necessary condition for obtaining stable modes in the
space 0 ≤ k ≤ δ,

Γ(nl)i >
3

D−1M
. (44)

However, this criterion is solely extracted from the inner solution.
When we examine the complete numerical solution, we find that
there is a change in the nature of the dispersion curves with the
increasing surfactant concentration. If the above criterion is satis-
fied, it is found that the growth rate goes to zero in the small-k
region, but a region of dominant growth exists for larger values of
k. The growth rates can assume very small but positive values even
when the above criterion is satisfied. The maximum growth rates
are found to vary over three orders of magnitude: from s ∼ O(1) to
s ∼ O(10−3

) in the limit 0 ≤ k ≤ δ. We can therefore define a criti-
cal concentration Γc = 3/D−1M for stability in the long-wave limit.
Any value of Γ(nl)i > Γc should result in enhanced stability. Exam-
ining the system parameters in real physical systems, we find that
D−1M ∼ O(10−1

) in real systems, suggesting that though foams can
be stable for a long duration, indefinite stability is not guaranteed.
This is consistent with the observation by Kloek et al.40 who stud-
ied bubble dissolution with complex interfacial and bulk rheologies.
It is easy to derive a simple relationship between the amplitude of
tangential velocity at the interface, ĉ, and the height perturbation, ĥ,
using the kinematic condition (29),

ĉ =
is
kh0

ĥ. (45)

The above relationship suggests that the tangential velocity at the
interface, c(x, t), has a phase-difference with the interface height,
h(x, t), since ĉ is a complex number. Since the interface height is
symmetric about the rupture location, the tangential velocity is anti-
symmetric. This result is unsurprising because as the interface height
reduces toward rupture, the fluid is driven away from the rupture
location. An important outcome of the above analysis is that the
growth rate scales with the small parameter δ in the jamming limit.
This dependence can be written in the simple form

s = (1 − Γ(nl)i )
α
F(Re,Pe,D,M,B), (46)

where we have used the definition of δ and the functional depen-
dence on other parameters, F, is not reproduced for simplicity.
Substituting s into (45), we get

ĉ =
iF(1 − Γ(nl)i )

α

kh0
ĥ. (47)

As Γ(nl)i → 1, it is clear that c(x, t) → 0, thus rendering the inter-
face immobile in the jammed limit. Both the anti-symmetric nature
of the tangential velocity and the approach to the immobile limit
are confirmed through full numerical solutions of Eqs. (26)–(28) in
Sec. IV.

IV. NONLINEAR EVOLUTION
A. Numerical methods

The nonlinear evolution and dynamics of the free film
were studied by numerically solving the set of partial differential

equations (26)–(28) for a range of parameter values. A Fourier
pseudo-spectral (FPS) method is used to solve these PDEs, since it
is most suited to handle periodic boundary conditions. Discretiza-
tion of the spatial derivatives in the Fourier domain reduces the set
of PDEs to ordinary differential equations.41 Time marching is done
using an implicit Adams–Moulton method (trapezoidal rule) using
the MATLAB function fsolve to solve the linearized equations in the
Fourier space. An adaptive time stepping Δt ∝ κ−1 (curvature) is
also implemented to capture the dynamics at later times, when the
evolution proceeds much faster. The initial conditions used in our
simulations are as follows:

h(x, 0) =
1
2

+ 0.01 cos(
2πx
λ
), (48)

Γ(x, 0) = Γi + ΔΓ̂ cos(
2πx
λ
), (49)

c(x, 0) = 0, (50)

where λ = 2π/kmax is the fastest growing wavelength, determined
from linear stability analysis. The perturbation amplitude for sur-
factant concentration ΔΓ̂ is set using

ΔΓ̂ =
smaxΓiΔĥ

h0(smax + k2/Pe)
, (51)

which is obtained from linear stability analysis. Here, we use Γ(l)i = 2
and Γ(nl)i varying between 0 and 0.95 for the linear and nonlinear
models, respectively. Furthermore, we set h0 = 0.5, Δĥ = 0.01, with
smax being the maximum value of the growth rate predicted by the
linear theory, at k = kmax. The time steps used in the initial stages
are of the order Δt ∼ O(10−1) and reduce to Δt ∼ O(10−3) at the
later stages of our numerical simulations. The spatial domain is dis-
cretized into 256 nodal points (Δx = 1/256), grid spacing in powers
of two being suitable for spectral basis functions, ensuring grid-
independence of the results. While exploring self-similarity, the grid
size and time step values are further refined. We set Δx = 1/4096
and use adaptive time stepping with lower end values of the order
Δt ∼ O(10−6). We assume the film to have ruptured when the
minimum height of the film hmin ≤ 10−4.

B. The “dilute limit”
1. Evolution and parametric studies

The nonlinear dynamics using the LVM (14) for surface viscos-
ity in a film with the dilute concentration of surfactants are discussed
first. We remind that this is a special limit of the NVM as discussed
in Sec. II B. Figure 5 shows spatiotemporal evolution profiles for the
film height h, concentration Γ, and velocity at the interface c for a
typical case. The profiles are plotted on spatial coordinates over a
domain length λ. Given that the boundary conditions are periodic,
successive crests/troughs in the profiles are separated by λ, consis-
tent with expectations of the spinodal dewetting mechanism. The
numerically obtained growth rate is also validated with the predic-
tions of linear theory, as is shown in Fig. 5(a) (lower panel). At short
times, the linear theory predictions are in agreement with the non-
linear solutions but deviate at later times closer to rupture, when the
nonlinear terms become significant.
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FIG. 5. Spatiotemporal evolution of the interface height [(a)-upper panel], surfactant concentration [(b)-upper panel], and tangential velocity [(b)-lower panel] for the linear
model obtained by solving Eqs. (26)–(28) at various times t = 0, 3, 6, 9, 12, 13, 13.22. The initial condition at t = 0 is shown by a dotted curve, and the rupture profile shown
by the dashed curve occurs at t = 13.22. The other parameters used are D−1 = 50, M = 10−3 = β, B = 1, Pe = 20, Re = 2, and Γ(l)i = 2. [(a)-lower panel] Comparison
of the numerically obtained growth rate and linear theory predictions. We define a nonlinear metric G = log(Δh(t)/Δh(0)), where Δh(t) is the difference between the maximum
and minimum values of h(x, t) at any time t (see Ref. 42).

Parametric studies on film evolution in the “dilute” regime
reveal that qualitative features of evolution follow the trends
observed in earlier studies.14,20 The rapid formation of sharp rup-
tures in the profiles of h and Γ indicates the possibility of self-similar
solutions close to rupture. Figure 6 shows the effect of surface vis-
cosity (B) and its linear concentration dependence (represented by
β) on the interface profile and film evolution kinetics. For smaller
values of B, the surface viscosity contribution is lesser, and a sharp,
pointed rupture is observed14,16 as shown in Fig. 6(a) (top panel).
Increasing B flattens the cusps formed in the vicinity of rupture. Sur-
face viscosity may be interpreted as a diffusivity of surface velocity

or momentum; hence, it neutralizes velocity gradients at the surface.
Therefore, there is greater advection of the liquid onto either side
near the rupture location, resulting in a flatter rupture profile. On the
other hand, increasing the parameter β produces a more cusp-like
rupture, as shown in Fig. 6(b) (top panel). This is understandable
since surface viscosity from (14) at the rupture location reduces to
η∣x=xr ≈ 1 − β since Γ ≪ 1 near rupture. Therefore, increasing β
reduces the local value of surface viscosity near the rupture loca-
tion. It has to be noted that the maximum value of β cannot exceed
unity as a result of positivity of η. The upper limit of β = 1 causes
the non-dimensional surface viscosity to become identical to the

FIG. 6. Nonlinear results from the LVM obtained by solving (26)–(28). (a) Effect of the varying B on height profiles at the time of rupture with fixed β = 10−3. B = 0 corresponds
to the case of zero surface viscosity and exhibits a cusp-like solution. (Lower panels) Evolution of the minimum film thickness (hmin) with time and comparison of rupture time
predictions from linear stability analysis (solid) and nonlinear simulations (circles) for the varying B as used in (a). (b) Effect of the varying β on height profiles at the time
of rupture with B = 1. As β increases, the film profile near rupture approaches a cusp-like solution. (Lower panels) Evolution of the minimum film thickness (hmin) with time
and comparison of rupture time predictions from linear stability analysis (solid) and nonlinear simulations (squares) for the varying β. Other parameter values are fixed as

D = 10−2, Pe = 1, Re = 10−2, M = 10−3, and Γ(l)i = 2.
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non-dimensional surfactant concentration, i.e., η|β=1 = Γ. Since
Γ→ 0 at the rupture location, η too vanishes at the rupture location.
This causes the film profile to bear resemblance to that of a zero sur-
face viscosity case as is clearly evident from the cusp-like profile at
β = 1 in Fig. 6(b). This profile matches very well with the case of
zero surface viscosity, B = 0, as shown in Fig. 6(a). This is further
discussed in Sec. IV B 2. The rupture times appear to be of the same
order of magnitude for a wide range of values of β as seen in Fig. 6(b)
(lower panel).

2. Self-similar solutions
Next, we investigate the presence of self-similar behavior in free

film profiles in the vicinity of the rupture location for the linear vis-
cosity model. We assume solutions for the unknowns h(x, t), Γ(x, t),
and c(x, t) in the form

h(x, t) = τiH(χ), c(x, t) = τkU(χ),

Γ(x, t) = τlG(χ), χ(x, t) = (x − xr)/τ j,
(52)

where χ is the similarity variable and τ = tr − t, xr and tr being the
spatial location and time of rupture, respectively. Using η = 1 + β(Γ
− 1) and substituting (52) into (26)–(28) give us the similarity equa-
tions, not shown here for brevity of this paper. To obtain scalings
followed by h, Γ, and c, we follow the approach used by Matar20

and Vaynblat et al.15 These scalings allow us to extract the expo-
nents i, j, k, l without knowledge of rupture time a priori. Following
their procedure, it is found that the scalings are unchanged for 0 ≤ β
< 1 and are found to be i = l = 1/2, j = 1/4, k = −3/4. These are
the same scalings reported by Matar20 and correspond to β = 0 in
our study. For the special case of β = 1, surface viscosity all along
the interface reduces to the expression η ∼ Γ. Since surfactant con-
centration at the rupture location becomes vanishingly small, sur-
face viscosity too becomes negligible in the vicinity of rupture when
β = 1. The following exponents are found for this case: i = l = 1/3,
j = 1/2, k = −1/2, which is identical to the case with zero surface
viscosity as obtained in Ref. 15 and corresponds to the case B = 0
within our study. There are two major points to be noted in the case
of β = 1: (i) surface viscosity has a finite value away from the rup-
ture point, and this leads to deviation of the interface shape from
that reported in Ref. 15 in the far-field; (ii) this behavior is not seen
for Pe ≪ 1 as surfactants are expected to be non-vanishing at the
rupture location due to strong diffusion of the concentration field.
Figure 7(a) shows the self-similar profiles at rupture for β = 0 and
β = 0.5.

The effect of the newly introduced variable in this study, β, is
felt on the local film profile at the rupture location. As also observed
in Fig. 6(b), as we increase the sensitivity of surface viscosity to sur-
factant concentration, β, the smoothening effect of surface viscosity
is reduced and a “cusp-like” solution is observed. The underlying
reason behind this result is further illustrated by Fig. 7(b), which
shows the temporal evolution of the surface viscosity at the rupture
point for β = 0 and β = 0.1 (concentration-driven surface viscosity).
Even though the surface viscosity starts with a higher value than the
constant viscosity case, the effect decreases near the rupture point for
β > 0. The interface develops toward a more cusp-like profile (closer
to profiles for B = 0) decreasing the surface viscosity even below the
constant surface viscosity case. An even clearer picture can be seen

while examining the second derivative of the film profile as shown
in Figs. 7(c) and 7(d). Hχχ , which is a direct measure of the local cur-
vature and clearly increases for 0 < β < 1, reaching the maximum at
β = 1 (red), which is very close to the equivalent case of B = 0 (black).
The curvature is seen to diverge as the interface moves toward rup-
ture [see Fig. 7(d)] confirming a “cusp-like” behavior. For cases with
non-zero surface viscosity at the rupture location, such a singular-
ity is arrested, and the interface is flattened as seen in Fig. 7(d) for
a specific case of β = 0.5. In other words, for the extreme case of
β = 1, surface viscosity effects are suppressed completely at the rup-
ture point and a cusp-like profile of a clean interface Γ = 0 (or that
of a particle-laden interface with no surface viscosity, B = 0) is
recovered. Mathematically speaking, this implies that we can obtain
a cusp-like profile for β = 1, however large the initial surface vis-
cosity is chosen to be. Self-similarity is not seen in simulations with
the NVM in the jammed limit due to the nonlinear nature of the
model.

The scaling exponents discussed above also reveal the dominant
balance of forces in the vicinity of rupture. This can be determined
by substituting the exponents into the similarity equations for vari-
ous cases. With β = 1 and B = 0 (no surface viscosity), the dominant
balance is between inertial, van der Waals, and viscous forces and
the interface forms a cusp near rupture. In the case of 0 ≤ β < 1, the
dominant balance is between inertial, van der Waals, and surface vis-
cous forces. Viscous forces become sub-dominant as one approaches
the rupture point. In all the above cases, capillary and Marangoni
forces play a negligible role near rupture, consistent with observa-
tions in earlier studies.15,20 The above dominant balance was further
verified by comparing the magnitude of each term in the evolution
equation (28).

In Sec. IV C, we investigate nonlinear evolution of the interface
at high concentrations using the NVM for surface viscosity.

C. The “jamming limit”
The rigidification of the interface in the limit of jammed state

concentration of surfactants is arguably the most significant aspect
of this work. The notion that films at the jamming limit are very
stable as suggested by linear stability analysis can be visualized
better through nonlinear simulations using the nonlinear viscos-
ity model (NVM) for surface viscosity given by (15). Note that
even though the surface viscosity can be effectively increased in
the linear/constant model as well by choosing high values of B,
the NVM appears to be better suited to realistic conditions where
surface concentration evolves dynamically. Viscosity in the NVM
diverges to a very high value with the change in the local concen-
tration rendering part of the interface immobile as will be shown
below.

First, the NVM is validated in the limit of dilute concentrations
with results obtained from the LVM. To do so, the values of α, β, Γ̃dil,
and Γ̃max are chosen so as to satisfy the relation (16). Film profiles
are plotted in the limit of weak concentration (Γ(l)i = 2.1, β = 0.1
in the linear model, Γ(nl)i = 0.1, α = 2 in the NVM). This is
illustrated in Fig. 10(b) in Appendix B, and both the film profiles
seem to be in agreement in this limit. Next, we study the effect of
high surfactant concentration for which the NVM is ideally suited.
The height profile and the surfactant concentration profile for the
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FIG. 7. Results from self-similarity analysis. (a) Self-similar film profiles at the rupture location close to the breakup time T r = 1.192 for β = 0 and T r = 1.096 for β = 0.5. (b)
Variation of surface viscosity with time at the rupture location for the linear model with β = 0.1 (solid) and constant surface viscosity (dashed), β = 0. The value of ηref is also
shown in the figure, and it denotes the value of reference surface viscosity on a clean interface. At the rupture location, the surfactant concentration goes to zero causing
η to approach ηref. Note that the surface viscosity at the rupture location for β = 0.1 is lower than that for a case with constant surface viscosity, β = 0. (c) Curvature, Hχχ ,
of the self-similar interface profile just before rupture time. The final profile for β = 0.5 (pink) exhibits a larger curvature than that in the case of β = 0 (blue) owing to lower
surface viscosity as discussed in (b). (Inset) Zoomed in log-plots showing cusp-like behavior for a film devoid of surface viscosity, B = 0 (black). (d) Evolution of the curvature
at the rupture location with time. A diverging curve with time confirms a “cusp-like” behavior. Other parameters are Pe = 1, M = 10−1, Re = 10−2, D = 10−3, B = 1,
and Γ(l)i = 2.

particular values Γ(nl)i = 0.8 and α = 2 of the NVM are shown
in Fig. 8(a). The film stiffens and tends to be immobile all along
the interface except in a narrow region at the center of the domain
where height and concentration profiles are at a minimum. Unlike
in earlier cases, the film thinning occurs in a very narrow region.
This evolution quickly deviates from the evolution in the LVM
(not shown), which typically follows a smooth amplifying sinusoidal
structure. The peculiar film shape obtained in the NVM is more
elegantly demonstrated in the plots of the film height profile for dif-
ferent initial surfactant concentrations. Figure 8(b) compares film
shapes at rupture for three different initial concentrations: a dilute
limit at Γ(nl)i = 0.1, an intermediate regime at Γ(nl)i = 0.6, and a
near-jammed state limit at Γ(nl)i = 0.9. The profiles in the dilute
limit exhibit a large radius of curvature and are equivalent to the
film profiles seen in Sec. IV B 1. In the near-jammed limit, the film
thinning occurs over a very narrow region within the interface. It
has to be noted that the interface flattens at the vicinity of rupture
but nevertheless has a small non-vanishing radius of curvature. The

case of Γ(nl)i = 1 is a singular limit and cannot be solved numeri-
cally. This is consistent with the perturbation solution carried out in
Sec. III A.

A particularly interesting result is the evolution of tangen-
tial velocity, c(x, t), on the interface with the varying concentra-
tion as shown in Fig. 8(c). It is clear that the maximum tangential
velocity decreases and asymptotes toward zero with the increasing
concentration, suggesting a transition from a mobile interface for
Γ(nl)i = 0 to an immobile interface at the jammed state. Such a sur-
face viscosity-driven transition from partially mobile to immobile
interfaces has also been reported by Danov et al.26 For drainage
of a thin liquid film between two gas bubbles, interfacial resis-
tance arising from surface viscosity has been reported.40 Conse-
quently, the kinetics of film breakup is also found to slow down
drastically with the increase in the concentration, and the rup-
ture time diverges to infinity as Γ(nl)i → 1 as shown in Fig. 8(d).
This is a key finding of the present study. This suggests that the
interface behaves solid-like with very slow deformation near the
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FIG. 8. Evolution of film profiles using the NVM obtained by solving Eqs. (26)–(28). (a) Height profiles (solid) and surfactant profile (dotted-dashed) at the instance of
rupture for Γ(nl)i = 0.8. The dashed lines represent the initial perturbation. (b) Height profiles for three different values of surfactant concentration ranging from the dilute

(Γ(nl)i = 0.1), the intermediate (Γ(nl)i = 0.6), to the jamming (Γ(nl)i = 0.9) limit occurring at three different rupture times T r = 4.051, 17.866, 227.843, respectively. The

interface profile is remarkably different in the three cases, and so is the rupture time. (c) Corresponding tangential velocities at rupture, c(x, T r ), for the varying Γ(nl)i , plotted

just before rupture. (d) Maximum tangential velocity cmax (dotted-dashed) and rupture time T r (solid) plotted for various values of Γ(nl)i . Other parameters are fixed as
Pe = 1, D = 10−3, Re = 10−2, M = 10−1, B = 1, α = 2.

jamming limit. It has to be noted that rupture cannot be com-
pletely prevented to provide absolute stabilization of the interface.
Surface viscosity can at most act as a retarding effect, but at very
large times, van der Waals forces will eventually prevail causing
rupture.

To distinguish between the linear and nonlinear viscosity mod-
els in the nonlinear evolution, we now briefly examine the rupture
process using the two models. It is shown in Sec. III that only
an effective viscosity, ηeff, enters the dispersion relation and the

exact nature of the viscosity model is unimportant. Hence, if the
same base-state viscosity is used with both models, the growth rate
obtained remains unchanged. Furthermore, the same growth rate
is obtained for a constant viscosity case as studied by Matar.20 We
now show that despite the similarity in the linear regime, nonlin-
ear evolution of the interface strongly depends on the functional
form of the viscosity model employed. To illustrate this, we use a
fixed value of non-dimensional surface viscosity for four different
scenarios described in the following:

ηeff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

62.5 for constant viscosity model

B[1 + β(Γ(l)i − 1)] for LVM with B = 50, β = 0.25, and Γ(l)i = 2

B[1 − Γ(nl)i ]
−α

for NVM with B = 10, α = 2, and Γ(nl)i = 0.6

B[1 − Γ(nl)i ]
−α

for NVM with B = 10, α = 3, and Γ(nl)i = 0.46.

(53)
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FIG. 9. Comparison of film profiles for various surface viscosity models with the same effective surface viscosity initially. (a) Surface viscosity evaluated just before rupture
for various models. Note the linear model gives a higher surface viscosity at the rupture location than the nonlinear models. This leads to a higher rupture time than
that in the nonlinear models as shown in (b). The film profiles at rupture are also distinct for the various models. Other parameters are fixed as Pe = 1, D = 10−2,
Re = 10−2, M = 0.

The above parameters are chosen arbitrarily only to illustrate the
role played by surface viscosity models. Though all the four cases
have the same value of initial base-state viscosity, interfacial viscosity
at later times evolves according to the evolution of surface concen-
tration and is shown in Fig. 9(a) at the time of rupture. For both
LVM and NVM cases, since the concentration decreases near the
rupture location, the effective viscosity is reduced in this region as is
clearly evident in the plot. It has to be noted that the surface viscos-
ity does not reduce to zero even if the concentration drops to zero
near rupture. Furthermore, surface viscosity can assume very large
values away from the rupture location, especially in the NVM cases,
making the region practically immobile. The interface shapes close
to rupture time for the four cases are shown in Fig. 9(b). Since the
constant viscosity case has the highest value of surface viscosity at
the rupture location, it also has the lowest curvature exhibiting pro-
nounced flattening near the rupture point. Clearly, interface shapes
are remarkably different in each case suggesting that the functional
form of surface viscosity can play an important role. Since linear sta-
bility analysis only depends on the base value of the surface viscosity,
all the four cases given in (53) have the same dominant growth rate.
Yet, it is clearly evident in Fig. 9(b) that NVM cases exhibit the fastest
rupture, while constant viscosity cases exhibit the slowest rupture.
This is understandable since in the constant viscosity cases, resis-
tance from surface viscosity is equal at all points on the interface,
whereas in variable viscosity cases, a decrease in the concentration
in certain regions reduces surface viscosity locally. This leads to
rupture being favored in these locations. Given that the concentra-
tion is expected to change when the interface deforms, a variable
surface viscosity model is more realistic than a constant viscosity
model.

The above results also demonstrate how mobility along the
interface varies with surface viscosity and how this can have an
important influence on the dynamical evolution of interfaces. The
results above perhaps show a simple way to model fluid–fluid sys-
tems with variable surface viscosity effects and provide a simple

recipe to describe a smooth transition from the free-slip regime to
the no-slip regime such as in the case of a surfactant-laden sediment-
ing drop (see Ref. 27). Besides, they provide an elegant fluid dynami-
cal explanation for enhanced stability of certain surfactant-stabilized
emulsions and Pickering emulsions.

V. SUMMARY AND DISCUSSIONS
We have formulated a unified model that includes various

interfacial effects due to the presence of surface-active agents in
a thin free film. Apart from intermolecular forces and Marangoni
effects, it is shown that surface viscosity effects play a key role
in determining the stability of a thin film. It is well known that
Marangoni effects due to surfactant driven surface tension gradi-
ents stabilize a thin film, but this stabilization does not explain the
long shelf-life of certain surfactant-stabilized emulsions and Picker-
ing emulsions. Marangoni stabilization only tends to delay rupture
marginally. We have shown that concentration-dependent surface
viscosity mediated stabilization is a missing element in most earlier
studies and offers a theoretical tool to analyze long shelf-life of such
emulsions. As a canonical problem, stability of a free film is studied
and the theory can be easily extended to bounded films and other
interfacial problems. To better illustrate the dependence of surface
viscosity on surfactant concentration, two distinct phenomenologi-
cal models are employed. In the linear viscosity model (LVM), sur-
face viscosity varies linearly with surfactant concentration and is
expected to be suited to dilute limits. The nonlinear model allows
us to probe the role of surface viscosity profile in greater detail. In
the nonlinear viscosity model (NVM), surface viscosity varies non-
linearly with the concentration such that it diverges at a critical con-
centration, which is termed the “jamming limit.” The two models
are shown to concur in the dilute limit, and this lends validity to the
nonlinear model at all concentrations.

In the LVM, surface viscosity stabilizes the film with the
increasing Boussinesq number but does not affect the cut-off
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wavenumber. On the other hand, the NVM drastically alters the
stability characteristics of the thin film. The growth rate is found
to scale with δ = (1 − Γ(nl)i )

α
, where 0 < Γ(nl)i < 1 is the non-

dimensional concentration scaled in terms of the “jamming limit”
concentration, Γmax. The parameter δ can thus be made arbitrarily
small near the jamming limit. This leads to a dramatic stabiliza-
tion of the thin film and significantly delays rupture in the nonlinear
simulations. Using standard perturbation techniques, analysis of the
dispersion relation yields a simple criterion for enhanced film sta-
bility. It is found that when Γ(nl)i > 3D/M, stability of the thin film
is dramatically enhanced. This suggests that surfactant concentra-
tion can be arbitrarily increased beyond a critical value (= 3D/M)
to achieve enhanced stabilization of the film. However, in reality,
such concentrations are difficult to achieve for realistic parameter
values of M and D. A key finding of the present paper is that rupture
times can be arbitrarily increased by tuning the surfactant concen-
tration. This stabilization is achieved via surface viscosity effects,
which increase nonlinearly with surfactant concentration in the jam-
ming limit. Large surface viscosities render the interface immobile,
which helps counteract the rupture process by slowing down film
evolution.

The findings of this work have relevance to many other
experimental and theoretical works. Experiments with rising
drops/sedimenting bubbles have revealed that surfactants enhance
the drag force on the drop/bubble.27 This effect has been modeled
theoretically using a spherical cap approximation27,28 wherein sur-
factants are assumed to be in a jammed state on the leeward side
of the drop/bubble and are assumed to be absent on the rest of the
surface. A no-slip condition is employed on the spherical cap and a
stress-free condition on the rest of the surface. The NVM employed
here leads to a smooth transition from the no-slip to the stress-free
condition on the interface and prevents a jump in the interface con-
ditions as was seen by Sadhal and Johnson.28 Our results are also
consistent with those in Ref. 26 in which the interface mobility was
found to reduce with the increasing surfactant concentration. This
has direct significance to the stability of Pickering emulsions.43,44

There is sufficient anecdotal evidence in the literature on Pickering
emulsions2 that shows that removing adsorbed particles (by chang-
ing the pH of the aqueous phase) reduces emulsion stability dra-
matically. The treatment of the surface-active agents as “surfactants”
also allows one to look at proteins in food systems as surface-active
agents.45 A few studies have found that truly stable foams can only be
formed when coagulated proteins form a rigid solid network on the
interface,46,47 although much more complex forces come into play in
this scenario.

A number of interesting features remain unexplored. Though
nonlinear surface viscosity effects successfully explain the tran-
sition from mobile to immobile interfaces, they do not account
for elasticity found in particle-laden interfaces. Liquid marbles48

and particle-coated bubbles can sustain non-spherical shapes upon
compression.49 This could be due to anisotropic surface tension
or elasticity or both. Studies with particle-covered Landau–Levich
dip-coating flows50 reveal that elastic effects play an important
role in explaining experimental power-law dependence between
coating thickness and withdrawal speed. It is therefore imper-
ative that future studies incorporate a combination of variable
surface viscosity and elasticity to better predict characteristics of

particle/surfactant-covered interfacial systems, especially when jam-
ming is expected to occur.
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APPENDIX A: INTERFACIAL BOUNDARY CONDITIONS
AND x -MOMENTUM EQUATION
1. Normal stress balance

For a 1D interface, the normal stress balance assumes the
form

− n̄ ⋅ ∥T∥ ⋅ n̄ = 2κσ + 2κ(ks + μs)∇̄s ⋅ ū. (A1)

We resolve the∇s curvilinear gradient operator and the tensor prod-
ucts to get a PDE in Cartesian coordinates. This is done analytically
and validated using the technical computing software Mathematica.
The dimensional equation turns out to be

− P̃ +
1

(1 + h̃2
x̃)

5/2
[−σ̃(1 + h̃2

x̃)h̃x̃x̃ − μ{A}{B}] = 0, (A2)

where

A = 2
√

1 + h̃2
x̃ + 2h̃2

x̃

√

1 + h̃2
x̃ +

η̃
μ
h̃x̃x̃,

B = −ṽz̃ + h̃x̃{ũz̃ + h̃x̃(ṽz̃ + ṽx̃)}.

Here, the surface dilatational (ks) and surface shear (μs) viscosities
are combined into a parameter η, since they occur in additive pairs
in the equations. This is only observed for a 1D interface. Inserting
relevant scalings (9)–(13) as discussed in the main text, we observe
the pressure term appears at leading order followed by the capillary
term at O(ϵ). Hence, the disjoining pressure number (D−1

) (or σ)
is rescaled to retain capillary effects. We obtain the final simplified
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non-dimensional PDE, which reads

− P + [−D−1hxx − ϵ2D−1M(Γ − 1) − {2(1 + ϵ2h2
x) + ϵ2B

η
h xx
}

×{−vz + hxuz + ϵ2h2
xvz + ϵ3h2

xvx}] = 0. (A3)

Considering only the leading order terms, we get (23) used in
deriving the film evolution equations.

2. Tangential stress balance
For a 1D interface, the tangential stress balance assumes the

form
−t̄ ⋅ ∥T∥ ⋅ n̄ = t̄ ⋅ ∇̄sσ + (ks + μs)t̄ ⋅ ∇̄s∇̄s ⋅ ū

+ t̄ ⋅ ∇̄s(ks + μs)∇̄s ⋅ ū. (A4)
The dimensional equation turns out to be

σ̃x̃(1 + h̃2
x̃)

2 + μ
√

1 + h̃2
x̃[−ũz̃ + h̃4

x̃ũz̃ − 4h̃x̃ṽz̃(1 + h̃2
x̃) + ṽx̃(h̃4

x̃ − 1)]

+ η̃x̃(1 + h̃2
x̃)[−ṽz̃ + h̃x̃(ũz̃ + h̃x̃ṽz̃ + ṽx̃)]

+ η̃[h̃5
x̃ṽz̃z̃ + h̃x̃x̃(ũz̃ + ṽx̃) + h̃2

x̃(ũz̃z̃ − h̃x̃x̃(ũz̃ + ṽx̃) + ṽx̃z̃)

− ṽx̃z̃ + h̃4
x̃(ũz̃z̃ + 2ṽx̃z̃) + h̃3

x̃(ũx̃z̃ + ṽx̃x̃)

+ h̃x̃(4h̃x̃x̃ṽz̃ − ṽz̃z̃) + ũx̃z̃ + ṽx̃x̃] = 0. (A5)

Inserting relevant scalings and simplifying, we obtain the final non-
dimensional PDE

D−1σx − uz + (ϵhx)4uz − 4ϵ2hxvz(1 + (ϵhx)2
) − ϵ2vx + ϵ6h4

xvx

+ ϵ2Bηx(−vz + hxuz + ϵ2hxvz + ϵ2vx) + ϵ2Bη(ϵ4h5
x + hxxuz

+ ϵ2hxxvx − vxz − ϵ2hxxh2
xuz − ϵ

4hxxh2
xvx + ϵ2h2

xvxz(1 + ϵ2h2
x)

+ h2
xuzz(1 + ϵ2h2

x) + hxuxz(1 + ϵ2h2
x) + ϵ2hxvxx(1 + ϵ2h2

x)

+ 4ϵ2hxhxxvz − hxvzz) = 0. (A6)

The above equation reduces to (25) when the leading order terms
are considered. The first order corrections of this equation used to

derive (28) can also be realized when O(ϵ2) terms are considered. As
can be observed clearly, the surface viscosity enters the equations in
the first order corrections of the tangential stress boundary condi-
tion and has highly nonlinear coupling with the height and various
velocity gradient terms.

3. x-Momentum equation
The non-dimensional x-momentum equation valid to O(ϵ2)

takes the form

uzz = ϵ2Re(ut + uux + vuz) + ϵ2
(P + ϕ)x − ϵ

2uxx. (A7)

Expanding all terms in powers of ϵ2, the leading order equation
becomes

u(0)zz = 0, (A8)

and the first order equation at O(ϵ2) assumes the form

u(1)zz = ϵ
2Re(u(0)t + u(0)u(0)x + v(0)u(0)z ) + ϵ2

(P(0) + ϕ(0))
x
− ϵ2u(0)xx ,

(A9)
where superscripts 0 and 1 denote leading and first order correc-
tion terms, respectively, in the asymptotic expansion (1). Integrat-
ing (A9) and using the symmetry boundary condition at z = 0 [see
Eq. (8)], we obtain an expression for u(1)z , which when compared to
the first order correction of (A6) gives the third nonlinear evolution
equation (28).

APPENDIX B: NOTES ON THE VALIDITY
OF SCALINGS FOR η̃s

A graphical illustration of the LVM and NVM is shown in
Fig. 10(a). The LVM adds small corrections to the surface viscos-
ity to exhibit weak relationship with surfactant concentration. We
may consider it to be apt in two situations: (i) when the system

FIG. 10. (a) Graphical illustration of linear and nonlinear surface viscosity models given in Eqs. (14) and (15). The dilute limit of the nonlinear viscosity model (NVM) approaches
the LVM as shown in the figure. This comparison serves to define a suitable “dilute” limit of the NVM in order to compare growth rate and film evolution curves for the two
models. For the specific case of β = 10−3 and α = 2, the two models have the same “effective” non-dimensional surface viscosity for Γ(nl)i = 0.1. (Inset) Zoomed in version
for Γ(nl ) = 0–0.2 (dilute limit). S = (β + α)/β is the normalization constant. (b) Comparison of the height profile at rupture between the LVM and the NVM in the dilute limit. For

the LVM, Γ(l)i = 2.1, β = 0.1,Tr = 3.588. For the NVM, Γ(nl)i = 0.1,α = 2,Tr = 3.613. Other parameters are fixed as Pe = 1, D = 10−3, Re = 10−2, M = 10−1, B = 1.
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demands to have a linear relationship such as in polymer blends and
(ii) when the surfactants are sparsely distributed on the interface
(dilute limit). We focus on case (ii) in this work to validate it with
the NVM defining surface viscosity as

η̃(l) = η̃ref∣Γ̃=Γ̃dil
+

∂η̃
∂Γ̃
∣
Γ̃=Γ̃dil

(Γ̃ − Γ̃dil)

⇒ η̃(l) = η̃dil[1 + β(
Γ̃ − Γ̃dil

Γ̃dil
)], (B1)

where η̃0 is the surface viscosity at a surfactant concentration within
the dilute limit Γ̃ = Γ̃0. The definition of β as given in Table II can
also be realized in the above equation. The surface viscosity for the
NVM is defined as

η̃(nl) = η̃ref∣Γ̃=0(1 −
Γ̃

Γ̃max
)

−α

, (B2)

which diverges at Γ̃→ Γ̃max. We can linearize this model for any arbi-
trary surfactant concentration and compare it to the linear model to
obtain an equivalence relation

Γ̃dil

Γ̃max
=

β
β + α

. (B3)

Since β cannot exceed 1, we also have an additional constraint

Γ̃dil ≤
Γ̃max

α + 1
. (B4)

Note the advantage of defining the linear model for an arbitrary
Γ̃dil and not for Γ̃ref = 0 (clean interface). This definition ren-
ders the linear model valid about any value of reference surfactant
concentration Γ̃ref when β at that concentration is known.

Having established the criterion for comparing the linear and
nonlinear models in the dilute limit, we show that this compari-
son is robust and yields identical film profiles even in the nonlinear
regime as shown in Fig. 10(b), which shows the comparison of height
profiles from the two models at the instance of rupture.

APPENDIX C: ON THE “WEAK MARANGONI”
AND “WEAK SURFACE VISCOSITY” LIMITS

Equation (17) has been referred to as the leading order version
of (13) in the “weak Marangoni” limit. The idea may be explained as
follows. If terms of O(ϵ2), O(ϵ4), etc., in (A6) are ignored and only
leading order terms are retained, one arrives at

D−1σx − uz = 0. (C1)

Substituting (13) into (C1) would yield

−D−1MΓx − uz = 0, (C2)

which would imply that Marangoni effects are retained at leading
order in the tangential stress balance condition. However, if one
assumes that M itself is of O(ϵ2), then the first term in (C2) would be
neglected, with the simplified condition u(0)z = 0, as shown in (25) in
Sec. II C. We term this the “weak Marangoni” limit, which is accom-
plished by setting M = ϵ2M̂, where M̂ is an O(1) parameter. This
is also the limit explored previously by De Wit et al.16 and Matar.20

However, Marangoni effects would indeed be present at first order,

if one considers the O(ϵ2) corrections to the tangential stress bal-
ance (A6). A model that retains M as an O(1) parameter in (C2) may
be termed the “strong Marangoni” limit and has been examined by
Hwang et al.,51 though in the absence of surface viscosity.

With reference to surface viscosity, it is evident from (A6) and
its accompanying discussion that η drops out of the leading order
tangential stress balance, i.e., when terms of O(ϵ2) or smaller are
ignored. Hence, the formulation in the present work may be termed
the “weak surface viscosity” regime. The analogous “strong surface
viscosity” regime may be pursued through the rescaling η = ϵ−2η̂,
with η̂ being the new O(1) parameter, so that surface viscosity
appears at leading order in (A6).
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