ME5310: Incompressible Fluid Flow Solutions to Assignment - 1

Instructor: Harish N Dixit Department of Mechanical & Aerospace Engineering, IIT Hyderabad.

Problem 1

By manipulating the symbols, show that the product of ϵ_{ijk} and S_{ij} is zero, where S_{ij} is any symmetric tensor and ϵ is the usual alternating tensor.

Solution

The product of ϵ and S will be a vector in the kth direction. So we define a vector w such that

$$w_k = \epsilon_{ijk} S_{ij}$$
.

Since S_{ij} is symmetric, we have $S_{ij} = S_{ji}$, where as $\epsilon_{ijk} = -\epsilon_{jik}$. Flipping i and j, we have

$$w_k = \epsilon_{jik} S_{ji}$$
$$= -\epsilon_{ijk} S_{ij}.$$

Comparing the original definition of w_k and the above expression, we have $w_k = -w_k$. Hence $w_k = 0$.

Problem 2

You have learnt in class that any tensor T can be decomposed as follows:

$$T_{ij} = Q_{ij} + R_{ij}$$

where \mathbf{Q} is a symmetry tensor and \mathbf{R} is an antisymmetric tensor. We can also construct a vector \mathbf{d} as a product of a two tensors. If we define \mathbf{d} as

$$d_i = \epsilon_{ijk} T_{jk},$$

then show the following relation:

$$T_{ij} = Q_{ij} + \frac{1}{2}\epsilon_{ijk}d_k.$$

Solution

We first obtain the inverse relationship between d_i and T_{ik} . Let us consider the expression

$$\epsilon_{ilm}d_i$$

Using the definition of d_i , we get

$$\epsilon_{ilm} d_i = \epsilon_{ijk} \epsilon_{ilm} T_{jk},
= (\delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}) T_{jk},
= T_{lm} - T_{ml}.$$

But, we know that $R_{ij} = (T_{ij} - T_{ji})/2$. Hence interchanging $\{i, j\}$ with $\{l, m\}$, we have

$$R_{lm} = \frac{T_{lm} - T_{ml}}{2}.$$

Therefore

$$\epsilon_{ilm}d_i = 2R_{lm}, \implies \epsilon_{ijk}d_i = 2R_{ij}.$$

Hence,

$$T_{ij} = Q_{ij} + \frac{1}{2}\epsilon_{ijk}d_k.$$

Problem 3

If the second order tensor T is defined as

$$T_{ij} = v_k w_i S_{kj} + a \delta_{ij} + \epsilon_{ijk} w_k,$$

where a is a scalar, \mathbf{v} , \mathbf{w} are vectors, \mathbf{S} is an arbitrary second order tensor, ϵ and δ have their usual meaning.

The summation for the three indices $\{i, j, k\}$ goes from 1 to 3. Write down the expressions for the following tensor components:

- (i) T_{11}
- (ii) T_{12}
- (iii) Contraction of T_{ij} : Make i = j to obtain an expression for T_{ii} . Note that T_{ii} is equal to trace(T).

Solution

(i)

$$T_{11} = \sum_{k} v_k w_1 S_{k1} + a \delta_{11} + \epsilon_{11k} w_k,$$

= $v_1 w_1 S_{11} + v_2 w_1 S_{21} + v_3 w_1 S_{31} + a.$

(ii)

$$T_{12} = \sum_{k} v_k w_1 S_{k2} + a \delta_{12} + \epsilon_{12k} w_k,$$

= $v_1 w_1 S_{12} + v_2 w_1 S_{22} + v_3 w_1 S_{32} + \epsilon_{123} w_3.$

We have used $\delta_{12} = 0$ and only k = 3 gives a non-zero value for ϵ_{12k} .

(iii) With i = j, we have

$$T_{ii} = \sum_{i} \sum_{k} v_{k} w_{i} S_{ki} + a \delta_{ii} + \epsilon_{iik} w_{k},$$

$$= \sum_{k} v_{k} w_{1} S_{k1} + v_{k} w_{2} S_{k2} + v_{k} w_{3} S_{k3} + a (\delta_{11} + \delta_{22} + \delta_{33}),$$

$$= \sum_{k} v_{k} w_{1} S_{k1} + v_{k} w_{2} S_{k2} + v_{k} w_{3} S_{k3} + 3a,$$

$$= \operatorname{trace}(\mathbf{T}).$$

We have used $\delta_{12} = 0$ and only k = 3 gives a non-zero value for ϵ_{12k} .

Problem 4

Using index notation, prove the following vector algebra identities between the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}$:

- (i) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})$.
- (ii) $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{w} \times \mathbf{z}) = (\mathbf{u} \cdot \mathbf{w})(\mathbf{v} \cdot \mathbf{z}) (\mathbf{u} \cdot \mathbf{z})(\mathbf{v} \cdot \mathbf{w})$: Binet-Cauchy identity.
- (iii) $(\mathbf{u} \times \mathbf{v}) \times (\mathbf{w} \times \mathbf{z}) = [(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{z}]\mathbf{w} [(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}]\mathbf{z}$
- (iv) $[(\mathbf{v} \times \mathbf{w}) \cdot (\mathbf{v} \times \mathbf{w})] + (\mathbf{v} \cdot \mathbf{w})^2 = v^2 w^2$, where v and w are the magnitudes of \mathbf{v} and \mathbf{w} respectively.

Solution

I will ignore the \sum symbol in all my solutions below for simplicity.

(i)

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{v}) = u_i (\mathbf{v} \times \mathbf{w})_i,$$

$$= u_i \epsilon_{ijk} v_j w_k,$$

$$= v_j \epsilon_{ijk} w_k u_i,$$

$$= v_j \epsilon_{jki} w_k u_i,$$

$$= v_j (\mathbf{w} \times \mathbf{u})_j,$$

$$= \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = \text{RHS}.$$

(ii)

$$(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{w} \times \mathbf{z}) = (\mathbf{u} \times \mathbf{v})_{i} (\mathbf{w} \times \mathbf{z})_{i},$$

$$= \epsilon_{ijk} u_{j} v_{k} \epsilon_{ilm} w_{l} z_{m},$$

$$= (\delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}) u_{j} v_{k} w_{l} z_{m},$$

$$= \delta_{jl} \delta_{km} u_{j} v_{k} w_{l} z_{m} - \delta_{jm} \delta_{kl} u_{j} v_{k} w_{l} z_{m},$$

$$= u_{j} v_{k} w_{j} z_{k} - u_{j} v_{k} w_{k} z_{j},$$

$$= (\mathbf{u} \cdot \mathbf{w}) (\mathbf{v} \cdot \mathbf{z}) - (\mathbf{u} \cdot \mathbf{z}) (\mathbf{v} \cdot \mathbf{w}) = \text{RHS}.$$

(iii) Let us consider the i^{th} component of LHS:

$$[(\mathbf{u} \times \mathbf{v}) \times (\mathbf{w} \times \mathbf{z})]_{i} = \epsilon_{ijk} (\mathbf{u} \times \mathbf{v})_{j} (\mathbf{w} \times \mathbf{z})_{k},$$

$$= \epsilon_{ijk} (\epsilon_{jlm} u_{l} v_{m}) (\epsilon_{knp} w_{n} z_{p}),$$

$$= (\epsilon_{kij} \epsilon_{knp}) \epsilon_{jlm} u_{l} v_{m} w_{n} z_{p},$$

$$= (\delta_{in} \delta_{jp} - \delta_{ip} \delta_{jn}) \epsilon_{jlm} u_{l} v_{m} w_{n} z_{p},$$

$$= \epsilon_{jlm} u_{l} v_{m} w_{i} z_{j} - \epsilon_{jlm} u_{l} v_{m} w_{j} z_{i},$$

$$= (\mathbf{u} \times \mathbf{v})_{j} z_{j} w_{i} - (\mathbf{u} \times \mathbf{v})_{j} w_{j} z_{i},$$

$$= [(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{z}] w_{i} - [(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}] z_{i}$$

(iv) Consider the first term in the LHS:

$$(\mathbf{v} \times \mathbf{w}) \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{v} \times \mathbf{w})_{i} (\mathbf{v} \times \mathbf{w})_{i},$$

$$= \epsilon_{ijk} v_{j} w_{k} \epsilon_{ilm} v_{l} w_{m},$$

$$= (\delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}) v_{j} w_{k} v_{l} w_{m},$$

$$= \delta_{jl} \delta_{km} v_{j} w_{k} v_{l} w_{m} - \delta_{jm} \delta_{kl} v_{j} w_{k} v_{l} w_{m},$$

$$= v_{j} w_{k} v_{j} w_{k} - v_{j} w_{k} v_{k} w_{j},$$

$$= (\mathbf{v} \cdot \mathbf{v}) (\mathbf{w} \cdot \mathbf{w}) - (\mathbf{v} \cdot \mathbf{w}) (\mathbf{v} \cdot \mathbf{w}),$$

$$= v^{2} w^{2} - (\mathbf{v} \cdot \mathbf{w})^{2}.$$

Problem 5

Using index notation, prove the following vector calculus identities:

(i)
$$\nabla \cdot \phi \mathbf{v} = \nabla \phi \cdot \mathbf{v} + \phi (\nabla \cdot \mathbf{u})$$
 where ϕ is a scalar.

(ii)
$$\nabla \cdot \nabla \mathbf{u} = \nabla (\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u})$$
. LHS is simple $\nabla^2 \mathbf{u}$, the vector Laplacian.

(iii)
$$\mathbf{u} \cdot \nabla \mathbf{u} = \frac{1}{2} \nabla (\mathbf{u} \cdot \mathbf{u}) - [\mathbf{u} \times (\nabla \times \mathbf{u})]$$

(iv)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B}$$

Solution

(i) Consider the LHS:

$$\nabla \cdot \phi \mathbf{v} = \left(\sum_{i} \mathbf{e}_{i} \frac{\partial}{\partial x_{i}} \right) \cdot \left(\sum_{j} \phi \, \mathbf{e}_{j} v_{j} \right),$$

$$= \sum_{i} \sum_{j} \delta_{ij} \left(\frac{\partial \phi}{\partial x_{i}} v_{j} + \phi \frac{\partial v_{j}}{\partial x_{i}} \right),$$

$$= \sum_{i} \left(\frac{\partial \phi}{\partial x_{i}} v_{i} + \phi \frac{\partial v_{i}}{\partial x_{i}} \right),$$

$$= \nabla \phi \cdot \mathbf{v} + \phi (\nabla \cdot \mathbf{v}) = \text{RHS}.$$

(ii) Consider the last term of RHS (I am omitting the \sum symbol for simplicity):

$$\nabla \times (\nabla \times \mathbf{u}) = \epsilon_{ijk} \nabla_j (\nabla \times \mathbf{u})_k,$$

$$= \epsilon_{ijk} \frac{\partial}{\partial x_j} \epsilon_{klm} \frac{\partial u_m}{\partial x_l},$$

$$= \epsilon_{kij} \epsilon_{klm} \frac{\partial}{\partial x_j} \frac{\partial u_m}{\partial x_l},$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \frac{\partial}{\partial x_j} \frac{\partial u_m}{\partial x_l},$$

$$= \frac{\partial}{\partial x_i} \left(\frac{\partial u_j}{\partial x_j} \right) - \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} \right),$$

$$= \nabla (\nabla \cdot \mathbf{u}) - \nabla \cdot \nabla \mathbf{u} = \text{RHS}.$$

(ii) Consider the last term of RHS (I am omitting the \sum symbol for simplicity):

$$\nabla \times (\nabla \times \mathbf{u}) = \epsilon_{ijk} \nabla_j (\nabla \times \mathbf{u})_k,$$

$$= \epsilon_{ijk} \frac{\partial}{\partial x_j} \epsilon_{klm} \frac{\partial u_m}{\partial x_l},$$

$$= \epsilon_{kij} \epsilon_{klm} \frac{\partial}{\partial x_j} \frac{\partial u_m}{\partial x_l},$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \frac{\partial}{\partial x_j} \frac{\partial u_m}{\partial x_l},$$

$$= \frac{\partial}{\partial x_i} \left(\frac{\partial u_j}{\partial x_j} \right) - \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} \right),$$

$$= \nabla (\nabla \cdot \mathbf{u}) - \nabla \cdot \nabla \mathbf{u} = \text{RHS}.$$

(iii) Consider the last term of RHS (I am omitting the \sum symbol for simplicity):

$$\mathbf{u} \times (\mathbf{\nabla} \times \mathbf{u}) = \epsilon_{ijk} u_j (\mathbf{\nabla} \times \mathbf{u})_k,$$

$$= \epsilon_{ijk} u_j \epsilon_{klm} \frac{\partial u_m}{\partial x_l},$$

$$= \epsilon_{kij} \epsilon_{klm} u_j \frac{\partial u_m}{\partial x_l},$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) u_j \frac{\partial u_m}{\partial x_l},$$

$$= u_j \left(\frac{\partial u_j}{\partial x_i}\right) - u_j \left(\frac{\partial u_i}{\partial x_j}\right),$$

$$= \frac{\partial}{\partial x_i} \left(\frac{1}{2} u_j^2\right) - u_j \left(\frac{\partial u_i}{\partial x_j}\right),$$

$$= \frac{1}{2} \mathbf{\nabla} (\mathbf{u} \cdot \mathbf{u}) - \mathbf{u} \cdot \mathbf{\nabla} \mathbf{u} = \text{RHS}.$$

(iv) Consider the LHS:

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \epsilon_{ijk} \frac{\partial}{\partial x_j} (\mathbf{A} \times \mathbf{B})_k,$$

$$= \epsilon_{ijk} \frac{\partial}{\partial x_j} \epsilon_{klm} A_l B_m,$$

$$= \epsilon_{kij} \epsilon_{klm} \frac{\partial (A_l B_m)}{\partial x_j},$$

$$= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \left(B_m \frac{\partial A_l}{\partial x_j} + A_l \frac{\partial B_m}{\partial x_j} \right),$$

$$= B_j \frac{\partial A_i}{\partial x_j} + A_i \frac{\partial B_j}{\partial x_j} - B_i \frac{\partial A_j}{\partial x_j} - A_j \frac{\partial B_i}{\partial x_j},$$

$$= \mathbf{B} \cdot \nabla \mathbf{A} + \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) - \mathbf{A} \cdot \nabla \mathbf{B},$$

$$= \text{RHS}.$$