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We will now derive the equations of motion for a fluid. This is essentially writing down the Newton’s
second law of motion for a material element of a fluid.

Consider a region with volume V and surface area A as shown in the figure. Within this region, consider
a volume element dVm and an area element dS. The subscript m denotes that this element is within the
material region considered.

1 Mass conservation

The governing equation for mass conservation was derived in an earlier chapter (see kinematics-1). For
the sake of completeness, we will state the governing equations again here. The mass of the small volume
element is ρdVm. The mass conservation equation then becomes:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

or

1

ρ

Dρ

Dt
+ ∇ · u = 0, (2)

or

D

Dt
(ρdVm) = 0 (3)

since mass associated with a material element is, by definition, conserved.

2 Equation of motion

The rate of change of momentum of a material element is given by
d

dt

{∫
ρudVm

}
. This is the local

momentum of the material element.
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Since this is a material element, it is appropriate to regard ρ ≡ ρ(x(t), t) and u ≡ u(x(t), t) where x(t) is
the location of the element at time t. This transferring the total derivation from outside the integral to
the inside would lead to a material derivative, i.e. a derivative taken while the material element is moving
in a fluid. Hence

d

dt

∫
ρudVm =

∫
D

Dt
(ρudVm). (4)

From the continuity equation,
D

Dt
(ρdVm) = 0.

=⇒
∫

D

Dt
(ρudVm) =

∫
ρdVm

Du

Dt
. (5)

This material element is acted on by both surface forces and body forces. If F is the body force (say,
gravity) per unit mass and σ is the stress tensor, then the two forces can be written as

Body force =

∫
ρFdVm, (6)

Surface force =

∫
σ · ndS,

=

∫
∇ · σdV m, (7)

The sum of these two forces gives the total force:∫
ρFdVm +

∫
∇ · σdV m. (8)

From Newton’s second law, we have∫
ρ
Du

Dt
dVm =

∫
{ρF + ∇ · σ} dV m. (9)

Since Vm is arbitrary, we must have

ρ
Du

Dt
= ρF + ∇ · σ. (10)

These are the Cauchy’s equations of motion. Note that this is a vector equation and we have three different
equations for the three scalar components of the velocity u. The Cauchy’s equations are applicable to any
material, solid or liquid or gas, since we have not specified the nature of the response of the material to
the applied stress, σ.

To proceed further, we require how stress affects the deformation. Such a relationship is called the con-
stitutive relation.

Examples:

• If stress ∝ strain → Hookean solid

• If stress ∝ rate-of-strain → Newtonian liquid
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3 Generalized constitutive relationship for a fluid

Before we begin a detailed investigation of the nature of the constitutive relationship between the stress
and rate-of-strain, we first recall the structure of the stress tensor for a fluid at rest. As seen in an earlier
chapter, the stress tensor for a fluid at rest (in equilibrium), is isotropic and characterized by a single
scalar, the pressure, i.e,

σij = −pδij . (11)

The pressure p is called the hydrostatic pressure. A fluid can only sustain tangential stresses if in motion.
The constitutive relation therefore relates the tangential stresses to motion (deformation). The first
departure from isotropy leads to the Newtonian fluid approximation. It is reasonable to assume this
departure is linear in the applied forcing. The response of a fluid to external stresses is characterized by
the velocity gradient tensor. Therefore the departure from isotropy can be written as Aijkl(∇u)lk where
Aijkl is a fourth-order tensor. Since the σ and ∇u are both second order tensors, the most generation
relationship between the two is via a fourth order tensor.
A rigid body pressure leads to a hydrostatic pressure in a rotating frame and is again characterized by an
isotropic pressure field1. This is because, a solid-body rotation is like a fluid at rest when viewed from a
rotating frame of reference.
Since solid-body rotation arises from the anti-symmetric part of the velocity gradient tensor, ignoring the
possibility of tangential stresses arising from rigid-body rotation is equivalent to completely ignoring the
anti-symmetric part of velocity gradient tensor from the constitutive relationship. The most general for
the constitutive relationship with an isotropic part and a deviation from isotropy can then be written as

σij = −pδij +AijklSkl (12)

where Skl, the rate-of-strain tensor, is the symmetric part of the velocity gradient tensor (∇u)kl.

3.1 On the structure of Aijkl

We impose certain constraints on the structure of A which will help us at a later stage when we derive
specific constitutive model relations between σ and S.

Constraint - 1:
We have already seen that S is a symmetric tensor. Since the product of a symmetric and anti-symmetric
tensor is zero, we require Aijkl to be symmetric as well, i.e.

Aijkl = Ajikl = Ajilk. (13)

Such a constraint on A ensures that any double contraction of A with a symmetric second order tensor
does not vanish.

Constraint - 2:
We also make the fourth-order tensor A traceless. This will enable use to separate the compressive/expansion
part of the deformation from the incompressible part. Using this constraint and applying it to eq. (12),
we get

Aiikl = 0 =⇒ p = −σii
3︸ ︷︷ ︸

Definition of mechanical pressure

. (14)

1 If
∂p

∂xi
= ρFi = −ρ ∂Ψ

∂xi
with Ψ as the potential, then for

• gravity → Ψ = g · x,

• centrifugal force → Ψ = −Ω2
[
r2 − (r− eΩ)2

]
.
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This is a generalization of the static pressure seen earlier and is the average of the three components of
the normal stresses. In a moving fluid, components of the normal stress are no longer equal to each other
as in a static fluid.
The enforcement that p is the mechanical pressure even for fluids in motion leads to a subtlety in that
the mechanical and thermodynamic pressure, pe, are no longer the same. The difference arises because a
fluid in motion is no longer in thermodynamic equilibrium. Whereas in a static fluid, we need not make
such a distinction.
We state here without proof that the departure of pressure from the thermodynamic pressure is propor-
tional to the change of volume of a material element. Hence

p− pe ∝ ∇ · u, (15)

= −µb∇ · u, (16)

where µb is a scalar material constant called the bulk viscosity.

4 Newtonian fluid

In spite of the constraints, the structure of A is still now known. If we assume that the fluid in consideration
is isotropic, then Aijkl is required to be an isotropic tensor. The general form of a fourth order isotropic
tensor is given by

Aijkl = aδijδkl + b(δikδjl + δilδjk) + c(δikδjl − δilδjk) (17)

Constraint - 1:
(i) Aijkl = Ajikl: Interchanging i and j in eq. (17), we have

Ajikl = aδijδkl + b(δjkδil + δjlδik) + c(δjkδil − δjlδik). (18)

Subtracting (17) from (18), we get c = 0.

(ii) Ajikl = Ajilk: It is easy to verify that this constraint is identically satisfied. We now have only two
constants a and b.

(iii) Ajikl = 0:

Aiikl = aδiiδkl + b(δikδil + δilδik) = 0, (19)

= 3aδkl + b(δkl + δkl) = 0,

=⇒ a = −2b

3
. (20)

We are now reduced to just one constant, b. Following convention, we replace b with µ. The general form
of A for an isotropic fluid then becomes

Aijkl = −2µ

3
δijδkl + µ(δikδjl + δilδjk). (21)

The deviation of stress tensor from isotropy then becomes

τij =

[
−2µ

3
δijδkl + µ(δikδjl + δilδjk)

]
Skl,

= 2µ

(
Sij −

Skk
3
δij

)
︸ ︷︷ ︸

traceless

. (22)
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τij is the called the deviatoric part of the stress tensor and it describes the response of a Newtonian fluid
to volume-preserving shape deformations as determined by the traceless part of the rate-of-strain tensor.
Also note that τij is characterized by a single scalar material constant, µ called the shear viscosity or
dynamic viscosity. We will use the latter name for µ since the deviatoric stress can arise even in fluids
without any shear.

σij = −pδij + 2µ

(
Sij −

Skk
3
δij

)
. (23)

or

σij = −(pe − µbSkk)δij + 2µ

(
Sij −

Skk
3
δij

)
. (24)

In the second form, we have written the pressure term in terms of pe. This is a linear relationship be-
tween σ and S. This is the Newton’s constitutive relation, or simply the Newton’s law of viscosity, albeit,
expressed in a generalized fashion. Thus, the response of a Newtonian fluid to deformation of all types,
including those that change the volume, is characterized by two material constants, a dynamic (µ) and a
bulk (µb) viscosities.

Substituting the general form of σij into the Cauchy’s equations of motion, we have

ρ
Dui
Dt

= ρFi +
∂

∂xj

{
−pδij + 2µ

(
Sij −

Skk
3
δij

)}
(25)

or in term of pe, we have

ρ
Dui
Dt

= ρFi +
∂

∂xj

{
−(pe − µbSkk)δij + 2µ

(
Sij −

Skk
3
δij

)}
. (26)

Simplifying further, we get

ρ
Dui
Dt

= ρFi −
∂pe
∂xj

+
∂

∂xj

{
µ

(
∂ui
∂xj

+
∂uj
∂xi

)}
+

∂

∂xi

{(
µb −

2µ

3

)
∂uk
∂xk

}
(27)

This is the generalized form of the Navier-Stokes equation with variable transport coefficients.

For incompressible flows, DρDt = 0, hence ∇ · u = 0. Absence of volume changes implies that the
difference between p and pe is irrelevant.
The Navier-Stokes equation2 for an incompressible fluid becomes

ρ
Dui
Dt

= ρFi −
∂p

∂xj
+

∂

∂xj

{
µ

(
∂ui
∂xj

+
∂uj
∂xi

)}
,

= ρFi −
∂p

∂xj
+ µ

∂2ui
∂x2j

+

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂µ

∂xj

)
. (28)

For a constant bulk viscosity, we get

ρ
Dui
Dt

= ρFi −
∂p

∂xj
+ µ

∂2ui
∂x2j

with µ = constant. (29)

2 The Navier-Stokes equation was first proposed by Navier, a French physicist, in 1822. Subsequently, Stokes (a British
physicist) and St. Venant (French mechanician and mathematician) derived the same equation independently in 1843. Stokes
in particular was trying to study the ‘flow’ of ether around Earth when it travels around the Sun to understand how light
travels through a medium. We now know that there is no evidence of the existence of ether and that electromagnetic waves
don’t require a medium for their travel.
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The last term of RHS in the above equation is the viscous stress. Viscosity play’s the role of friction and
diffuses momentum from one location to another. We will examine the physical meaning of this term in
the next section. The presence of this term can have dramatic effects on the motion of fluids near solid
objects. We will return to this point later in the course.

If the viscous term is absent, we obtain the Euler’s equation named after the great mathematician Leonard
Euler.

ρ
Dui
Dt

= ρFi −
∂p

∂xj
. (30)

In summary, we have for an incompressible fluid

ρ
Dui
Dt

= ρFi −
∂σij
∂xj

, (31)

where σij = −pδij + τij and the deviatoric or viscous stress tensor is given by

τij = 2µSij .

This is the Newton’s law of viscosity.

5 Molecular theory of viscosity

We discussed earlier the the stress tensor, σ, is a consequence of the surface force. Surface forces have
a microscopic origin. The subject of viscous stress is really coming from a microscopic perspective. To
understand momentum transport due to viscosity, we examine the viscous transport from an elementary
kinetic theory perspective.

We first consider a pure gas consistent of rigid, non-attracting spherical molecules of diameter, b, and
mass, m. Let the number density (number of molecules per unit volume) is taken to be n. We assume
that the average distance between the molecules, O(n−1/3)� d.

The average molecular velocity is

c =

√
8kT

πm
. (32)

The frequency of molecular bombardment per unit area on one side of a stationary surface exposed to the
gas is

Z =
1

4
nc. (33)

The goal of this approach is to understand the molecular mechanism of momentum transport that leads
to a tangential stress in the equations of motion. We hope to achieve this by determining the total force
(tangential) on an imaginary plane aligned in a flow due to molecular transport as shown in the figure.

The average distance travelled by a molecule between successive collisions is the “mean free path”, i.e.,

λ =
1√

2πd2n
. (34)

From kinetic theory, we can show that on an average, molecules reaching a plane will have experienced
their last collision at a distance of a from the plane, where

a =
2

3
λ. (35)
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Let us consider a monoatomic gas flowing in the x-direction with a velocity u(y) alone. The velocity

gradient is therefore
∂u

∂y
. The viscous stress tensor, τxy = τyx = µ

du

dy
.

We will now derive the expression for τyx using kinetic theory. The flux of x-momentum across any plane
y=constant is found by summing the total x-momentum of molecules that cross the positive direction,
and subtracting the total x-momentum of those that cross in the opposite direction.

τyx = Zm u|y=a − Zm u|y=a (36)

We have assumed that all molecules below and above the y = 0 plane have velocities which are in
equilibrium with the local flow, i.e.

u|y=±a = u|y=0 ± a
du

dy

∣∣∣∣
y=0

. (37)

Therefore

τyx = Zm× 2a
du

dy

∣∣∣∣
y=0

, (38)

=
1

3
nmcλ

du

dy
=

1

3
ρcλ

du

dy
, (39)

where ρ = mn is the density of the gas. Comparing this with the continuum description, we have

µ
du

dy
=

1

3
nmcλ

du

dy
. (40)

Hence

µ =
1

3
nmcλ =

1

3
ρcλ. (41)

Writing the above expression in terms of fundamental parameters, we have

µ =
2

3π

√
πmkT

πb2
. (42)
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Therefore, for a dilute gas µ ∼ T 1/2 and µ ∼ 1/d2. Hence increasing temperature of a gas decreases its
viscosity, heavier molecules also increase viscosity and larger molecules decrease viscosity.

For liquids, a molecular theory is significantly more involved. The above description does not hold in the
case of liquids since the molecules in a liquid, like in a solid, are more closely spaced and we cannot ignore
the intermolecular forces that exist between molecules of liquid. A liquid can be described as matter where
the molecules are perpetually involved in cage-breaking and cage-formation events. If ∆G is the typical
activation energy of a cage-breaking event, then the viscosity of a liquid can be written as

µ ≈ Nah

V
exp

(
∆G

RT

)
, (43)

where Na and h is Avogadro and Planck’s constant respectively and R = Nak is the gas constant.
For a derivation of the above law, the reader is referred to Transport Phenomenon by Bird, Lightfoot &
Stewart.

Clearly, in the case of a liquid, increasing temperature reduces the viscosity. This is in complete contrast
to the way viscosity of gases varies. But such differences only arise with regards to variations of the
transport constants and do not in any way affect the validity of the Navier-Stokes equations.
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