Summary: Equilibirum of a rigid body
We have sun that for equllation of a rigid body (in 3D), we require 6 scalar equators for b magmas:

$$
\begin{array}{llll}
\sum f_{x}=0 & \sum f_{y}=0 & \sum f_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

The above equations can be solved for no more than 6 unknowns, which generally rypresut veaulurs at supports.

In vector form: $\sum \vec{F}=0 \quad 4 \quad \sum \vec{M}_{0}=\sum(\vec{q} \times \vec{f})=0$

Reactions at Supports \& Connections for a 3D-Structure:-

The viacturns on a Structure range from a single force by known director (like at a fictomless Surface) to a fore- couple system (lie ar a fined support).
$(\vec{F})(\vec{M})$

A simple way y derunining the type of reactors ar a given support is to find which of the 6 fundamental motions (3 translators in $x, y, z 43$ rotations about x, y, z are allowed \& which an prevented/arrested.

Comma types of Juppits \& Conneudins:-
 translation in only one dorceton.

Ball

Frictionless surface

Force with known line of action (one unknown)

Cable

Force with known line of action (one unknown)

Two press:- Roller on rough sung ane, wheels on a rall Both these prevent motion M two directions

Roller on rough surface

Wheel on rail

Two force components

Three fore Components:- Disut lentact with rough Jungale, ball 4 locket support prevents translation in 3 directurns.

Rough surface

Ball and socket

Three force components

Uniousul joint:- To allow rotatum about two axes. prevents translation completely 4 me rotation χ_{\uparrow}

fraid jout:- All motom arcented.

Fixed support

Pin and bracket

Hinge and bearing supporting axial thrust and radial load

Three force components (and two couples)

Example:-
Lades of weight $m=20 \mathrm{~kg}$ is nd in a Iibrony.
Supported by two flanged wheels A \& mounted $B a$
rall and by an no flanged wheel © vesting aganit a a rail fred to the wall.

An 80 kg mas stands on he
ladder whose line of actors (ailing with weight of ladders) intakes the floor ar Point D. Detumme reaches at A, B, C.

$$
\begin{aligned}
& \overrightarrow{R_{A}}=(245 \mathrm{~N}) \hat{j}-(98.1 N) \hat{k} \\
& \overrightarrow{R_{B}}=(736 \mathrm{~N}) \hat{\jmath}-(98.1) \hat{k} \\
& \overrightarrow{R_{C}}=(196.2 \mathrm{~N}) \hat{k}
\end{aligned}
$$

