Analyds of Fremes 4 Machns:-
Valice tunses, frames a machores contain athast one muitforc mamber, whereas trusses lonsiting of pins contans mly tworfore members.

Andyies of franss:-

(a)

(b)

(c)

To fond intumal fores in aM mambes, we will have to drimember the forrese.

Member BE: 2 -fore member
At C, two multifores mumbers an commected: $A D$ \& $C F$.
Reupe:
(i) We fort detumen veactors by dirwing FBD on the eadive
(i) Desure snthnal forces in 2-fore mambers.
(iii) Detume intunal forms in mult-fore members.

The above amae excople is for a "riged frome". Not MM frams an rigid, ". they will ceare to retan thes shape if suppor is veroued.

Considue the jume shown below.

(a)

(b)

(c)

If support ave removed, the frame can deform. To treat Such frames, we should treat it as two destruct rigid parts $A C \& C B$, mark all forks (mending viacutons) \& determine the fores on them using FBD's.
we should use actron-reuction pronuples at pants when the individual members connect, in the above case, at C.

Example:
Members $A C E \&$ $B C D$ ane connected at C A by lank DE.

Determe fore in link $D E$ 4 components of force outed ar C or member
 $B C D$.

Son: FBD of entire frame:-

Sodr: FBD of entere fome:-

 Sonce mly troo mumbers jow ase also ajsure each mamber an opposite to each othas. We also assume lonk DE is in tension

Mambu BCD:

$$
\begin{aligned}
\sum M_{c}=0 \quad \Rightarrow \quad & F_{D E}=-561 \mathrm{~N} \\
& (\text { lomprestion }) \\
\sum f_{x}=0 \Rightarrow \quad C_{x}= & -795 \mathrm{~N} \\
C_{y}= & +216 \mathrm{~N}
\end{aligned}
$$

FBD in Ale (Chut)

$$
\sum M_{A}=0
$$

En: Defunce comporents on east

En: Defurise components on each mombue of the frame?
(A) We have pin-Jupport at E
and roller support at f
\Rightarrow we mly have a total y 3 unknowns.

FBD of entive frame:-

$$
\begin{aligned}
& \sum M_{E}=0 \Rightarrow(-2400 \mathrm{~N})(3.6 \mathrm{~m})+F(4.8 \mathrm{~m})=0 \\
& \Rightarrow F=1800 \mathrm{~N} \\
& \sum F_{y}=0 \Rightarrow E_{y}+F-2400 \mathrm{~N}=0 \\
& \Rightarrow E_{y}=+600 \mathrm{~N} \\
& \sum E_{x}=0
\end{aligned}
$$

Grus in the members:.
Member BCD:

$$
\begin{aligned}
& \frac{\text { Member BCD: }}{\sum M_{s}=0 \Rightarrow C_{y}(2.4 \mathrm{~m})-(2400 \mathrm{~N})(3.6 \mathrm{~m})=0} \\
& \Rightarrow C_{y}=3600 \mathrm{~N} \\
& \sum M_{c}=0 \Rightarrow B_{y}(2.4 \mathrm{~m})-(2400)(1.2 \mathrm{~m})=0 \\
& \\
& \Rightarrow B_{y}=1200 \mathrm{~N} \\
& \sum F_{x}=0 \Rightarrow C_{x}-B_{x}=0
\end{aligned}
$$

Membu HISE.

$$
\begin{aligned}
& \sum M_{A}=0 \Rightarrow B_{x}=0 \\
& \sum M_{B}=0 \Rightarrow A_{x}=0 \\
& \sum f_{y}=0 \Rightarrow-A_{y}+B_{y}+600=0 \Rightarrow A_{y}=1800 \mathrm{~N} \\
& \quad \text { Also } \ln 4 \quad B_{x}=0, \quad C_{1}=0
\end{aligned}
$$

Member ACF: Can easily veining that all $\Sigma M=0$ a all $\sum F_{x}=0$ $4 \sum f_{y}=0$

In: A 600 N horizontal force is applied to pin A. Derumire the forks on the two vertical member of the frame.

(A) FBD of entire frame:-

We have four unknowns, but we can still determine two of them.

$$
\begin{aligned}
\sum M_{E}=0 & \Rightarrow(-600 \mathrm{~N})(10 \mathrm{~m})+f_{y}(6 \mathrm{~m})=0 \\
& \Rightarrow \quad f_{y}=1000 \mathrm{~N}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow f_{y}=1000 \mathrm{~N} \\
\sum f_{y}=0 \Rightarrow E_{y}+f_{y}=0 \Rightarrow E_{y}=-1000 \mathrm{~N}
\end{array}
$$

To determine $f_{x} 4$ for must analyse forms on indordual members.

Membul'. When dismembering tho frame, we have to decumine if $p i n-A$ is attached to $A C E$ of $A B$. We will assume that $p n-A$ is atlalied to $A C E$.

Member ACE:

$$
\begin{aligned}
& \cos \alpha=\frac{6}{\sqrt{6^{2}+\frac{5^{2}}{2^{2}}}}=\frac{12}{\sqrt{144++^{25}}}=\frac{12}{13} \\
& \sin \alpha=\frac{5}{13}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow-1000 N+C_{C D}(13) & -\left(F_{A D} \cos 1 \alpha\right)(10 \mathrm{~m}) \\
\sum M_{E}=0 \Rightarrow\left(-F_{C D} \cos \alpha\right)(2.5 \mathrm{~m}) & -\left(G_{00 N}\right)(10 \mathrm{~m})=0
\end{aligned}
$$

Solving:

$$
\begin{aligned}
\sum F_{x}=0 \Rightarrow E_{x} & +F_{(D}(10 / \alpha)+600 \mathrm{~N}+F_{A B} \cos \beta=0 \\
& \Rightarrow E_{x}=-1080 \mathrm{~N}
\end{aligned}
$$

