Charactivitivy two.dmensimal solaces
Centre of gravity of a 20 Body

Consider a for er plate of know r thucknes.

If theme is a distributed Coal W actiry m
 it. it may be
Useful to sometimes replace it with a port lat actin at is centre of gravity, G.
We lan drifted the plat ind 'n' dung elements. Each dement then has a load $\Delta w_{1}, \Delta w_{2}, \Delta \omega_{3}, \ldots$ and so or.

$$
\text { Then foul } w=\Delta w_{1}+\Delta w_{2}+\Delta w_{3}+\cdots+\Delta w_{n}
$$

To fond the coordinates of h where W should be applied. We equal the moment of W about x axes with the momuls of individual elemental loads:

$$
\begin{aligned}
& \sum M_{y}: \quad \bar{x} W=x_{1} \Delta w_{1}+x_{2} \Delta w_{2}+\cdots+x_{n} \Delta w_{n} \\
& \sum M_{x}: \bar{y} W=y_{1} \Delta w_{1}+y_{2} \Delta w_{2}+\ldots
\end{aligned}
$$

for large n, we lan now write:

$$
\begin{aligned}
& w=\int d w \\
& \bar{x} w=\int x d w \\
& \bar{y} w=\int y d w
\end{aligned}
$$

fruit mamas

The same thing can be dive for a wise Al cable. In molt case, the Ch of such olfets does not coincide with the -bjut.

Lases, the Ln σ
-objet.

Centroids of Areal 4 Lines:for a flat homogeneous lase, weight y the plate, we know

$$
\begin{aligned}
& \Delta w=g \cdot t \Delta A \\
& w=g t A
\end{aligned}
$$

Subsitiviry $\Delta \omega 4 \mathrm{~W}$ entice aquas. 4 devilry by gt, we have:

$$
\begin{aligned}
A & =\int d A \\
\bar{x} A & =\int x d A \\
\bar{y} A & =\int y d A
\end{aligned}
$$

Here $\int x d A$ is called the fort monet y ara about the y-amis $\&$ is denotes by Q_{y}. \int milaily d_{x} is frit moment if aura bout x-amor.

$$
\begin{aligned}
& Q_{y}=\int x d A=\bar{x} A \\
& Q_{x}=\int y d A=y A
\end{aligned}
$$

And for a wive is cable.

$$
\begin{gathered}
\Delta w=g \cdot a \Delta L \\
\Rightarrow \quad \bar{x} L=\int x d L \quad 4 \quad \text { Uors-rutinal ana } \\
\Rightarrow \quad 4 \quad \int y d L
\end{gathered}
$$

Some refuel Jymmetives to note:-
(1) An ava is laid to be symmetric about an anis $B B^{\prime}$ if for way post P, these enoch a post P^{\prime} on the area such that $P P^{\prime} \perp^{a} B B^{\prime}$.

(a)

When an aura poltuses a_{n} ans of symmetry, its fort moment write that anis is jus.

Ir: The y-anis of this aura is the the of fymmitry.
\Rightarrow fort wont about y-amis. "; $Q_{y}=0$.
Thus $\quad \bar{x}=0$
Thempore, y an aura polsuses a ln of symmetry, its centroid has to lie on that live.
(2) If an ava his two lime of symmotiv, in centroid lis at the intusution of these lies.

(3) An aura is sard to be symmiture with ruput to centre 0 if for every element of ana ΔA of coosdrates $x \& y$, thane an its an element $d A^{\prime}$ of equal ara with coordinates $-x 4-y$. It then follows that both $Q_{x}=Q_{y}=0$

$$
\Rightarrow \quad \bar{x}=\bar{y}=u
$$

10; antroid coincides with centre of Jymurtiry

Comporte plates:-

$$
\sum M_{y}: \bar{x}\left(w_{1}+w_{2}+\cdots w_{n}\right)=\bar{x}_{1} w_{1}+\bar{x}_{2} w_{2}+\cdots+\bar{x}_{n} w_{n}
$$

$$
\left.\sum M_{y}: \bar{x}\left(w_{1}+w_{2}+\cdots w_{n}\right)=\overline{y_{n}}\right)=\bar{y}_{1} w_{1}+\bar{y}_{2} w_{2}+\cdots w_{n} w_{n}
$$

Similmy:

$$
\begin{aligned}
& Q_{y}=\bar{X} \sum A=\sum \bar{x} A \\
& Q_{x}=\bar{y} \sum A=\sum \bar{y} A
\end{aligned}
$$

Dercuriseg centrosds by mitegration:-

$$
\theta_{4}=\bar{x} A=\int x d A=\int_{r} \bar{x}_{e l} d A
$$

$\theta_{x}=\bar{y} A=\int y d A=\int \bar{y}_{u} d A$

$$
\begin{aligned}
& \bar{x}_{\mu l}=x \\
& \bar{y}_{d}=\frac{y}{2} \\
& d A=y d x
\end{aligned}
$$

$$
\bar{x}_{e l}=\frac{a+x}{2}
$$

$$
\bar{\lambda}_{e l}=\frac{2 r}{3} \cos \theta
$$

$$
\bar{y}_{A}=y
$$

$$
\bar{y}_{d}=\frac{2 x}{3} \sin \theta
$$

$d A=(a-x) d y$
$d A=\frac{1}{2} \theta^{2} d \theta$

Thapsus of Bypass - Guldonus:-
A lari of rwolumen is a jugate generated by rotating h have.

Amiluly, ie can genuate a "body of revolute".

Theater
'The area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid of the curve while the surface is being generated.

Roof:

Area generated by $l_{m} y$ length $d L$ is $d A=2 \pi y d L$ Entire uvea generated by $L=A=\int 2 \pi y d L$

Bur $\int y d L=\bar{y} L$

$$
\Rightarrow \quad A=2 \pi \bar{y} L
$$

Theorem II: The volume of a body of revolution is equal to the generating area times the distance traveled by the centroid of the area while the body is being generated.

Proof: Consider an element of area $d A$.
The volume $d v$ ganuand by revolving About n-axis is given by $d v=2 \pi y d A$

$$
\begin{aligned}
& d v=\int d v=\int 2 \pi y d A=2 \pi \int y d A=2 \pi \bar{y} A
\end{aligned}
$$

Second moment if aux:-
for a beam in pres bonding. The intunal forms in any lection of the beam ane deributed form whole magnitude os given by

$M \Delta F=k y \Delta A$
whir y is he distance of the clement area form an anis pasting through the cuboid. $\underset{\rightarrow}{\longrightarrow}$ the neutral axis.

Net verulturt force \vec{R} of the curtal form Δf oval the sum m is

$$
R=\int k y d A=k \int y d A
$$

Our $\quad \int_{y} A A=\bar{y} A=Q_{x}=0 \quad \operatorname{lin} C$ we ane man anis iv; $\bar{y}: \bar{x}=0$
y about forms Δf reduces to

$$
\Rightarrow \quad R=0
$$

\Rightarrow The system of forms
a couple.
The magnitude of this couple (bending moment) mut be equal to the Jun of the moments:

$$
\Delta M_{x}=y \Delta F=k y^{2} \Delta A
$$

Integrally,

$$
M=\int k y^{2} d A=\underbrace{\iint^{2} d A}_{\text {Silond moment of awe. }}
$$

