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Abstract A vortex placed at an initially straight density interface winds it into an
ever-tightening spiral. This flow then displays rich dynamics, due to inertial effects
caused by density stratification (non-Boussinesq effects), and gravitational effects.
In the absence of gravity we showed recently that the flow is subject to centrifugal
Rayleigh-Taylor and spiral Kelvin-Helmholtz instabilities. The latter grows slightly
faster than exponentially. In this paper we present computations including gravity
with and without and with inertial effects. Gravity modifiesthe spiralling process
and contributes to the breakdown of the vortex. When both effects are allowed to
operate together, the resulting flow has a complex radial character, with small-scale
structures near the vortex core attributed to non-Boussinesq effects, and large scale
roll-up due to gravity followed by breakdown.

1 Introduction

Vortical structures in stratified flows display a range of interesting instabilities
and non-monotonic behaviour, see e.g. [1] and [2]. The present study is two-
dimensional, of a lone vortex with its axis perpendicular tothe plane of density
stratification, with and without gravity. An initially flat density interface is wound
up into an increasingly tightened spiral by the vortex, similar to how it would advect
a patch of passive scalar (see for example [5]). In the absence of gravity, centrifugal
forces are predominant, and we showed recently [4] that two kinds of instabilities, of
a centrifugal Rayleigh-Taylor (CRT) and spiral Kelvin-Helmholtz (SKH) types are
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triggered. The former arises from a mechanism similar to theRayleigh-Taylor insta-
bility of a vortex with a heavy core, as studied by [9] and [6].The latter arises purely
from the fact that the density interface, being spiral, is not quite circular. Both in-
stabilities would be missed upon making a passive-scalar approximation, i.e., upon
neglecting the inertial effects of density stratification.Gravity is unnecessary in this
process, but since the density stratification is stable withrespect to gravity to be-
gin with, it would be interesting to see the effect that gravity would have on these
instabilities, and on the resulting breakdown into a possibly turbulence-like state.
We show that gravity has a profound effect on the dynamics andhastens the final
breakdown into a turbulence-like state. We present simulations (i) including cen-
trifugal effects (non-Boussinesq) but without gravity, and (ii) gravity present, under
the Boussinesq approximation, and (iii) of the two combined.

The vorticity and density balance equations are given in theinviscid, infinite
Peclet number limit by

ρ
DΩ
Dt

= −∇ρ ×
Du
Dt

.−g
∂ρ
∂x

(1)

Dρ
Dt

= 0, (2)

whereD/Dt ≡ ∂/∂ t + u ·∇, andu = (urer,uθ eθ ), Ω , ρ andg denote the velocity
vector (of radial and azimuthal components), the vorticity, the density and gravity
respectively. The flow is taken to be incompressible, so∇ ·u = 0. The two cases we
present in sections 2 and 3 correspond to the neglect of the second and the first term
on the right hand side of (1) respectively, while the full equations are solved in the
third case.

2 Centrifugal effects

A brief description of the flow is given here, further detailsare available in [4].
Consider a point vortex of circulation 2πΓ located at an initially horizontal den-
sity interface, with a difference∆ρ in density across it. The point vortex causes a
spiralling of the density interface, as in figure 1.

For large time or small radius, the spacing between successive turns of the spiral
scales as

λ ∼
r3

Γ t
. (3)

When a small amount of diffusivity,κ is present in the flow, the prominent length-
scales in the flow can be expressed in terms of the Peclet number, Pe = Γ /κ , of the
flow, as shown in fig.(1). If we assume that these jumps are circular, then the flow
is analogous to the planar Rayleigh-Taylor instability, except that the gravitational
potential arises from the centrifugal forces. Density jumps fromρh to ρl correspond-
ing to heavy and light fluids. Just as a heavy fluid above a lightone is unstable due
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Fig. 1 Evolution with time of an initially horizontal density interface due to a point vortex at the
origin [4]. The dashed line is at a later time than the solid line. At finite Peclet number, a central
region indicated by a grey circle is homogeneous, and the spiral extends upto a lengthrs ∼ ldPe1/2.
At largePe and large time many density jumps exist.
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Fig. 2 Maximum growth rateωi of disturbance as a function of the number of density jumps
for m = 5 andA = 0.05. The circles show the growth rate with the core fluid being heavy, at
ρh = 1.05, while squares are for a light core, atρl = 0.95. The first two jumps are located at
(a) r1 = 0.1,r2 = 0.102 (b) r1 = 0.1,r2 = 0.105, with the remaining jumps spaced out asr3, in
accordance with the spacingλ between the jumps. The growth rate has been normalised byΓ /r2

1.

to gravity, a heavy fluid inside a light one is unstable to centrifugal forces, here we
refer to this as the CRT instability. It is shown analytically for inviscid flow with
κ = 0 that although stabilising and destabilising density jumps occur alternately,
the net effect is destabilising, even in the case of a light core, see fig.(2).

We have so far approximated the interface to be circular, when in reality, the
interface is actually in the form of a spiral. Baroclinic torque is created when a
density interface is not strictly perpendicular to centrifugal acceleration, and this
torque produces vorticity here since the interface is not perfectly circular.

For a point vortex, any passive interface around it would take the form of a Lituus
spiral, which can be represented parametrically as

θs =
Γ t
r2 . (4)

From equation (4) we may obtain the angleα between the spiral and a circle, cross-
ing each other at a given point and sharing the same origin andradius as

tanα =
r2

2Γ t
, (5)
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so the assumption of a circular interface is better at smaller radii or late times.
Returning to the vorticity equation (1), neglecting gravity, and assuming that the

effect of the circulationΓ of the point vortex is far greater on the basic flow than of
that which is newly created, we may write

DΩ
Dt

≃−
∇ρ
ρ

×

[

U2

r
er

]

. (6)

At high θs, i.e., at large time at a given radius, the integral of the above may be
approximated as

∆Uθ ≃∓A U log(
2Γ t
r2 ). (7)

At every unstable density jump, negative vorticity is created and vice versa, resulting
in heavier fluid travelling faster and lighter fluid slower. Aspiral Kelvin-Helmholtz
(SKH) instability thus ensues, and combines with the centrifugal Rayleigh-Taylor
(CRT) instability.

Given that∆Uθ increases logarithmically in time, we have a spiral Kelvin-
Helmholtz instability with a slightly faster than exponential growth rate, i.e.,ur ∼

atbt wherea andb are constants.
While a perfectly sharp density interface is increasingly unstable to increasing

wavenumber, a small but finite thickness of the interface determines that the fastest
growing wave has a wavelength comparable to the thickness, as expected. The re-
placement of a point vortex by a Rankine with smoothed-out edges does not change
the answer qualitatively either, except within the vortex core.

Numerical simulations are obtained as follows. The 2D Navier-Stokes equa-
tions including non-Boussinesq effects are solved using the Fourier pseudospectral
method in space. Inviscid (with hyperviscosity) results are presented here but vis-
cous results are qualitatively no different. Figure 3 showsthe vorticity and density
fields including non-Boussinesq effects in the absence of gravity. Vorticity of al-
ternating sign is produced in the form of two interwoven spirals along the density
interfaces, and instabilities ensue, consistent with our theoretical predictions.

3 Gravitational effects

We now consider the effects of gravitational effects alone and employ the Boussi-
nesq approximation. These are the first results from an ongoing study [3]. In the
linear framework, such a flow has been treated in [7].

Figure 4(a) shows vorticity and density contours from simulations when the
Froude number is 4.6. Centrifugal effects are not included,due to which the spi-
ralling process of the interface is impeded. In general, gravity becomes important
wheng > Γ 2/r3. An estimate of this ratio for realistic trailing vortices was given by
[8].
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Fig. 3 Vorticity (a) and density (b) fields in the inviscid simulations without gravity. The time is
157 times the period of rotation of the vortex core, and the Atwood number is 0.2.
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Fig. 4 (a) Density field in the inviscid simulations using the Boussinesq approximation. The time
is 157 times the period of rotation of the vortex core, and theAtwood number is 0.2. (b) Evolution
of angle made by the satellite vortices with time for variousvalues of gravity.

The inclusion of gravity results in the formation of two satellite vortices, whereas
the non-Boussinesq equations (without gravity) results inthe formation of a small
scale instability. When the two effects are combined, features of both the cases can
be seen as shown in fig.(5). The small scale non-Boussinesq effects are seen near
the vortex center, whereas the large scale overturning occurs further away from the
center. More details on these effects can be seen in [3].

4 Conclusions and outlook

We have shown that interesting dynamics emerges when the passive-scalar approx-
imation is not made, as usually done for small Atwood number flows. When den-
sity variation is very sharp, gradients in density can lead to significant barloclinic
torque, making the Boussinesq equations incomplete. Gravity impedes the original
spiralling process, but gives rise to satellite spirals instead. Both speed up the de-
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Fig. 5 Density field in a full simulation combining effects of gravity and inertia related density
effects. Small scale undulation near the center of the vortex is due non-Boussinesq terms, and large
scale overturning seen at an angle of 600 is due to gravitational effects.

struction of the identity of the vortex, and result in a turbulence-like state. More
work is in progress and will appear in a future study ([3]). Another area of interest
would be influence of these instabilities in multiple vortexscenarios, as in trailing
vortices and vortex merger problems.
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