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Abstract

In this paper, we analyze the performance of maximum-likelihood (ML) multiuser
detection in space-time coded CDMA systems with imperfect channel estimation. A K-
user synchronous CDMA system which employs orthogonal space-time block codes with
M transmit antennas and N receive antennas is considered. A least-squares estimate
of the channel matrix is obtained by sending a sequence of pilot bits from each user.
The channel matrix is perturbed by an error matrix which depends on the thermal
noise as well as the correlation between the signature waveforms of different users.
Because of the linearity of the channel estimation technique, we use the characteristic
function of the decision variable to obtain an exact expression for the pairwise error
probability (PEP), using which we obtain an upper bound on the bit error rate (BER).
The analytical BER bounds are compared with the BER obtained through simulations.
The BER bounds are shown to be increasingly tight for large SNR values. It is shown
that the degradation in BER performance due to imperfect channel estimation can be
compensated by using more number of transmit/receive antennas.
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1 Introduction

Space-time coded transmission using multiple transmit antennas can offer the benefits of
transmit diversity and high data rate transmission on fading channels [1]. Space-time coding
applied to code division multiple access (CDMA) systems has been of interest [2]. Multiuser
detection schemes, which can significantly enhance the receiver performance and increase
the capacity of CDMA systems, have been extensively studied in the literature, mainly for
single transmit antenna systems [3]. Multiuser detection schemes and their performances
in space-time coded CDMA systems with multiple transmit antennas has been a topic of
recent investigations [4],[5],[6],[7]. The performance of the systems considered in [4]-[6] were
evaluated mainly through simulations. In [7], Uysal and Georghiades derived an exact ana-
lytical expression for the pairwise error probability (PEP) and obtained an approximate bit
error rate (BER) expression for a space-time coded CDMA system, but only for a conven-
tional matched filter (MF) detector. Our main focus in this paper is to obtain the PEP and
BER expressions for multiuser detection in space-time coded CDMA, particularly when the

channel estimates at the receiver are imperfect.

In [8], Taricco and Biglieri obtained an analytical expression for the PEP of space-time
codes in a single user system, assuming perfect channel estimation at the receiver. Using
this PEP, they obtained bounds on the probability of bit error for maximum-likelihood (ML)
detection. In [9], Garg et al extended the work in [8] by incorporating imperfect channel
estimation in the system model, again for the single user system. For a multiuser system,
bounds on the bit error probability of the ML multiuser detection have been derived in [3]
(Ch. 4.3) for a 1-Tx/1-Rx antenna system. In this paper, we consider the performance
analysis of ML multiuser detection in space-time coded CDMA with multiple transmit and
receive antennas. Specifically, we derive an upper bound on the bit error probability of ML
multiuser detection for a space-time coded CDMA system for the case of both perfect as well

as imperfect channel estimation at the receiver [10],[11]. We consider two channel estimation



schemes which require transmission of pilot symbols from different users for the purpose of
channel estimation at the receiver. In both schemes, we use the least-squares method for
estimation [16]. We consider the least-squares method mainly because of its simplicity and
analytical tractability. In the second scheme, we exploit the structure of the channel matrix
in such a way that it is computationally less complex than the first scheme. The channel
matrix is perturbed by an error matrix which depends on the thermal noise as well as the

correlation between the signature waveforms of different users.

Using a discrete-time vector model of the received signal in a space-time coded CDMA
system with M transmit and N receive antennas [12], and the characteristic function of the
decision variable, we derive an exact expression, in closed-form, for the PEP of the joint
data vector of bits from different users. Using this exact PEP expression, we then obtain an
upper bound on the average BER. We compare the analytical BER bounds with the BER
obtained through simulations, and show that the BER bounds are increasingly tight for large
SNR values. It is shown that the degradation in BER performance due to imperfect channel

estimation can be compensated by using more number of transmit/receive antennas.

The rest of the paper is organized as follows. In Section 2, we present the system model. In
Sections 3 and 4 we present the performance analysis for the channel estimation schemes I
and II, respectively. Section 5 presents the performance results and discussions. Conclusions

are given in Section 6.

2 System Model

We consider a K-user synchronous CDMA system with M transmit antennas per user. Users
transmit data blocks with @ bits per data block. Let b;,, ¢ € {1,2,..., K}, g € {1,2,...,Q}, be
the ¢'* bit of the i'® user, transmitted in a time interval of length T'. The bits in a data block
are mapped on to the M transmit antennas using real orthogonal space-time block codes

(STBC). We assume that the channel fading is quasi-static and the quasi-static interval is



QT time units, where () = 2", r being the smallest integer satisfying Q > M [2]. For square

real orthogonal STBC with M = Q = 8, the transmission matrix X is given by [13]

[ 21 % T3 Ty Ts T Z7 T3 ]
Ty —X1 —Ty4 T3 —Teg Ts g —I7
r3 T4 —T1 —T2 —X7 —Tg Ts Zg

X — Ty —X3 T2 —X1 —Xg Ty —Tg s (1)

Ts Tg x7 g —T1 —X2 —I3 T4
Te —Ts Tg —T7r T2 —T1 Ty —I3
Ty —Xg —Ts Tg T3 —T4 —T1 X2

| Tg 7 —Tg —Ty T4 xr3 —T2 —I1 |

In the above transmission matrix, the columns represent the transmit antenna index and the
rows represent the bit interval index. For BPSK modulation, which is assumed in this paper,
xz; € {1,—1}. The transmission matrix X for other real orthogonal designs for M,Q < 8
can be obtained as the upper leftmost submatrix of X of order @ x M. In the following, we
illustrate the received signal model for M = @Q = 2 (extension of the model for other values

of M,Q < 8 is straightforward [12]). For M = @ = 2, the transmission matrix is given by
| T1 T2
x=[2 =] 5

Each user’s data is spread by its assigned spreading (signature) waveform before transmission.

The received signal on a receive antenna can be written using (2) as

y(t) = yi(t) + v2(t) + 2(0), (3)
yi(t) = Z Airhii {bisit + biasia} (4)
Ya(t) = f: Aighiz {bizsi — b sin} - (5)

=1

In the above, y,(t), p € {1, 2} is the received signal due to the p™ transmit antenna, 4;, is
the transmit amplitude on the p™ transmit antenna of the i* user, h;, is the complex channel
gain from the p™ transmit antenna of the i'" user, and s;, represents the signature waveform

of the 7™ user for the ¢™ bit in a data block, ¢ € {1,2}, given by s;, = s;(t — ¢ — 17,



where s;(t) is a unit energy signature waveform of the ith user, time limited in the interval

[0, 7] and represented by s;(t) = Y19 ¢, Pr,(t — IT,), where N, is the number of chips per

bit interval, 7, is one chip interval (i.e., N, = T/T.), ¢;y € {+1,—1} denotes the [th bit of

the ith user, Py, () denotes the chip waveform given by Pr,(t) = 1 for 0 < ¢t < T, and 0

otherwise. Also, z(t) is a zero mean complex Gaussian noise process with variance 202.

The demodulator on each receive antenna uses a bank of K matched filters, each matched

to a different user’s signature waveform. The received signal at the output of the matched

filters can be written as

QT
b= [ v@sigdr
The corresponding noise signal is given by

QT
M= [ 2Wsibd,

where j=1,2, ..., K, and ¢q € {1,2}. We define matrix R as

1 P12 P1K
R — P.12 1 02'1{ ’
Pk Pk - 1

(6)

(8)

where pjr = [ s;(t)sk(t)dt. Here, we assume that the signature waveforms are linearly

independent so that R is positive definite. Now, define the matrix H (of order QK x QK),

for M = Q =8, as

H, H, H; H, H; Hs H;
-H, Hi H, -H; Hs —-H; —Hjs
-H; -H, H;, H, H; Hgy -—-H;
H— -H, H; -H, H; Hs -H; Hs
-H; -H¢ -H; -Hy H; H, Hj;
-Hs H; -Hy H; -H, H, -H,
-H; Hy H; -H¢ -H; H, H;
-Hy -H; H¢ H; -H, —-H; H,




where H, = diag[hyg, . - ., hkg)- Also, define the matrix C of size QK x QK as

R 0 0 O
0 R 0O
c=/0 0 RO (10)
| 0 ... 0 0 R |

For values of M and @ other than 8 (i.e., M,Q < 8), H is given by the upper leftmost
submatrix of order QK x QK in (9). For the case of M ¢ {1,2,4,8}, M < Q. Therefore,
only the elements Hy, ¢ = 1,2, ..., M, are non-zero, i.e., H, = 0 for M < ¢ < ). The non-zero
entries of the channel matrix H are assumed to be i.i.d, zero-mean complex circular Gaussian

random variables (i.e., Rayleigh fading) with variance Q. With the following definitions,

Yq = [qua"'aqu]Ta (11)
y = yiys....yol" (12)
b, = [Aigbigs- .., Axebra (13)
b = [bl,...,b5]", (14)
n, = [nlqa"'aan]T7 (15)
T
n = [,...,n5 (16)
we can write
y = CHb + 7, (17)

which is the generalized vector model for the received signal at the output of the matched

filter when real orthogonal space-time block codes are used at the transmitter.



Since R is positive definite, the correlation matrix C is also positive definite. Doing the
Cholesky decomposition of C
C=F'F, (18)

we can write an alternate form of y as

$=(F")"'y = FHb+n, (19)

where E[n] = Ogxx1, E[nnf] = 20°I5, where (.)' represents the Hermitian operation and I

is the identity matrix. We will use the vector y in all the analyses in the subsequent sections.

3 Channel Estimation - 1

In the channel estimation scheme I, each user is assumed to transmit a sequence of () pilot
bits L, times for the purpose of channel estimation at the receiver. From (19), the received

vector due to the &k set of () pilot bits per user is obtained as

Let the matrix B, of dimension QK X L, denote the sequence of composite pilot vectors

by, by, --,br,. B, is given by

B,=|b by, --- by, |, (21)
and ny, ny,---,ng, are complex Gaussian random vectors such that
E [n,] = Ogxx1, E [npn] = 20Tgx. (22)

The received pilot matrix ?p can then be written as



—~~

Y, =FHB, + N,, (23)
where N, = [ n, ny; --- ng, ] The least-squares estimate of the channel matrix H can
be obtained as [16]

H=F"'Y,B! (B,B!) . (24)

For the above equation to hold, the matrix (BPBZ) has to be invertible, i.e., L, > QK.
From (23) and (24),
H=H+F 'N,B! (B,B!) | (25)

which gives an estimate of the channel matrix H. We will use this estimated channel ma-
trix H (i.e., imperfect channel estimates) in the following BER analysis for ML multiuser

detection.

3.1 ML Criterion

Using the vector representation of the multiuser received signal in (19), the ML multiuser
detection criterion can be written as follows. From (24), we obtain the estimates of the
channel gains at the receiver. The ML estimate of the transmitted bit vector, b, (comprising

the bits from all users) is then given by

N
b =arg {mv‘i,n.z1 |59 — FH(J)W“Z} , (26)

J:
where the superscript (j) in y and H denotes the receive antenna index, |- || operator denotes
Euclidean vector norm, i.e., ||x|| = vxTx, and the miny, is over all possible bit vectors of

length QK. Substituting (19) in (26),

N —
b =arg {ngn > |FHY(b — w) + n) — N{)B] (B,B} ) ' w||2} . (27)

i=1

Note that when the channel estimates are perfect, the ML criterion in (27) becomes



N
b =arg {m“}nz |FHY (b — w) + n(j)||2} : (28)

i=1

3.2 BER Analysis

In this section, we analyze the bit error performance of the ML multiuser detection scheme
in (27). We first derive an expression for the PEP, P(b — f)), the probability that the
transmitted bit vector b is wrongly decoded as b, and then obtain a bound on the bit error

probability. The PEP is given by

N
P(b —b) = Pr{ > IIFHY (b—b) + n — N{B] (B,BT) ™' b|2 — o) - N¥BT (B,BT) ' b||> < 0}.

j=1
(29)
Define the metric D as
N . .
D=3 [u?|? — v, (30)
7j=1
where
~ . 1
u® = FHO(b - b) + nt) — N§,{>B§ (BpBg) b
= FHO)(b—-b)+nV) — NI()J)Q
) — pU_NOB?T(B.BY) b
' 0 NG (8,5, (31)
nY — Nc,
1 ~
¢ = BI(B,BI) b,
¢ = BI(B,BI) b
Note that, for the case of perfect channel estimates,
c=¢&=0 (32)

Now, (30) can be written in the form

D =VIisV, (33)
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where
a®
(V)
u
V: V(l) , (34)
v
I 0
S = | @KN . 35
AN &

The decision variable D in (33) is in Hermitian quadratic form in the complex Gaussian
random vector V. This form, from a result in [14], allows us to write the characteristic

function of D, ®p(jw), in closed-form.

The characteristic function and the subsequent derivation of the PEP in closed-form is given
in Appendix A. The closed-form expression for the PEP for the case of imperfect channel

estimation scheme I can be obtained as (see Appendix A)

(—Aj)MN@K_gj)

P(b—b) =
( ) ; Hz(pz - )\j)MN” Hk;é]()\k — Aj)MNgk
MNg;—1 lm
1 1 MN i G
2 e P D e P v wn i I (36)
(1,-- 5 lmNgj—1) m=1 I m m i (p’L J) k#j >‘k —Aj )
OSII,"',IMNgj_lsMNgj—l

1422+ + (MNgj - Diyng; -1 = MNgj — 1

where K is the number of users, M is the number of transmit antennas per user, N is
the number of antennas at the receiver, and other variables are as defined in Appendix A.
Note that (36) can be used for the computation of the PEP when the channel estimates are

perfect, by substituting § = k = € = 1 in (70), which is obvious from (28) and (32).

From the PEP expression in (36), we obtain an upper bound on the average BER. The
derivation of the upper bound on the BER is given in Appendix B. The expression for the

bound on the BER is given by (see Appendix B)
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2QK 12QK 1

j k
Plew) < sox XX PBY OB =16 =)
Jj=

2QK 12QK 1

+ Z Z ()|b(k)_1 b() ~1)]. (37)

Because of symmetry, for the case of perfect channel estimation, the expression for the bound

on the BER in (37) can be simplified to

2QK—19QK—-1
P(ey) < o > S PY - b®pD =1, bk = )]. (38)
j=1 k=1

4 Channel Estimation - 11

The channel estimation scheme I analyzed in the previous section suffers from two disadvan-
tages. Firstly, it requires QK x L, pilot bits for estimation. Secondly, the pseudo-inverse of
a QK x L, matrix, where L, > QK, has to exist, which is a difficult proposition. We address
these two issues through channel estimation scheme II. In channel estimation scheme 11, each
user is assumed to transmit a sequence of () pilot bits only once for the purpose of channel
estimation at the receiver, i.e., a total of QK bits are transmitted. But here we exploit the
structure of the channel matrix in such a way that it is computationally less complex than
the channel estimation scheme I, as follows. From (19), the received vector due to the @

pilot bits is obtained as

y, = FHb, +n,, (39)

where b, is the composite pilot vector consisting of the ) pilot bits from each of the K users.

Using (58), (39) can be rewritten as
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y, =FB,h +n,, (40)
where B, has properties similar to (59) and h is a complex Gaussian random vector such
that E[h] = Ogkx: and E[hhf] = QIk, and

E [n,] = 0grx1, E [npn] = 20"Tgx. (41)

The least-squares estimate of the channel vector h can then be obtained as

ﬁ = (FBp)_l }A’p- (42)

For the above equation to hold, the matrix B, has to be invertible. From (40) and (42),

h=h+ (FB,) 'n,. (43)

In channel estimation scheme II, the choice of the pilot matrix B, is easier than in scheme I
because we now have to find an invertible square matrix of size QK , instead of a rectangular
matrix of size QK x Ly, L, > QK which has a pseudo-inverse. In the following subsections,

we present the ML criterion and BER analysis for the channel estimation scheme 1I.

4.1 ML Criterion

Using the vector representation of the multiuser received signal in (19), the ML multiuser
detection criterion with channel estimation scheme II can be written as follows. From (42),
we obtain the estimates of the channel gains at the receiver. The ML estimate of the

transmitted bit vector, b, (comprising the bits from all users) is then given by
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N
b = arg{m“i,nZHSr(j)—FH(j)w||2}
i=1
N . o~ .
= arg{min)_ [ — FWh|? b, (44)
7j=1

where the superscript (j) in y and h denotes the receive antenna index, and the min,, is
over all possible bit vectors of length QK. The one to one correspondence between vectors
w, b and b, and matrices W, B and B, respectively, is illustrated by (60). Substituting (40)

in (44),

N
b=arg {m“ilnz |F(B - W)h®) + n) — FW (FB,)™' n§,ﬂ'>||2} . (45)

j=1

4.2 BER Analysis

The PEP, P(b — b) is given by

N

P(b —b) = Pr{ S IFB -B)h®) +n@) —FB (FB,) ' n{|? - |[n¥) —FB (FB,) ' n{)|? < o}.
7j=1

(46)

Define the metric D as

N
D=3 Ju?|? —[lv)?, (47)
j=1
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where

u¥) = F(B-B)h®) + 1) — FB (FB,) " n{¥)
F(B - B)h® + n' @) — An{),

vi) = nl) - FB (FB, ) nl)
— 1l — AnG) W (48)
A = FB (FBp)_f,
A = FB(FB,) .
Again, (47) can be written in the form
D =VIisV, (49)
where
a®
(™)
u
V= v(l) ) (50)
v
I 0
g _ | Texn _ 51
[ 0 _IQKN- ( )

The decision variable D in (49) is in Hermitian quadratic form in the complex Gaussian
random vector V. We again use [14] to write ®p(jw), in closed-form. The derivation of the
PEP using the characteristic function is given in Appendix C. The closed-form expression

for the PEP for the channel estimation scheme II is obtained as (see Appendix C)

~ (_,\])N(QK—gj)

P(b—Db)=
( ) ;H( —)\)N”Hk;ﬁ(/\k_)\)Ngk
Ngj_l Im
1 1 N 'rzp e AL
2 I e e\ oy 2 , (52)
(1,5 ing;—1) m=1 I m m ( i ( k#j )‘k _)‘) )]
0<t1, -+, lNg;—1 S Ngj — 1

li+2l2+---+(Ngj —1)ing;—1=Ng; — 1
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where K is the number of users, M is the number of transmit antennas per user, N is the

number of antennas at the receiver, and other variables are as defined in Appendix C.

Using the expression for PEP in the above, we obtain an upper bound on the bit error
probability as follows. Let bl), 1 < j < 29K be the set of QK-bit vectors comprising of Q

bits from each of the K users. Suppose b(*) was the transmitted vector. Define

N
=1
where ¥, F and h and B are as defined in (44). If b") is the received vector, define

20K

Pegact (b*® = b)) =Pr | () (D1 < D) | - (54)

m#l

It is noted that the PEP in (52) is nothing but P (b(’“) — b(l)) = Pr (D, < Dy). It is clear

that

Peact (b® — b)) < P (b® — b?) . (55)

Let P(e;,) denote the probability of error for the ¢** bit of the i user, ¢ = 1,2,---,Q and

i=1,2,---, K. An upper bound on P(e;,) is then given by

2QK 12QK 1

k
Ple;) < 2QK > 2 PbY — bW =1, = 1)
j=

2QK 12QK 1

- Z Z bk = 1,6 = ~1)]. (56)
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5 Numerical Results

In this section, we present the numerical results of the error performance of the space-time
coded ML multiuser detection with perfect as well as imperfect channel estimates. First,
we present the error performance of the channel estimation scheme I in Figs. 1-5. Fig. 1
shows both the analytically computed PEP (Eqn. (36)) as well as the PEP obtained through
simulations, as a function of SNR for the channel estimation scheme I, for M =2, N =1,
K =2, p = 0.2, transmitted bit vector b = (1,1,1,—1)T, which is erroneously decoded as
vector b = (=1,—1,1,—1)T. All users are assumed to be received with equal power. As
evident from the figure, the analytical and simulation results tally very well, which validates
the correctness of the PEP expression in (36) for the channel estimation scheme I. Fig. 2
shows the PEP plots for the cases of both perfect channel estimation as well as imperfect
channel estimation scheme I, for K =2, M =2 N =1, p =02, b = (1,1,1,1)T and
b = (1,1,—1,—1)T. Tt can be seen that, as expected, the PEP degrades with imperfect
channel estimation compared to the perfect channel estimates case. From Fig. 2, it is seen
that a PEP of 1072 is achieved at an average SNR of approximately 8 dB, whereas to achieve
the same PEP, an average SNR of approximately 12 dB is needed when the channel estimates

are imperfect.

Fig. 3 presents the bit error rate performance obtained through the analytical bound (com-
puted using (37)) as well as simulations, for K = 2, M = 2, N =1 and p = 0.2. Plots for
both perfect as well as imperfect channel estimates I are shown. It can be observed that
the analytical BER bounds become increasingly tight for large SNR values (> 10 dB). Also,
imperfect channel estimates are seen to degrade the BER performance, as expected. For
example, at a BER of 1072, the performance loss is about 4 dB in the case of imperfect

channel estimation I, compared to the perfect channel estimation case.

Figs. 4 and 5 show the bound on the BER as a function of average SNR for M = 2,

N = 1,2, (fixed number of transmit antennas and varying number of receive antennas),



17

and N =2, M = 1,2, (fixed number of receive antennas and varying number of transmit
antennas), respectively, for the cases of perfect as well as imperfect channel estimates I.
From Figs. 4 and 5, it is seen that the degradation in BER performance due to imperfect
channel estimates can be compensated by using more number of receive/transmit antennas.
For example, in Fig. 5, at about 12 dB average SNR and M = 1, the BER worsens from
approximately 2 x 1072 to 5 x 1072 for imperfect channel estimation scheme I compared to
the perfect channel estimates case. This loss in performance can be compensated by using
M = 2 transmit antennas where, even with imperfect channel estimation, a BER of 2 x 1072

is achieved at the same 12 dB SNR.

In Figs. 6 and 7, we provide the error performance of imperfect channel estimation scheme
II. Fig. 6 shows both the analytically computed PEP (from (52)) as well as the PEP
obtained through simulations as a function of SNR for the channel estimation scheme II, for
M=2N=1,K=2p=02b=(1,1,-1,1)T and b = (—=1,-1,—-1,—1)". Here again,
the good match between analytical and simulation results validates the correctness of the
PEP expression in (52). In Fig. 7, we present the behavior of the bound on the probability
of bit error for the case of channel estimation II, obtained from (56), with respect to the
BER obtained through simulations, for M =2, N =1, K =2 and p = 0.2. From Fig. 7, it
is observed that the bound is quite loose for low SNR values (< 10 dB), but is increasingly

tight for high SNR values (> 10 dB).

Finally, Fig. 8 provides the comparison of the analytical BER bounds for the three cases
of interest, namely, a) perfect channel estimates b) channel estimation scheme I, and c)
channel estimation scheme II, for M = 2, N = 1,2, K = 2, and p = 0.2. These bounds
are computed using (38), (37), and (56), respectively. It is observed that the performance of
channel estimation schemes I and II are quite similar at high SNR values, where the bounds
are shown to be tight. Fig. 8 also indicates that the performance degradation due to channel

estimation can be compensated by having more number of receive antennas.
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6 Conclusions

We analyzed the performance of the optimum ML multiuser detection for a space-time coded
CDMA system with and without channel estimation errors at the receiver. We provided an
analysis to quantify the effect of imperfect channel estimation on the BER performance of
space-time coded ML multiuser detection. We considered two channel estimation schemes
which require transmission of pilot symbols from different users for the purpose of channel
estimation at the receiver. We derived an exact expression for the PEP, using the charac-
teristic function approach, and using it, derived an upper bound on the BER. We showed
that the performance analysis of space-time coded multiuser detection for the case of perfect
channel estimation is a special case of imperfect channel estimation. Through simulations,
we showed that the analytical BER bounds are tight for large SNR values for the cases of
perfect as well as imperfect channel estimation. It was shown that the degradation in the
performance of the space-time coded multiuser detector due to channel estimation errors can

be compensated by using more number of transmit/receive antennas.

Appendix A - PEP for Channel Estimation I

In this Appendix, we derive the characteristic function and the PEP for ML multiuser

detection with channel estimation scheme I. Let

T = E[VVT], (57)

where V is given by (34). To evaluate T in the above, we write H¥)b in an alternate form

2]
HU)b = Bh7, (58)



where B is a QK x QK matrix, which for M = () = 8 is defined as

B, B, Bz B; Bsj

B, -B; -B, B; -—-Bg

B; By -B; -B; —By

B— B, -B; B; -B; —Bg
Bs B¢ By Bg -—-B;

B¢ -Bs Bs -B; B

B -Bs -Bs Bs Bj

Bs B -Bs —Bs B,

Bs
B;
_B;
By
_B,
_B,
_B,
B;

B
Bs
B;
_B,
_B;
B,
-B,
~B,

Bs
_B.
Bg
B;
~B,
_B,
B,

i -B; |
where B, = A, diag{b,}, A, = diag{ A1y, Asg, -+, Arq}, 4 =1,2,--+,Q.
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Defining h, = [hig, hog, - -+, hig)" and h = [h] hI - --,hg]T, Eh] = 0ggx: and E[hhf] =

(Igk. For example, when K = 2, M = Q = 2, dropping the index j for convenience, we

have
ha 0 hip O
_ 0 hot 0 hg
Hb = —hiz 0  hyy O
0 —hos 0  ho
bin 0 by 0
_ 0 by 0 boo
N bi 0 —byy O
0 by 0 —by
= Bh.

bll
b21
b12
b22
hll
h21
h12
h22

(60)

For values of M and @ other than 8 (M,Q < 8), B is obtained as follows. For M =

Q € {1,2,4}, B is given by the upper leftmost submatrix of order QK x QK in (59).

For M ¢ {1,2,4,8}, M < Q. In this case, B is given by the QK x QK upper leftmost

submatrix in (59) with all the entries in the ¢'* column (M < ¢ < Q) as zeros. Also, let

B = (1 + (:Té) K= (1 + éTc) and € = (1 + cTc). With the above definitions, we obtain

(i) <j>f] _J0 3 3 L F ]
E [“ " { OF(B — B)(B - B)'F" +20°8Igx i=j (61)
Wit _] 0 L F ]
E[u v ] { QO'ZHIQK l:] (62)
@it _] 0 LF
Elvfu?] { 202kIgx i=j (63)
OGN L LF
BV {%%IQK i (64)
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from which T can be evaluated. Now, the characteristic function of D, ®p(jw) can be
written as (Ref. [14], Eqn. (4.a))

1
®p(jw) = 65

where G = TS, and S is given by (35). From (61), (62), (63) and (64), we can write G as

G= [ Iv ® (5:F (B — B)(B — B)'F” + flgx) —Iy ® rlgx ] : (66)
IN®I€IQK —IN®€IQK
Defining G as
G _ | GEF(B-B)(B-B)'F" +5lox) —rlox (67)
K,IQK —GIQK
(65) can be written as
_ 1 2QK 1
(DD(]W) = . = = . N ’ (68)
Lox — 2jwoGIY i1 |1 = 2jwo? [N
where :\1, cee S\QQ k are the eigenvalues of G. For the case when the amplitudes of all bits

from all the users are the same, ie., A;; = Ajp,=A4,4,j=1,2,---,K,¢q=1,2,---,0Q, and
M = @, (68) can be written in the form

1 2K 1
B (i) — L 69
p(jw) Tokx — 2jwo?GMN =5 11— 2jwo )| MN’ (69)

where G is given by
WPAPT + Bl —rlk
K,IK —EIK ’

G = (70)

where P is the Cholesky decomposition of the R matrix (i.e., R = PTP), A is given by

1 & -
A= P ;(Bi - B,)?, (71)
and Ay, .-+, Ao are the eigenvalues G. Substituting z = 2jwo?, we have
2K 1
P = —_— 72

From the above characteristic function of D, the PEP in (29) can be obtained as [9],[15]

P(b—b) = — ; o i ol j:;_—l {(z - )\k)Pk(I)DT(Z)} , (73)
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where )\, are the negative eigenvalues of G, Re(\;) < 0, and py, is the multiplicity of A\,. We

obtain (73) in closed-form as follows. The characteristic equation of G is given by

det| Ny — G| = =0, (74)

where v = gfj is the average SNR, and J = PAP”. Eqn. (74) can be shown to reduce to
the form [16]

det|(A — B) (A + )Ix — y(A + )T + k%Ix| = 0. (75)

If p1,- -+, pr, are the L distinct eigenvalues of J, each with multiplicity v;, i.e. YF , v; = 2K,

then (75) reduces to

[L{X = (8= e+ mm)h = (Be = 5+ qpue) | = 0. (76)

From Sylvester's Law of Inertia [17], the eigenvalues of J are non-negative (i.e., y; > 0).
Hence, the roots of (76) are all real. Denote the negative roots as \;, with multiplicities
9j,J = 1,2,---, Ly and the non-negative roots as p;, with multiplicities r;,7 = 1,2,--+, Lp,
so that 37, g; + 32,7 = 2K. With this, we can now follow the steps similar to the ones in

[9], and obtain the closed-form expression for the PEP as

Z ( )\])MN(Qngj)
- TL (o1 = )" Ty Ok — 275

MNg;—1 Im
1 1 Tsz Z gk:)\k;
> I | N . (77)
(1,2 lmNgj—1) m=1 lm' lm ( i J) k#j >‘k —Aj )

0 < 11,---,lMNg]._1 < MNg; -1

li+2l2+---+(MNg; — Dlmng;—1 =MNg; — 1

Appendix B - Bound on the BER

In this Appendix, we derive an upper bound on the average BER for ML multiuser detection

with channel estimation scheme I. Using the expression for PEP in (77), we obtain an upper
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bound on the bit error probability as follows. Let b, 1 < j < 29K be the set of QK-bit

vectors comprising of @ bits from each of the K users. Suppose b*) was the transmitted

vector. Define

N
D,, = Z ||§,(J') — FHOp™ I°, m=1,2,---,29,
Jj=1

where §, F and H are as defined in (26). If b® is the received vector, define

20K
Povoct (b(’“) — b<l>) =Pr| () (D < Dy) |-

m=1

m;_él

It is noted that the PEP in (77) is nothing but

It is clear that

Pe:ca,ct (b(k) — b(l)) S P <b(k) — b(l)) .

(81)

Let P(e;,) denote the probability of error for the ¢™ bit of the i user, ¢ =1,2,---,Q and

i=1,2,---, K. P(e;) is then given by

2QK—1 . . .
Pleg) = 3 Pleiyb® % = 1)P(b) b = 1)
j=1
2QK—1
k k
+ 3 Plesg®, 5% = —1)P(b®, ) = _1).
k=1

P(eiq| b, bg) = 41) and P(bY), b%) = +1) are then given by

(82)
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9QK-1
P (e5g[bD, b = 1) = Z Pegact (b9 = bWp) =1,53) = —1) (83)
2QK 1 '
P (eig]b®, b5 = 1) =3 Pugaet (b® = DY) = 1,65 = —1) , (84)
j=1
- A 1
P®Y, b =1) = Pb® 5 = 1) = 5o (85)

From (81), (82), (83), (84) and(85), an upper bound on the bit error probability P(e;,) is

obtained as

2QK 12QK 1

Pleg) < zQK )y Z b — b® o) = 1,5 = 1)
j=
9QK—-1 9QK—1
+ Z Z P(b® — b b = 1,59 = -1)|. (86)

Appendix C - PEP for Channel Estimation 11

In this Appendix, we derive the characteristic function and PEP for ML multiuser detection

with channel estimation scheme II. Let
= E[VVT], (87)
where V is given by (50). To evaluate T in the above,

)ul 0 i#]
@) g — 5 : o
E [u " ] B { QF(B — B)(B — B)"FT + 202 (IQK + AAT) i=j (88)

o 0 i
@0t — -
Elu®v ]_{ 20% (Igx + AAT) i=j (89)
o 0 i
(), — -
Bl u?] {202 (Iox + AAT) i= (90)
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oot [0 i#]
E[V( )V(J) ] — { 202 (IQK i AAT) 7,:_] (91)

from which T can be evaluated. Now, the characteristic function of D, ®p(jw) can be

written as (Ref. [14], Eqn. (4.a))

1
dp(jw) = 92
D(]w) ‘I2NQK _ 2_].(4)0'2G‘ ’ ( )

where G = TS, and S is given by (51). From (88), (89), (90), (91), we can write G as

oo [ Iy ® (3%F(B - B)(B - B)TF” + Igx + AAT) —Iy® (Igx + AAT (03)
B [ Iy ® (IQK+AAT) Iy ® (Igx + AAT) |

Defining G as

& (ZF(B - B)(B - B)TFT +Igx + AAT) — (Igx + AAT)
B Iok + AAT — (Tox + AAT)

(92) can be written as

1 QK 1
&p(jw) = = _ : 95
p(jw) Lok — 2jwo?GI¥ 1= 11— 2jwo )|V (95)
where A, -, Mgk are the eigenvalues of G. Substituting z = 2jwo?, we have
2QK 1
d = —_. 96
From the above characteristic function of D, the PEP in (46) can be obtained as [9],[15]
~ 1 dpr—1 dp (Z)
P(b—b)=— — A )P*
(b —b) Xk: (pr — 1)! dzpr—1 {(Z k) e ; (97)

where )\; are the negative eigenvalues of G, Re(\) < 0, and py, is the multiplicity of A\,. We

obtain (97) in closed-form as follows.

Denote the negative roots as \;, with multiplicities g;,7 = 1,2, -+, Ly and the non-negative
roots as p;, with multiplicities r;,7 = 1,2,---, Lp, so that 3>, g; + 3, = 2QK. Following

similar steps as in [9], we can obtain the closed-form expression for the PEP as
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~ (_,\])N@K—gj)

P(b%b)zgn( —)\)Nr"'Hk;é(Ak_)‘)Ngk

Im
1 N rzpz gA’”
E+E<;( —+3 G b ) )] (98)

k#] k—

Ng;—1 1
> I
(-5 iNg;—1) m=1
0< 1, -+, lNg;—1 < Ng; —1
l+2l2+---+(Ngj —1)ing;—1=Ng; — 1
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Figure 1: Pairwise error probability as a function of average SNR for K =2, M =2, N =1,
p=02b=(1,1,1,-1)", and b = (=1,—1,1,—1)". Case of imperfect channel estimates 1.

Analysis and simulation.
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Figure 2: Pairwise error probability as a function of average SNR for K =2, M =2, N =1,

p=02b=(1,111)7, and b = (1,1,

channel estimates I. Analysis.
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Figure 3: Bit error rate performance as a function of average SNR for K =2, M =2, N =1,
and p = 0.2. Analytical bound as well as simulations. Cases of perfect as well as imperfect
channel estimates I.
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Figure 4: Bit error probability bound as a function of average SNR for different number of
Rx antennas, N = 1,2, K =2, M = 2, and p = 0.2. Cases of perfect as well as imperfect
channel estimates I. Analysis.
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Figure 5: Bit error probability bound as a function of average SNR for different number of
Tx antennas, M = 1,2, K =2, N =1, and p = 0.2. Cases of perfect as well as imperfect
channel estimates I. Analysis.
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Figure 6: PEP as a function of average SNR for M = 2. K =2, N =1, p = 0.2,
b=(1,1,1,-1)", and b = (—1,1,1,—1)7. Case of imperfect channel estimates II. Analysis
and simulations.
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Figure 7: BER as a function of average SNR for M =2. K =2, N =1, and p = 0.2. Case
of imperfect channel estimates II. Analytical BER bound as well as simulations.
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Figure 8: BER bounds as a function of average SNR for M = 2. K =2, N = 1,2, and
p = 0.2. Case of perfect as well as imperfect channel estimates I and II. Analysis.



