
1

AveragingQ(‖X‖) for a Complex Gaussian
Random VectorX: A Novel Approach

G. V. V. Sharma
Applied Research Group

Satyam Computer Services Limited,
Bangalore, INDIA 560012

Email: VishwanathSharma@satyam.com

Abstract— In this paper, we compute E[Q(‖X‖], where X is
an n × 1 complex circularly Gaussian vector, ‖X‖ is the L2

norm of X and E[ ] is the expectation operator. This is done
by finding the characteristic function of the decision variable
and subsequently applying the inversion formula to obtain a
one dimensional real integral expression. This integral is then
converted to a contour integral which is evaluated using a variant
of the Cauchy’s integral formula to obtain an expression for
E[Q(‖X‖]. We then provide some applications of the above
result by obtaining expressions for error probabilities in fading
channels.

I. I NTRODUCTION

The average of a Q-function expression is of interest in
finding general expressions for the probability of symbol/bit
error in slowly fading communication channels, where the
argument of the Q-function is a function of a random variable
with a well defined probability density function that depends
on the kind of fading experienced by the channel [1]. Another
application is in finding the bit error probability of the desired
user in a fading channel when multiuser detection is being
employed at the receiver [2].

The average of a Q-function whose argument is proportional
to the square root of a non-central chi-squared random variable
with 2n degrees of freedom is obtained by deriving a recursion
relation [3]. However, this approach involves integrating the
product of the Q-function and the chi-square probability
density function. [2]. For the central chi-square distribution, an
approach using Craig’s formula [4] and the moment generating
function (MGF) of the random variable is outlined in [1]. This
method is quite complicated but gives the most general closed
form expression when the Q-function argument is proportional
to the square root of a Nakagami-m [5] random variable.

In this paper, we propose a simple method to average the
Q-function whose argument is theL2 norm of a zero-mean
complex circularly Gaussian vector using the characteristic
function (CF) of a non-central chi-square distribution [5] and
the inversion formula for the cumulative distribution function
[6].

II. PROBLEM STATEMENT

Let X be an n × 1 vector whose entries are complex
circularly Gaussian random variables such that

E[X] = m, (1)

E[(X−m)(X−m)†] = 2σ2In,

where{†} represents the complex conjugate-transpose opera-
tion andIn is then×n identity matrix. LetR = ‖X‖2, where
‖X‖ is theL2 norm of the vectorX. ThenR is non-central
chi-square distributed with2n degrees of freedom [5] and

E[Q(‖X‖] = E[Q(
√
R)]. (2)

Let V be a Gaussian random variable with zero mean and unit
variance. From [7], we obtain

E[Q(
√
R)] = E[P (V >

√
R)] (3)

=
1
2
P (R− V 2 < 0)

=
1
2
P (∆ < 0),

where∆ = R−V 2. The characteristic function of∆ is given
by

Φ∆(t) = E[ejt∆] = E[ejtR]E[e−jtV 2
] (4)

= ΦR(t)ΦV 2(−t).

Since V is Gaussian,V 2 chi-square distributed. Hence, we
obtain [5]

ΦR(t) =
e

j‖m‖2t

1−2jσ2t

(1− 2jσ2t)n
, (5)

ΦV 2(−t) =
1

(1 + 2jt)
1
2
.

SubstitutingΦR(t) andΦV 2(−t) from (5) in (4),

Φ∆(t) =
e

j‖m‖2t

1−2jσ2t

(1− 2jσ2t)n(1 + 2jt)
1
2
. (6)

Since

j‖m‖2t

1− 2jσ2t
= −‖m‖2

2σ2
+

‖m‖2

2σ2(1− 2jσ2t)
, (7)

(6) can be written as

Φ∆(t) =
e−

‖m‖2

2σ2 e
‖m‖2

2σ2(1−2jσ2t)

(1− 2jσ2t)n(1 + 2jt)
1
2
. (8)
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According to the inversion formula of Gil-Pelaez [6], the
cumulative distribution function

F∆(x) = P (∆ < x) (9)

=
1
2

+
1

2πj

∫ ∞

0

ejtxΦ∆(−t)− e−jtxΦ∆(t)
t

dt.

From (9), we have

P (∆ < 0) =
1
2

+
1

2πj

∫ ∞

0

Φ∆(−t)− Φ∆(t)
t

dt (10)

=
1
2

+
1

2πj

∫ ∞

−∞

Φ∆(−t)
t

dt.

From (8) and (10),

P (∆ < 0) =
1
2

+
e−

‖m‖2

2σ2

2πj

∫ ∞

−∞

e
‖m‖2

2σ2(1+2jσ2t)

t(1− 2jt)
1
2 (1 + 2jσ2t)n

dt.

(11)
Expanding the exponential in the numerator of the integrand
in (11) as a power series and interchanging the order of
integration and summation, we obtain

P (∆ < 0) =
1

2
+

e
−‖m‖

2

2σ2

2πj

∞∑
p=0

1

p!

(
‖m‖2

2σ2

)p
∫ ∞

−∞

dt

t(1 − 2jt)
1
2 (1 + 2jσ2t)n+p

.

(12)

It is easy to verify that

1
t(1 + 2jσ2t)n

=
1
t
− 2jσ2

n∑
k=1

1
(1 + 2jσ2t)k

. (13)

If we let

In =
∫ ∞

−∞

dt

t(1− 2jt)
1
2 (1 + 2jσ2t)n

, (14)

(12) can be written as

P (∆ < 0) =
1
2

+
e−

‖m‖2

2σ2

2πj

∞∑
p=0

1
p!

(
‖m‖2

2σ2

)p

In+p (15)

From (13) and (14), we now have

In =

∫ ∞
−∞

1

(1− 2jt)
1
2

[
1

t
− 2jσ2

n∑
k=1

1

(1 + 2jσ2t)k

]
dt, (16)

which, after changing the order of the integral and the
summation can be written as

In =

∫ ∞
−∞

dt

t(1− 2jt)
1
2
− 2jσ2

n∑
k=1

∫ ∞
−∞

dt

(1− 2jt)
1
2 (1 + 2jσ2t)k

.

In the above, letting

J =
∫ ∞

−∞

dt

t(1− 2jt)
1
2
, (17)

Jk = 2jσ2

∫ ∞

−∞

dt

(1− 2jt)
1
2 (1 + 2jσ2t)k

, (18)

we can write (14) as

In = J −
n∑

k=1

Jk. (19)

In the next section, we first show thatJ andJk can be reduced
to simple real and contour integrals respectively and then solve
them.

III. SOLVING FOR In

A. The Real Integral

In (17), through a change of variables (fromt to −t), we
obtain

J = −
∫ ∞

−∞

dt

t(1 + 2jt)
1
2
. (20)

Adding the expressions forJ in (17) and (20),

2J =
∫ ∞

−∞

dt

t(1− 2jt)
1
2
−
∫ ∞

−∞

dt

t(1 + 2jt)
1
2

(21)

=
∫ ∞

−∞

1
t

[
(1 + 2jt)

1
2 − (1− 2jt)

1
2

(1 + 4t2)
1
2

]
dt. (22)

Multiplying the numerator and denominator of the integrand
in (22) by

[
(1 + 2jt)

1
2 − (1− 2jt)

1
2

]
,

J =
1

2

∫ ∞
−∞

1

t

 (1 + 2jt)− (1− 2jt)

(1 + 4t2)
1
2

{
(1 + 2jt)

1
2 + (1− 2jt)

1
2

}
 dt. (23)

Cancelling out all common factors,

J = 2j
∫ ∞

−∞

dt

(1 + 4t2)
1
2

{
(1 + 2jt)

1
2 + (1− 2jt)

1
2

} . (24)

In the above equation, we note that(1− 2j)
1
2 is the complex

cojugate of(1 + 2j)
1
2 . Hence, the integrand in (24) is real as

well as an even function oft. Thus, we get (see Appendix)

J = 4j

∫ ∞
0

dt

(1 + 4t2)
1
2

{
(1 + 2jt)

1
2 + (1− 2jt)

1
2

} (25)

= jπ. (26)

B. The contour integral

The integral in (18) can be solved easily if it can be
converted to a contour integral. Towards this end, we state
the following Lemma [8].

Lemma 3.1: Let g(x) be a function of a real variablex such
that |g(x)| has a denominator different from zero for all real
x and is of degree in excess of a unit higher than the degree
of the numerator. Then∫ ∞

−∞
g(x)dx =

∫
C

g(z)dz, (27)

whereC is a semicircle in the complex upper half-plane whose
diameter is the real-axis and the integration is in the anti-
clockwise sense.
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For the integrand in (18),k ≥ 1 and the degree of the
denominator is greater than that of the numerator byk + 1

2 .
From Lemma 3.1, we get

Jk = 2jσ2

∫
C

dz

(1− 2jz)
1
2 (1 + 2jσ2z)k

(28)

= (2jσ2)1−k

∫
C

dz

(1− 2jz)
1
2 (z − j

2σ2 )k
.

We now present a formula for finding the derivatives of an
analytic function [8] and subsequently use it to evaluateIk.

Lemma 3.2: Ifg(z) is analytic in a domain D, then it has
derivatives of all orders in D which are then also analytic
functions in D. The value of the(k − 1)th derivative at a
point z0 in D is given by the formula

g(k−1)(z0) =
(k − 1)!

2πj

∫
L

g(z)
(z − z0)k

(k = 1, 2, . . .); (29)

where L is any simple closed path in D which enclosesz0 an
whose full interior belongs to D; the curve is traversed in the
counterclockwise sense andg(0)(z0) = g(z0), by definition.
The function

f(z) =
1

(1− 2jz)
1
2

(30)

is analytic in the upper half-plane andC is a closed path in
it. Since (28) can be written as

Jk = (2jσ2)1−k

∫
C

f(z)
(z − j

2σ2 )k
dz, (31)

and the point j
2σ2 lies within C, using Lemma 3.2, we obtain

Jk =
2πj(2jσ2)1−k

(k − 1)!
dk−1

dzk−1

[
1

(1− 2jz)
1
2

]
z= j

2σ2

(32)

which, after some simplification, yields

Jk =
2πjσ√
1 + σ2

, k = 1, (33)

=
2πjσ

(k − 1)!

1
2

3
2 . . .

(2k−3)
2

(1 + σ2)k− 1
2
, 1 < k ≤ n.

Substituting the expressions obtained in (26) and (33) in (19),
we get

In = jπ − 2πjσ√
1 + σ2

[
1 +

n∑
k=2

1
2
. 3
2

. . . (2k−3)
2

(k − 1)!(1 + σ2)k−1

]
(34)

= jπ − 2πjσ√
1 + σ2

[
1 +

n−1∑
k=1

1
2
. 3
2

. . . (2k−1)
2

k!(1 + σ2)k

]

= 2πj

[
1

2
− σ√

1 + σ2

n−1∑
k=0

(
2k

k

){
1

4(1 + σ2)

}k
]

.

IV. CLOSED FORM EXPRESSION FORE[Q(‖X‖)]
From (15) and (34),

P (∆ < 0) = 1−
σe
− ‖m‖

2

2σ2

√
1 + σ2

∞∑
p=0

n+p−1∑
k=0

1

p!

(
‖m‖2

2σ2

)p

(35)

×
(

2k

k

){
1

4(1 + σ2)

}k

.

Let α = ‖m‖
2σ2 andβ = 1

1+σ2 . Then, changing the indices of
summation,

P (∆ < 0) = 1− e−α
√

1− β(A+B) (36)

where1

A =
∞∑

p=0

p∑
k=0

(
2k
k

){
β

4

}k
αp

p!
, (37)

B =
∞∑

p=0

n+p−1∑
k=p

(
2k
k

){
β

4

}k
αp

p!
. (38)

We define thefactorial function[9] as

(γ)q =
q∏

r=1

(γ + r − 1), (γ)0 = 1, γ 6= 0, (39)

whereq is a positive integer.

A. The B series

Since (
2k
k

)
=

4k
(

1
2

)
k

k!
, (40)

we obtain

B =
∞∑

p=0

n+p−1∑
k=p

(
1
2

)
k
βk

k!
αp

p!
. (41)

Changing the limits of summation in (41),

B =
∞∑

p=0

n−1∑
k=0

(
1
2

)
k+p

βk+p

(k + p)!
αp

p!
(42)

=
n−1∑
k=0

(
1
2

)
k
βk

k!

∞∑
p=0

(
1
2 + k

)
p

(k + 1)p

(αβ)p

p!

=
n−1∑
k=0

(
2k
k

)(
β

4

)k

1F1

(
1
2

+ k; k + 1;αβ
)
,

where 1F1(a; b;x) is the confluent hypergeometric function
[9]. According to Kummer’s formula for the confluent hyper-
geometric function,

1F1(a; b;x) = ex
1F1(b− a; b;−x). (43)

Using this result in (42), we obtain

B = exp(αβ)
n−1∑
k=0

(
2k
k

)(
β

4

)k

1F1

(
1
2
; k + 1;−αβ

)
.

(44)

1We assume that all the infinite series considered henceforth converge.
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B. The A series

We rewrite (37) as

A =
∞∑

p=0

∞∑
k=0

(
1
2

)
k
βk

k!
αp

p!
−

∞∑
p=0

∞∑
k=p+1

(
1
2

)
k
βk

k!
αp

p!
(45)

In the above,

∞∑
p=0

∞∑
k=0

(
1
2

)
k
βk

k!
αp

p!
=

( ∞∑
p=0

αp

p!

)( ∞∑
k=0

(
1
2

)
k
βk

k!

)
. (46)

Since|β| < 1, the second sum on the right hand side of (46)
is the binomial series, i.e.,

∞∑
k=0

(
1
2

)
k
βk

k!
= (1− β)−

1
2 . (47)

Thus,

A =
eα

√
1− β

− S, (48)

where

S =
∞∑

p=0

∞∑
k=p+1

(
1
2

)
k
βk

k!
αp

p!
(49)

=
∞∑

p=0

∞∑
k=1

(
1
2

)
k+p

βk+p

(k + p)!
αp

p!
.

Following the steps in (42), (49) can be written as

S =
∞∑

k=1

(
2k
k

)(
β

4

)k

1F1

(
1
2

+ k; k + 1;αβ
)
. (50)

The above infinite series has a closed form expression [3]

S =
2 exp(αβ

2
)√

1− β
(51)

×
[
exp

{
α

2
(1 + β)

}
Q1(u, w)−

1

2
(1 +

√
1− β)I0

(
αβ

2

)]
, (52)

where

u =
√
α

2
(2− β)− 2

β

√
1− β (53)

w =
√
α

2
(2− β) +

2
β

√
1− β,

andQ1(u,w) is the Marcum Q-function [5]. Substituting (51)
in (48) gives us a closed form expression forA. Since we
already have a compact expression forB in (44), replacing
the infinite series forA and B in (35) by their respective
closed form expressions, and noting from (2) and (3) that

E[Q(‖X‖)] =
1
2
P (∆ < 0), (54)

we obtain an exact expression forE[Q(‖X|)]2.
Corollary: WhenX is zero mean, from (34) and (35), we

obtain

2Lindsey, in [3], using a fundamentally different approach, has obtained a
closed form expression in a completely different form.

P (∆ < 0) =
1

2
+

In

2πj
(55)

= 1− σ√
1 + σ2

n−1∑
k=0

(
2k

k

){
1

4(1 + σ2)

}k

.

Substituting the above in (54) leads to the well known result
[2]

E[Q(‖X‖)] =
1

2

[
1− σ√

1 + σ2

n−1∑
k=0

(
2k

k

){
1

4(1 + σ2)

}k
]

(56)

V. EXAMPLE : AVERAGE PROBABILITY OF ERROR FOR

NAKAGAMI -m FADING CHANNELS

If a random variableα is Nakagami-m distributed, the
random variableγ = α2εb

N0
has the probability density function

[5]

p(γ) =
mm

Γ(m)γ̄
γm−1e−mγ/γ̄ , (57)

where γ̄ = E(α2)εb

N0
. For fading channels, the average proba-

bility of error is given by

Pe =
∫ ∞

0

Q(a
√
γ)pγ(γ)dγ, (58)

where a is a constant that depends on the specific modula-
tion/detection combination [1]. We note thatγ has the same
distribution asR (whenX has zero mean) withσ2 = γ̄

2m when
m is an integer [5]. Thus, after accounting for the constanta
in (58), the average probability of error for a Nakagami-m
fading channel is obtained as

Pe =
1

2

[
1−

√
a2γ̄

2m + a2γ̄

m−1∑
k=0

(
2k

k

){
2m

4(2m + a2γ̄)

}k
]

(59)

by substitutingσ2 = a2γ̄
2m and replacingn by m in (56). We

note that exactly the same result has been arrived at using a
different approach in [1], equation (5.18).

APPENDIX

Let 1 + 2jt = rejθ, wherer = (1 + 4t2)
1
2 and cos θ = 1

r .
Since

(1 + 2jt)
1
2 + (1− 2jt)

1
2 = 2r

1
2 cos

θ

2
, (60)

and

cos
θ

2
=

√
1
2

(1 + cos θ) (61)

=

√
1
2

(
1 +

1
r

)
,

the integrand in (25)

1

(1 + 4t2)
1
2

{
(1 + 2jt)

1
2 + (1− 2jt)

1
2

} =
1

2r
√

1+r
2

. (62)
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Hence,

J = 4j

∫ ∞
0

dt

(1 + 4t2)
1
2

{
(1 + 2jt)

1
2 + (1− 2jt)

1
2

} (63)

= 2
√

2j

∫ ∞
0

dt

(1 + 4t2)
1
2

{
1 + (1 + 4t2)

1
2

} 1
2

.

Substitutingt = tan φ
2 in the above,

J =
√

2j
∫ π

2

0

secφ√
1 + secφ

dφ. (64)

Let
√

1 + secφ =
√

2 secψ. Then

secφ√
1 + secφ

dφ =
√

2dψ. (65)

The integral in (64) now becomes

J = 2j
∫ π

2

0

dψ (66)

= jπ.
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