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Abstract—In this paper, we compute E[Q(||X||], where X is  where{t} represents the complex conjugate-transpose opera-
an n x 1 complex circularly Gaussian vector, [ X| is the L*  tion andI,, is then x n identity matrix. LetR = X2, where
norm of X and E[] is the expectation operator. This is done Xl is the L2 norm of the vectorX. Then R is non-central

by finding the characteristic function of the decision variable . S .
and subsequently applying the inversion formula to obtain a chi-square distributed wittn degrees of freedom [5] and

one dimensional real integral expression. This integral is then

converted to a contour integral which is evaluated using a variant EQIX|] = E[Q(\/ﬁ)] 2

of the Cauchy’s integral formula to obtain an expression for

E[Q(||IX]|]. We then provide some applications of the above LetV be a Gaussian random variable with zero mean and unit
result by obtaining expressions for error probabilities in fading  variance. From [7], we obtain

channels.
E[QWR)] = E[P(V>VR) ®)
I. INTRODUCTION lP R—V2<o
The average of a Q-function expression is of interest in T2 (R - <0)
finding general expressions for the probability of symbol/bit _ EP(A <0)
error in slowly fading communication channels, where the 2 ’

argument of the Q-function is a function of a random variabl(g, ..o A _ R_V2
with a well defined probability density function that dependg

on the kind of fading experienced by the channel [1]. Anothery

application is in finding the bit error probability of the desired DA(L)
user in a fading channel when multiuser detection is being
employed at the receiver [2].

The average of a Q-function whose argument is proportional
to the square root of a non-central chi-squared random variable , , - o
with 2n degrees of freedom is obtained by deriving a recursi hce V is GaussianV’* chi-square distributed. Hence, we
relation [3]. However, this approach involves integrating th%btam [5]

. The characteristic function ak is given

E[e/*2] = E[e’*R]EleV") @)
Dr(t)Py2(—t).

product of the Q-function and the chi-square probability jllm] %
density function. [2]. For the central chi-square distribution, an Dp(t) = el-2io% (5)
approach using Craig’s formula [4] and the moment generating (1—2j02t)"’
function (MGF) of the random variable is outlined in [1]. This 1
. . . . Oyz(—t) = ———.
method is quite complicated but gives the most general closed (1+2jt)2
form expression when the Q-function argument is proportional
to the square root of a Nakagami{5] random variable. ~ Substituting®(¢) and @2 (—t) from (5) in (4),
In this paper, we propose a simple method to average the L2t
Q-function whose argument is th&® norm of a zero-mean e1-2j0%t
complex circularly Gaussian vector using the characteristic Pa(t) = (1—2jo2t)n(1 +2jt)%' ©)
function (CF) of a non-central chi-square distribution [5] and
the inversion formula for the cumulative distribution functiorince
1ol jlmle_m)? )P -
[l. PROBLEM STATEMENT 1—2j02t 202 20%(1—2j0%t)’
_Let X be ann x 1 vector \_Nhose entries are comple>i6) can be written as
circularly Gaussian random variables such that
= lmp s
E[X] m, (1) (I)A(t) _ e 202 ¢ ( ) (8)

E(X-m)(X-m)l] = 2071, (1= 2jo2t)"(1+ 2jt)



According to the inversion formula of Gil-Pelaez [6], thdn the next section, we first show thétandJ; can be reduced

cumulative distribution function

Fa(z) = P(A<ux) ‘ ‘
1 1 [ eITPA(—t) — e TP A(E)

= -4+ dt.
2 " om5 J, t

From (9), we have

Pa<o) = Ly L[ ‘I’A(—t)t— Pa(?)
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5 - dt.
2 215 J_o t

From (8) and (10),

|2

e 202

| m 2

oo e202(1+2j02t)

P(A<0)=2 5

Expanding the exponential in the numerator of the integrand
in (11) as a power series and interchanging the order of

integration and summation, we obtain

o , oo
1 (HmH2>p dt

E . 252 1 ’
pt\ 29 o t(1 = 2j8) 2 (1 + 2j026)n+P

p=0

_lm?
e 202

1
P(A <0)=—+
2 27

(12)

It is easy to verify that

1 ~ 1
= - _ 9552 P — 13
t1+2jo2tyn ¢t 07 ; 1+ 2jo2t)F (13)
If we let
In :/ 1dt ) (14)
—oo (1 = 251)2 (1 + 2jo2t)

(12) can be written as

_ lm)?
e 202

2" 27

o~ L (m]*\”
> (o) oer 09

From (13) and (14), we now have

A e —
—00(172.]%)5 ¢

PA<0) =

av 1
2jo ; (1+2j02t)k1 dt, (16)

9)

dt (10)

. dt
o t(1 = 25) 3 (1 + 2jot)n
(11)

to simple real and contour integrals respectively and then solve
them.

Il. SOLVING FORI,
A. The Real Integral
In (17), through a change of variables (framo —t), we

obtain
e (20)
—oo t(1 4 2jt)2
Adding the expressions fof in (17) and (20),
o [t [ e
oo t(1=2jt)2  Jooo t(1 + 24t)2
_ / 11 (A+25t)2 — (1 1—2315)5 i (22)
oot (14 4¢2)2

Multiplying the numerator and denominator of the integrand
in (22) by [(1 2% —gjt)%},

(1+ 24t) — (1 — 2jt)
(14 4t2)3 {(1 2% + (1— 2jt)%}

dt. (23)

Cancelling out all common factors,

> dt
JZQ]/ - - —-
—oo (1 +4t2)% {(1 +25t)% + (1 — th)a}

(24)

In the above equatlon we note that— 2;)2 is the complex
cojugate of(1 + 23) Hence, the integrand in (24) is real as
well as an even function of Thus, we get (see Appendix)

i * dt
J 1 L L
0 (1+4e2)3 {(1+2jt)2 +(1—2]t)2}

= jm.

(25)

(26)

which, after changing the order of the integral and the

summation can be written as

o0
e[ty [ -
oo t(1 —25¢)2 1—2jt) 1+2]a2t)

In the above, letting

o dt
J = / T (17)
—00 t(l — 2]t)5
Jk = 2j02/ 1dt ) (18)
—oo (1= 241)2 (1 4 2j02t)k
we can write (14) as
n
I,LZJ—ZJk- (19)

B. The contour integral

The integral in (18) can be solved easily if it can be
converted to a contour integral. Towards this end, we state
the following Lemma [8].

Lemma 3.1: Let g(x) be a function of a real variabisuch
that |g(z)| has a denominator different from zero for all real
x and is of degree in excess of a unit higher than the degree
of the numerator. Then

/ Zgu)dx: | ate1az,

where(' is a semicircle in the complex upper half-plane whose
diameter is the real-axis and the integration is in the anti-
clockwise sense.

(27)



For the integrand in (18)k > 1 and the degree of the V. CLOSED FORM EXPRESSION FORE[Q(||X]])]
denominator is greater than that of the numeratorkby % From (15) and (34)
From Lemma 3.1, we get

_ lm]| oo n+p-—1 P
. dz . oe 202 1 ||m||2
ety @ e TEay R a(E) e
dz k
= (24 1*’@/ B 2k 1 .
(24°) o (1—2j2)%(2 — 5iy )k X(k){74(1+g2)}

Then, changing the indices of

We now present a formula for finding the derivatives of aA’et @ = 1+ 2

analytic function [8] and subsequently use it to evaluite summatlon
Lemma 3.2: Ifg(z) is analytic in a domain D, then it has PA<0)=1—-e%/1-5(A+B) (36)
derivatives of all orders in D which are then also analytic

functions in D. The value of thék — 1)th derivative at a wheré
point zo in D is given by the formula > P /o 3 kap
A_ZZ< ){} —, (37)
ey =D [ () b N /U
g V) = T8 [ I kim0 (@9) oot ‘
) L (2 —20) B aoP
B=> Y — (38)
where L is any simple closed path in D which encloggsn p=0 k=p P
whose full interior belongs to D; the curve is traversed in thgve define thefactorial function[9] as
counterclockwise sense ant’ (z) = g(zo), by definition. .
The function =Ilo+r=1, Gh=17#0. @9
1 :
fz) = (1-2j2)3 (30) wheregq is a positive integer.
is analytic in the upper half-plane arfd is a closed path in oA The B series
it. Since (28) can be written as .
Since n (1)
2k )k
5= @ity [ TE . (31) (k>: oo (40)
c(z—5)"
we obtain I 1
and the poin% lies within C, using Lemma 3.2, we obtain B— Z zp: 5 (41)
< 4 | p| :
p= =P
215 (2j02)tF dk1 { 1 }
k CESy e vy NN (32)  changing the limits of summation in (41),
co n— k+ 5k+]3 aP
B = > Z kf — (42)
which, after some simplification, yields p=0 k=0 )t pt
S (2" 5~ GHR), ()
2njo = Z (2 Z 2 P
= —_— = 1
Ik T k=1 (33) ok Z(k+1), pl
. (2k—3) n—1 k
omjo £3... 55 2k> (ﬂ) (1 )
= — l<k<n. = —) iR+ EE+ L ;
(k—1)! (1+02)+3% 2\ 1) g af
Substituting the expressions obtained in (26) and (33) in (19yhere 1/ (a; b;x) is the confluent hypergeometric function
we get [9]. According to Kummer’s formula for the confluent hyper-
geometric function,
. 2mjo = %% .. (2k;3)
b= I A= H; G- reT| & VFila; b ) = €% Fy (b — a; by —). (43)
o 2mjo n-l 13 @kl Using this result in (42), we obtain
\/1+O’2 kl(1+g2)k n—1 2k‘ ﬁ k 1
s . B:exp(ozﬂ)z =) 1P zk+L—aB ).
P B (Zk) 1 P k 4 2
- 2 /1402 p k 4(1 + o2) ’ (44)

IWe assume that all the infinite series considered henceforth converge.



B. The A series
We rewrite (37) as

0 (4),
—-> Z 2 —  (45)
p=0 k=0 p=0 k=p+1
In the above,
=g (1) o <°° > (m @m’c)
- = - . (46)
o s k! p! ;) p! ;} k!

1 I,
e 5 (Qk) 1"
B mk:o k 4(1+02)

Substituting the above in (54) leads to the well known result

2]
b_ ! )}]6®

1

EIQUIXI) = 5

o
V1402

Since|g| < 1, the second sum on the right hand side of (46)

is the binomial series, i.e.,

oo 1 k
2 ﬂ 1
Ej“% =(1-0) 2. (47)
k=0 ’
Thus,
e()é
A= - S 48
— -5 (48)
where
[e's) oo (%)kﬁk aP
s = > > o (49)
p=0k=p+1
= ii (: k+pﬂk+pap
i (k+p)! p
Following the steps in (42), (49) can be written as
& 2k (BN 1 .
S = ; ( k) (4) \Fy <2+k,k+1,aﬁ> . (50)

The above infinite series has a closed form expression [3]

Zexp(%ﬁ)

(61)

a+vi-an (L)) 6

j

N | =

where

x {exp{%(l +ﬁ)}Q1(u»w)*

u=[2e-9-3
w\/§(2ﬂ)+;

? i

1767

(53)

andQ (u, w) is the Marcum Q-function [5]. Substituting (51)

in (48) gives us a closed form expression fér Since we
already have a compact expression forin (44), replacing
the infinite series forA and B in (35) by their respective
closed form expressions, and noting from (2) and (3) that

E[RUIXID]

we obtain an exact expression fBi{Q(||X])]?.

~P(A <0), (54)

Corollary: WhenX is zero mean, from (34) and (35), we,

obtain

2Lindsey, in [3], using a fundamentally different approach, has obtained a oy 1 L L T+
o - (L+4a)i {1 +2i0F + (1 -2j)% ) 2r /T

closed form expression in a completely different form.

-1
"Z (Qk)
k 4(1 + o2
k=0
V. EXAMPLE: AVERAGE PROBABILITY OF ERROR FOR
NAKAGAMI -m FADING CHANNELS

If a random varialQJIea is Nakagamim distributed, the
random variabley = aTib has the probability density function

[5]

_ m—1_—m~vy/¥
ply) = - e ) 57
() e (57)
wherey = E(‘J’Vi?ab For fading channels, the average proba-
bility of error is given by

oo
- [ atavie . (58)
wherea is a constant that depends on the specific modula-
tion/detection combination [1]. We note thathas the same
distribution ask (whenX has zero mean) with? = % when
m IS an integer [5]. Thus, after accounting for the constant
in (58), the average probability of error for a Nakagami-
fading channel is obtained as

m—1
2m

) {4(2m + a?7) } ‘| (59)

by substitutinge? = 3273 and replacingr by m in (56). We
note that exactly the same result has been arrived at using a
different approach in [1], equation (5.18).

k

APPENDIX

Let 1+ 2jt = re/, wherer = (1 +4t%)% andcosf = L.
Since

(1+428)% + (1 —2jt)% = 272 cosg, (60)
and
0 1
cosy = \/5 (1+ cos®) (61)
_ it
N 2 r)’
he integrand in (25)
1 1
= (62)




Hence,

J = 4j/ 1 - — (63)
0 (1442)3 {(1 2t 4+ (1— 2jt)§}
= zﬂj/ dt -
0 (1+4t2)%{1+(1+4t2)%}2
Substitutingt = 22 in the above,
(7 secd
J = V2 —d¢. 64
7). ﬁ—&—secd)gb (64)
Let /T + sec ¢ = v/2secp. Then
sec ¢
——d¢p = 2d4. 65
e V2dy) (65)
The integral in (64) now becomes
J o= 2 / "y (66)
JO
= jm.
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