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Abstract—The statistics of gamma conditionally Gaussian (CG) Relay (R)

random variables are derived in closed form. These variable
can be loosely defined to be normally distributed with mean T
and variance proportional to a gamma random variable. In this
paper, we provide exact expressions for the bit error rate (ER)
for single relay maximum likelihood (ML) decode and forward
(DF) cooperative systems in Nakagamir fading for binary phase

shift keying (BPSK). This is done by expressing the ML decisin ] \(
T Direct Path

variable in terms of functions of gamma CG random variables.
For the piecewise linear (PL) approximation to the ML detecbr,
a closed form expression for the BER is obtained. Simulation
results are provided to verify the validity of the derived analytical Source (S)
expressions.

Destination (D)

. . . . Fig. 1. Three node cooperative diversity system.
Index Terms—Cooperative diversity, gamma conditionally

Gaussian, ML, Nakagamismn fading.

[I. CONDITIONALLY GAUSSIAN DISTRIBUTIONS
I. INTRODUCTION

The BER analysis for amplify and forward (AF) basecA Preliminaries
cooperation is well researched with the availability ofsgld "~
form expressions based on the statistics of the harmonia Meapqfinition 2.1: 7 is gamma CG with parametetsb > 0 if
of two independent random variables [1], [2]. However, ver | A ~ N(aA,bA), A ~ G(¢,m) being Gamma distributed
few results for the error analysis for decode and forward)(DIﬁ] with scale p;ararhetezr < 0 and orderm S0,
cooperation are available in the literature [3]. In parftcu L ]
the performance of the optimum receiver for DF cooper- Definition 2.2: For0 <v <1,
ation is important as it provides a benchmark for simpler
DF based techniques. While the maximum likelihood (ML) f(t) =In v+e g(t) = e —v )
detector and its practical alternative, the piecewisealir(®L) 1+ vet’
receiver for DF, were proposed in [4], their bit error rate
(BER) performance was not seriously investigated until .now Proposition 2.1: (Exponential approximationg(t) ~ et
Expressions for the BER for ML-DF cooperative systems haye., 0, v < 1.
been obtained in [5] for Rayleigh fading.

Conditionally Gaussian (CG) distributions were first define
in [5] and used to obtain expressions for the BER for ML-DF o
based cooperation, though a framework for their applicatio lg(t) — e™t| = |-v| [1—e™ v
was already available in [6]. The decision variable idrary [1—ve | " 1—ve®’
phase shift keying (MPSK) is CG, for which the characteristi
function (CF), was derived in [6] to evaluate the symbol erraesulting in the desired approximation. Henceforth, sylsljo
probability (SEP). In this paper, following the approach iand g denote the functions in (1).
[5], we obtain closed form expressions for the the staSstt | emma 2.1:For any constants, b > 0,c > 0 andm € Z*,
gamma CG random variables. For binary phase shift keyiige integral defined by
(BPSK) being used at the nodes for transmission, theses-stati
tics are used to obtain exact and closed form expressions for . -
the BER for ML and PL-DF cooperation [4] in Nakagami- 7 (q. b, c) = 07/ 210 (ax + b> e~dz (3)
fading for integerm. (m—=1!Jq VT

Proof: From (1), for0 < v < 1

t>0, (2




can be expressed as

Cmefnb

IQle

Zm(a,b,c
(a,b,c) = .

SO e

lvy—1=m—19q.va=n

b 1 q; 1
XH i- 1+,A<;J MJ j‘hq'

L o

Ik

where Q(z) = \/%fzoo e 2dt k= a4+ Va® + 2, p =
k — a,d¢y Iis the Kronecker delta function]l =

(111127---71777,—1)7(1: (Q1aQ27---7Qn)a0§lk Sm_laOS
qj <n,vp = (1,

=7

Corollary: The partial derivative ofZ,,, with respect to the
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Proof. See Appendix A.

2,...,k), (-) denoting the inner product and

Corollary 2: The Nth moment ofZ can be expressed as
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Proof: See Appendlx B

Ill. ML-DF C OOPERATION

For the classic three node cooperative system in Figure
1, without loss of generality, assuming to represent the
Nakagamim channel gain with fading figures: and 2, F
the transmit power at a node, the transmitted symbol at
a node, and the subscripts and r the source and relay
parameters respectively, the ML decision criterion at the
destination for binary phase shift keying (BPSIK) modulatio

may be obtained from [4], [5] as¥ + f(Y) z 0, where

-1
X ~ N(ash?bsh?), Y ~ N (a-h?,b.h?) are gamma
CG with h2 ~ G(ci,my),a; = 4@% b = 5&a =
o € {s, r} Also, f(-) now has the parameter = =,
where ¢ is the average BER on the S-R link. This choice
introduces suboptimality as the average BER is used instead
of the instantaneous BER. Assuming equal probability of the
transmitted symbat, = {1, —1}, average probability of error

for the ML-DF cooperative diversity system can be expressed

B. Closed form expressions for the statistical functions &f

gamma CG and related distributions

Theorem 2.1:The Gamma CG variablg in Definition 2.1
with parameters, b, c andm, has the cumulative distribution

function (CDF) and probability density function (PDF)

1-TZ, (-2, = 2>0
Fz(z) = . ( f f ) 7
1 a
——TIm | —% ,¢) 220
o= {0
_ﬁjm 757 _ﬁac z2<0
for Z,.(., ., .), Im(., .,.) defined in (4) and (5) respectively.

Corollary 1: The CDF ofV = f(Z) can be expressed as

1 z>1n%
l—Im(—i,flng(z),c) O<Z<1n%
Fy(z) = AN (7
m(\ﬁ’ 7 ,c) Inr<z<0
0 z<lnv

1l—xp 14ax,

€z (1—e) 2

Po= Y

zre{1,—1}
XP(X+f(Y)<O0zs=1,2,). (9)

IV. BER ANALYSIS
The conditional probability in (9) can be expressed as

P(X + f(Y) < les = 1a$r) = / Ff(y)(—w)px(x)dx.

- (10)
Substituting forpx (z) from Theorem 2.1 and;yy(—x)
from Corollary 2.1.1, in the above,

P(X+ f(Y)<O0lzs =1,2,)

Qs 1
= Im k) 07 s | —
: (Wbs ‘ > V.




after a change of variables. Since< 1, from Proposition

2.1 and (11), we obtain P<s Analysis
10 ¢ Ey O  Simulation 4
P(X + f(Y) <Ofes = L) = R, - Mone-Catlo
1 5 2
Ims &7 01 Cs - Z v ng.l é 2 R
\/E bs B a2 9 R
vef{l,—1} 2. 10k Q Q E
Ind % ALK Q
X/UI (UGT ar) £ R
0 Vo, \/_ E’ % 0
X T, vas dz, (12) 8 10%| m2m=2m=2 Ng 1
s \/— \/_ ’ < m=2,m_=3,m =4 =1 &
m=3,m_=4,m =5 X
which can be expressed in closed form as (13) (see Appen m:4,mz:4,m::4
C) where K = S0 ', N = YL, and k; = m=5,m_=5,m =4
2 -4
voaRhietva o, = Ve e +2blc? for i € {r, s}. Substituting 107/ s m 5
(13) |n (9) results ina closed form expression for the avera Average SNR (dB)

BER. Note that (11) yields an exact expression for the awerag
BER expressed as an integral. The skewness between (11) Eigd. BER simulation and analytical results. Sequencelaibpn the same
(13) is dependent on the BER for the S-R link, as evident frofffle" as the parameters listed in the box.
(2).
Theorem 4.1:The PL [4] andexponentialapproximations
are equivalent For the system in Figure 1, actual BER simulations, monte-
Proof: See Appendix D. carlo simulations for (11), and the closed form approxiomati
Thus, (13) is a closed form expression for the PL combinein (13) are compared in Figure 2, for different combinations
Theorem 4.2:The diversity order [8] for ML-DF coopera- of (m,m,, m,) and{ = 1. Simulation results closely follow
tion in Nakagamim fading is the analysis curves, validating the BER expressions obdain
d = mg + min (m,m,.), (14) inthe paper. The BER keeps improving with higher Nakagami
) ] severities, as expected.

Vélngrm(t,sms,mr are the fading figures on the S-R, S-D and comparison of the BER for ML-DF, simple adaptive DF
Proof: Seé Appendix E [3] and the traditional two antenna system is presented in
' ' Figure 3 for (m,ms,m,) = (2,3,2) and (3,5,4)¢( = 1. In

both cases, the BER curves for ML-DF and simple adaptive
V. RESULTS ANDDISCUSSION DF are found to be parallel in the high SNR region, indicating
Let 7 = %\],”; Vs = ” Be 5 = ”NET and (m, ms,m,) a similar diversity order. However, ML-DF outperforms sikap
be the respective fadmg parameters on the S-R, S-D and Raflaptive DF. The traditional two antenna system performs
links. For convenience, we assume-= 7, and deflnez—’s & better than both cooperative schemes, as expected. Fe2)(2,3
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P(X+ f(Y)<Olzs =1,2,) =Ty, (




o VI. CONCLUSIONS

=T pmple Adaptive DF In this paper, we have obtained closed form expressions
w0 = Traditional Two Antennal for the statistics of gamma CG random variables. These
o | S o3 | results were then applied to BER analysis for an ML-DF
cooperative diversity system employing a single relay,tfiar
10° | \ | Nakagamim fading channel. The exact BER for ML-DF was
a8 expressed in terms of a single integral, while a closed form
expression for the BER was obtained through the exponential
] approximation and shown to be the BER for the PL combiner.
A measure of the diversity order for ML-DF cooperation was
S e also obtained. Finally, all analytical results were vaigih
m=3,m.=5,m =4 through simulations. Numerical results indicate that ME-D
| is superior to simple adaptive DF though both have a similar

16 ‘ ‘ ‘ ‘ diversity order.

0 5 10 15 20 25
Average SNR (dB)

10

Average Probability of Error

-14|

10

10

APPENDIXA
Fig. 3. ML-DF performs better than simple adaptive DF. Segeeof plots From [5], [9], we obtain

in same order as parameters listed in the box.
oo
_ ar+b\ _
/ x™ 1Q( )e”dgc:
0 N3

m—1 _ 2
1 (1! d exp (—b (a + Va® + 2¢)) (15)
de™=1 | Va? +2¢ (a + Va2 + 2¢)
—bx
Let G(z) = %, H(z) = a+ va?+ 2z, so that

5 r(x —a
m
S GUH (o) exp (—b (a + Va® +2c)) (16)
= Cc)) = .
g \/CL2+2C(CL+\/CL2+2C)
i Using the Faa Di Bruno formula [10], theth derivative of
g m=3.£5 S G(z) can be expressed as
< 03l - - m=3E=02

T s G (@) = (~1)"nlG ()

m=4,§=0.2 n qj 1
—+— m=5,=5 1 1 J
el o mes =02 | | | H {b@ 1t @—ay] jugl (17)
0 2 4 6 8 10 QVn=n j=
Ao SRS The kth derivative of H (x) is
Fil'?. 4.g Vf{lriation of the BER withn and&. System performance improves HF) () = (_1)1?*1(2]{; — 3)!!(@2 + QI)%*’“. (18)
when¢ < 1.

Using the Faa Di Bruno formula again to obtain the— 1th
derivative of G(H (¢)) from (17) and (18), after some algebra,
(4) can be obtained from (15) and (16).

the two antenna system is seen to have a similar diversigrord

as the two cooperative schemes. In contrast, for (3,5,4hen APPENDIX B

high SNR region, the slope of the BER curve for the two

antenna system falls faster when compared to the coop«*zrativThe CDF ofZ can be expressed as [5]

systems, indicating a higher diversity order, validatitig)( 1— [ cmz:;) 8 ( az+z) e=Tdy >0
In Figure 4, we investigate the consequences of the IinkFZ(Z) - 00 Mgm= Q am 2\ p—cx s <0
SNR imbalance for similar Nakagami severities, ie. = 0 “T(m) - (19)

ms = m,. £ has been chosen to g2 or 5. For ¢ < 1,

we find that the BER improves significantly. This is becausghereT'(-) denotes the gamma function [9]. Now, applying
of improved performance on the S-R as well as the S-D link a#8mma 2.1, we obtain the CDF in (6). Differentiating the CDF
a consequence of increased source power.{Forl, system results in the PDF. (7) is trivially obtained from (6) usirtet
performance is relatively poor due to the weak S-R link whiclipproach in [5]. TheVth moment ofZ can be expressed as
results in higher decode errors at the relay. These errers ar

00 0
then propagated to the destination because of a strong R-Dg[zV] :/ 2N dFy(x)dx +/ eNdFy(x)dz.  (20)
link resulting from an increase in relay power. 0 —0



The primitive of the first integrand can be expressed as

/deFZ(x) = 2V Fy(2)

—N/ <1—Im <—%%c>) N1z, (21)

which, on simplification and applying limits, yields

[ ars = x [Tt (< )i

Similarly, after appropriate change of variables,

/O 1)NN/OOO:EN1[m (%,%,c) dx
N (

23)
From (22) and (23), (20) can be expressed as

ZNNZ /N11

ve{l,—

(22)

2N dFy(x) = (-

(3 ) e
(24)

From (4), it is obvious that to evaluate the above integral, w

need to compute the integral

[e’e] 1 1 q1
\I/:/ VN1 <x+—+—> e 2%,
0

which, following the binomial expansion and integratingnc
be expressed in the closed form

q1 1 1
w=d (M) (L L
= \p Kz = Pz

From (4), (24) and (26), we obtain (8).

(25)

q1—p
) I'(N +p). (26)
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From (4) and (5), it is obvious that to evaluate (12), the

integrals

Ini q1
z 1,1
Y= / e~ (rrtne)e [x +—+ —}
0 Ry Hr

y {Ql -1 (H L)} 27)
KRs Hs
[ 11 rl‘l
X |lz+—+— dz,
Rs Hs
11"
A— / —(krtrs)z [x =4 —} de  (28)
K Hor

need to be evaluated. The indicgsand @, result from the

expressions foZ,,,, and.7,,, respectively. Using the binomial

expansion and rearranging (27), we obtain
a1 Qi1—1
T=> >

q1—p
G G )
p=0 o0=0 Rr For
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F;/S ILLS F;/s /’LS
In L
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0

/ln
0

x”+‘7+1e—(”"+"5)1d$} , (29)

which can be expressed in closed form as

<Q1) (Q1 - 1) (o4 1ig) P2
p=0 o=0 g
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- <p+0+2,(lir+l-€s)ln%>}, (30)

wherel'(-, -) is the incomplete gamma function [9, (8.350.1)].
Following a similar approach, (28) can be can be obtained in
closed form as

(@ e (1 1N
N )

p=0

(31)
x T (p—f—l,(m—i—ﬁs)ln%) .

From (30) and (31), (12) can be expressed as (13).

APPENDIXD

The conditional probability in (9) can also be expressed as

P(X+ f(Y) <Oz, = 1,2,)

— [ B s py@ds. (G2)
which, from the PL approximation [4] results in
P(X+fY)<0lzs=1,2,)
~ Fx (Inv) {1 — Fy (lnl)]
v
1
+ Fx <1n —) Fy (Inv)
14
ln%
+ [ Fx(-x)py(z)dr. (33)
Inv
In the above, the integral can be expressed as
In % ln%
Py (-a)py (e = [ " Fx (=) dFy (o). (34)
Inv Inv
which, upon integration by parts, yields
ln% In 1
Fx (—z)py (z)dz = [Fx (—z) Fy (2)];, )
Inv
In %
+ [ Bropx @ @9)
Inv



Y
X+Y =0

Y = ln%/ r—

‘ X+ f(Y) X

| N
Y =lhv l -

X+Y =0
Fig. 5. From the PL approximatiod,X + f(Y) < 0} C {X +Y < 0}.

after a change of variables. Substituting from (6) in thevabho

In i
Fy(—x)px (z)dx = Fx(0) — Fx(Inv)
Inv
N 1 {/OI ar, x >
= m, | y — 77— Cr
\/bs Inv \/br \/br
Qs z
XIm, T s Ls d
‘7‘“<¢bs Vb C) ’
Ini
v a, T
- Im'r‘ y —74/—Cr
[ ()

X T, <—% %c) dx} . (36)

From (33), (35) and (36), we obtain (12), and the proof is

complete.

APPENDIXE

Sincee ~ (> (%)m < 1 for 5y > 1[8, 14-4-18],
from (9),

P.<eP(X+ f(Y)<O0lzs =1,z, = —1)

+P (X + f(Y)<0lzs =1,2, = 1), 37)

 Fy () < 1. Since X ~ N (47s,87:),7s = j@_ohg and
1n% =1In % ) 1n—
4y —ln%
24275
Ine
z@( Trr + e _) (40)
~Q (\/2'}/5)
%<2m5—1)< 1_) (41)
Mg 47

using the high SNR approximation in (40). Thus, from (37),
(38), (39) and (41), we obtain (14).
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