Distinguishing Users with Capacitive Touch Communication

Tam Vu, Akash Baid, Simon Gao, Marco Gruteser, Richard Howard, Janne Lindqvist, Predrag Spasojevic, Jeffrey Walling

WINLAB, Rutgers University

www.winlab.rutgers.edu/~tamvu

NEWS

Whoops...Kid Accidentally Spends \$1,400 on Mom's iPhone

If only the phone knows who is interacting with it by itself ...

Current identification/authentication methods

Users switch from one device to another more often

Other identification/authentication methods

Other identification/authentication methods

- NFC-based methods
 - Require NFC hardware

What could be a more intuitive way of identifying users for today's **off-the-shelf** devices?

Identifying users through their touches

Associating user identifier to touches

Capacitive Touch Communication
(Hardware token + Software decoder)

Capacitive Touch Communication Overview

- A wearable hardware token
 - Generates electrical pulses
 - Spoofs the touch screen to create touch events

- Software decoder
 - Retrieves originally transmitted bits from the touch events
 - No modification to hardware or firmware of off-the-shelf devices

Touch events are registered and decoded

Creating Artificial Touches Capacitive touch screen background

- Sensors measure the additional capacitance of a human body
- Array of conducting electrodes behind an insulating glass layer
- Structure of a touch event registered to the operating system

Creating Artificial Touches

"Spoof" the touch screen

 Affecting the capacitance measurement by injecting signal to create artificial touch events

Creating Artificial Touches

Experimented with different signal sources

Tektronix AFG 3021

- Different waveforms
- Voltages: 1-20Vpeak to peak
- Frequency: 100Hz to 120KHz

Creating Artificial Touches

Experimented with different signal sources

Touch screen responses to 10 Vp-p square wave signals at frequency from 100Hz to 120KHz

Encoding bits with touch events

Encoding bits with touch events

On-Off Keying modulation
Threshold-based demodulation

- Unsynchronized
- Unknown processing delay
- Highly correlated channel
- Variable delay between symbols
- Low bandwidth
- Offline calibration to select thresholds
- Simultaneously synchronize and demodulate

Offline Calibration

Determine number events for *ones* and *zeros*

- Transmit a known bit sequence.
- Synchronize Tx and Rx using a sliding window:
 - The correct bit synchronization maximizes number of events in all 1s and minimize that of 0s
- Count the number of events in each bit 0s and 1s

Offline Calibration

Determine number events for ones and zeros

- Offline calibration to select thresholds
- Simultaneously synchronize and demodulate

Minimum Distance Demodulation Simultaneously synchronize and demodulate

Assumption:

Example

All possible messages are known

Message = 011

Demodulation:

- Try all possible starting points
- At each starting point, compute the correlation between the event sequence and all messages
- Select the message and starting point that give the highest correlation (decoded message)

1e = 7

		ssages = {001, 011, 111}					0e = 1			
Starting Position	001	011	111	1		0	1	1	0	
1	11	5	2	111111111	 	. .	.111111		 	
•••	•••	•••	•••			5			6	•
202	18	0	6							
							7	. 7	1 .	

Evaluation with Function Generator

- Metrics:
 - Detection Rate & False Acceptance Rate
- Methodology:
 - Messages with length of 2-5 bits.
 - Repeatedly transmitted 5000 times for each message

Evaluation with Function Generator

Bit period gets smaller as the data rate increases

Evaluation with Function Generator

Bit period gets smaller as the data rate increases

- The ring generates pulses with longer rise time
- Contact point is not as good as of the AFG electrode

- Can be improved with better hardware design
- Trading data rate for DR and FAR by ECC

Possible applications

- Parental control applications
 - Sharing devices with your children/spouse
 - 2-3 bits to be transmitted
- Weak authentication
 - Pincode level (i.e ~13 bit of entropy)

Parental control

Possible applications

- Distinguishing different types of tokens
 - Board games on touch screens

A few bits to be transmitted

Possible applications

- Multi-user games/collaboration
 - 1-2 bits to be transmitted

Transmitting through a finger

The electrode in contact with a human finger

Detecting the presence of the ring when the user swipe

Transmitting through a finger

Ring-presence detection rate 97% 92% 100 Detection rate 80 → False positive rate Percentage 60 20 200 1200 1400 400 1000 1600 600 800 Swipe Duration (ms)

Conclusion

Capacitive Touch Communication

Thank you!

Demo video is available on YouTube at:

ACM MobiCom 2012 www.winlab.rutgers.edu/~tamvu

http://tinyurl.com/8nc65ro