
Mobile Energy
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Special Topics in Mobile Systems
(FC5260)

Instructor: Venkat Padmanabhan

Note: includes slides generously made available by the authors 
of the papers being discussed



This Lecture: Energy

• Papers to be critiqued:
– “An Analysis of Power Consumption in a Smartphone”, 

Usenix ATC 2010

– “Fine Grained Energy Accounting on Smartphones 
with Eprof”, EuroSys 2012

• Other papers to read:
– “Carat: Collaborative Energy Debugging for Mobile 

Devices”, Usenix HotDep 2012

– “Who Killed My Battery: Analyzing Mobile Browser 
Energy Consumption”, WWW 2012
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Top-Down View
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Apps (Carat)

Modules (Browser)

Subroutines (E-Prof)

Hardware Components
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Where is the Energy Spent Inside My App?
Fine Grained Energy Accounting on Smartphones with eprof

Abhinav Pathak
Y. Charlie Hu Ming Zhang
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Tracking Power Activities
Power Modeling

• State-of-art ‘utilization based’ power models are 
inaccurate on smartphones
– Only active utilization => power consumption
– Energy is consumed linearly w.r.t utilization

– Hard to map power triggers to fine grained app activities

• System call triggered FSM based 
fine-grained power model [Eurosys ‘11]
– Use system calls as power triggers
– System calls drive Finite-State-Machine
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Tracking App Activities

• Granularity of Energy Accounting
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Multi Processing:

Multi Threading:
Third Party Ad Module

Collect information
Upload information
Download ads

Multiple Routines:



Tracking App Activities

• Granularity of Energy Accounting 
– eprof supports per Process/Thread/Routine granularity

• I/O Devices
– Track system call to program entity

• Process – getpid()
• Thread – gettid()
• Routine – backtrace()

• CPU
– Just like gprof [PLDI ‘82]
– Periodic sampling of routine call stack
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Lingering Energy Consumption
(a) Tail Energy
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Effect on power/energy consumed by a component
because of an activity lasts beyond the end of the activity

Components with tail: Sdcard
3G
WiFi
GPS

P
o

w
e

r 
C

o
n

su
m

e
d

 (
m

W
)

Time

send 10 KB

Tail (upto 7 seconds)

send completed

foo()



Lingering Energy Consumption
(b) Persistent State Wakelock
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• Aggressive Sleeping Policies: Smartphone OSes freeze 
system after brief inactivity

• Power encumbered Programming: Programmer has to 
manage sleep/wake cycle of components
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Lingering Energy Consumption
Case 1: Single Call Single Tail
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Lingering Energy Consumption
Case 2: Multiple Calls Multiple Tails
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Lingering Energy Consumption
Case 2: Multiple Calls Multiple Tails
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send1 : (U1, T1 )
send2 : (U2, T2 )

Last-Trigger-Policy: Assign 
asynchronous (tail) energy to the 
last active system call

1. Not easy to define weights
2. Policy gets complicated in 

presence of multiple system calls
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eprof System 
(Android and Windows Mobile)
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Logging Overhead: 
2-15% Run Time, 
1-13% Run Energy



Case Studies: (a) Android Browser
Google Search
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Case Studies: (b) Map Quest
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Intermittent network use results in much longer tail than GPS



Case Studies: (c) Free Chess
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Activity Energy %

Advertisement 50%

GUI Rendering 20%

AI 20%

Screen Touch Events 2%
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Case Studies: (d) Angry Birds
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Activity Energy %

User Tracking 45%

TCP Conditioning 28%

Game Rendering 20%
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Rendering and gameplay consumes only under 30% of energy
Rest energy is spent in fetching ads and tracking user



Case Studies (e): 
Facebook Wakelock Bug
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App Energy Drain Characteristics

• IO consumes the most energy 
– Most apps spent 50% - 90% of their energy in IO

– A linear energy presentation does not help with 
debugging

• IO energy is spent in bursts, called bundles
– A bundle is defined as a continuous period where IO 

component actively consumes energy

– Very few IO bundles per app
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IO Bundle Representation
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Optimizing IO Energy using Bundles
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Why is a bundle so long? Why are there so many bundles?

Reduced energy consumption of 4 apps by 20-65% by minimizing 
number of bundles and reducing bundle lengths
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Conclusion

• eprof: fine-grained energy profiler
– Enables opportunities for in-depth study of app 

energy consumption 

• Case studies of popular apps energy consumption
– 65-75% of app energy spent in tracking user and 

fetching ads (for example, angrybirds)

• Bundles: IO energy representation
– Helps debugging smartphone app energy
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Top-Down View
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Apps (Carat)

Modules (Browser)

Subroutines (E-Prof)

Hardware Components
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Who Killed My Battery:
Analyzing Mobile Browser Energy Consumption

Narendran Thiagarajan¹, Gaurav Aggarwal¹, Angela Nicoara²
Dan Boneh¹, Jatinder Pal Singh³

¹Department of Computer Science, Stanford University, CA
²Deutsche Telekom Innovation Labs, Silicon Valley Innovation Center, CA

³Department of Electrical Engineering, Stanford University, CA

April 18, 2012

WWW 2012 Who Killed My Battery: Analyzing Mobile Browser Energy Consumption   |   © April 18, 2012 42
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A Software Infrastructure for Measuring the Precise 
Energy Used by a Mobile Browser

Challenge: How much energy does the 
phone use to render a particular web page?

Impact of the structure of web pages on 
battery usage in phone browser?

How to design web pages to minimize the 
energy needed for rendering? 
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Automated Energy Measurement System
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Server controls the phone and multimeter:

Automated Energy Measurement System

 Server communicates with the Browser 
Profiler app on the phone

 Server instructs the Browser Profiler app to 
request the running phone browser to 
repeatedly load a specific URL, either with 
or without caching

 Server starts the multimeter measurement

 All measurements recorded on the 
multimeter are transferred to the server for 
processing
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Energy for Download & Upload Data over 3G

 Average energy needed for downloading & uploading 4kB to 256kB over 3G 

 Setup cost of roughly 12 Joules before the first byte can be sent

 Download energy – mostly flat (up to 256kB)

 Upload energy – increases with the amount of data being uploaded
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Energy Consumption of Top Web Sites

 Energy to download and render the web page 

(energy for 3G communication + parsing + rendering web page)

 Average power consumption when the browser is idle  170 mW
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Rendering Energy Consumption of Top Web Sites

 Energy needed to parse and render the page (no energy for 3G communication)

 Energy used to render the content from local cache

 How the complexity of the web page affects the energy needed to render it

 Dynamic Javascript can greatly increase the power usage of a web page

Challenge: How much energy is used by different web elements?
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Energy Consumption of Web Components
(Transmission + Rendering)

Evaluation:
 Relative energy costs of individual web components

Results:
 CSS and Javascript – most energy consuming components in the transmission and rendering

of a web site
 “Others” – mainly includes the 3G  connection setup and text rendering
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Optimizing Mobile Web Pages

 Javascript – one of the most energy consuming
components in a web page

 Optimizations:
 Shrinking Javascript on a mobile page to contain 

only functions used by the page greatly reduces 
energy cost

 Large CSS files with unused CSS rules consume more
then minimum required energy

 Optimizations:
 CSS should be web page specific and contain 

only the rules required by the elements in the 
web page

Reducing CSS Power Consumption

Reducing Javascript Power Consumption
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 JPEG is the best image format for the Android browser and holds 
for all image sizes

 Using HTML links instead of Javascript greatly reduces the
rendering energy for the page

 Using links to third party tools can greatly increase the power
usage of a phone

 Using simple HTML table element to position elements on the
page instead of CSS saves energy

 Building a mobile site optimized for mobile devices conserves energy

 Guidelines also produce a faster UX and reduced data consumption

Guidelines for Designing Energy-Efficient
Web Sites
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Carat: Collaborative Energy 
Diagnosis on Mobile Devices

Adam J. Oliner, Anand P. Iyer, and Ion Stoica
AMP Lab, UC Berkeley

Eemil Lagerspetz, Sasu Tarkoma
U of Helsinki
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Users’ Dilemma

• Users love to use myriad apps

• But they hate it when their 
battery drains fast

• They then wonder:

– Why is my battery draining? (hog)

– Is that normal? (bug)

– What can I do about it? (action)
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Prior Approaches

• Focus on specific issues
– e.g., no-sleep bug

• Intrusive
– e.g., instrumentation (software or harware)

• Sledgehammer
– “Kill all background apps”
– “Dim the screen”

• Goal: a generic, software-only approach that 
doesn’t require any hardware or OS mods



Collaborative Diagnostics

• Idea: use statistics to diagnose problems
• Assumption: 

– mass => norm
– significant departure from mass => anomaly 

• Previously used for a variety of problems:
– Windows registry issues (STRIDER, 2003)
– WiFi diagnostics (WiFiProfiler, 2006)
– Home network diagnostics (NetPrints, 2009)

• Questions:
– Which metrics to measure?
– How to gather data from a population?
– How to compare to identify anomalies?
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Why Collaborative?

• Enables diagnosis

– Nearly impossible on a single device

– Normal? Trigger? Severity? Frequency?

• Distribute instrumentation overhead

• Compensate for biases and uncertainty



Carat



Carat Infrastructure
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Carat Sampling
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Energy Anomalies
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Energy Anomalies
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Original Distribution
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“Significant”
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Classification
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Diagnosis

a

not-v

x

“Killing app a will 

give x±e of battery 

life (95% confidence), 

as would upgrading 

the OS to version v.”
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Carat Today

• 450,000+ devices

– 60% iOS

– 40% Android

• Tens of millions of samples
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Energy Anomalies

• Hogs

– 11,256 hogs (9.4%)

– e.g., Pandora and Skype

• Bugs

– 483,354 buggy instances (5.3%)

– e.g., Kindle, Facebook, and YouTube
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Kindle Bug (iOS)

• E-book reader

• Bug on 3.9% of clients

• Forum: WhisperSync

• Confirmed by our data

• Turn on WiFi                                          → 36m 
improvement
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Kindle Diagnosis



Next Lecture: Mobile Communication
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