
Mobile Energy

1

Special Topics in Mobile Systems
(FC5260)

Instructor: Venkat Padmanabhan

Note: includes slides generously made available by the authors
of the papers being discussed

This Lecture: Energy

• Papers to be critiqued:
– “An Analysis of Power Consumption in a Smartphone”,

Usenix ATC 2010

– “Fine Grained Energy Accounting on Smartphones
with Eprof”, EuroSys 2012

• Other papers to read:
– “Carat: Collaborative Energy Debugging for Mobile

Devices”, Usenix HotDep 2012

– “Who Killed My Battery: Analyzing Mobile Browser
Energy Consumption”, WWW 2012

2

Top-Down View

3

Apps (Carat)

Modules (Browser)

Subroutines (E-Prof)

Hardware Components

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Where is the Energy Spent Inside My App?
Fine Grained Energy Accounting on Smartphones with eprof

Abhinav Pathak
Y. Charlie Hu Ming Zhang

22

Tracking Power Activities
Power Modeling

• State-of-art ‘utilization based’ power models are
inaccurate on smartphones
– Only active utilization => power consumption
– Energy is consumed linearly w.r.t utilization

– Hard to map power triggers to fine grained app activities

• System call triggered FSM based
fine-grained power model [Eurosys ‘11]
– Use system calls as power triggers
– System calls drive Finite-State-Machine

23

Base
State

Prod.
State

Tail
State

Tracking App Activities

• Granularity of Energy Accounting

24

Multi Processing:

Multi Threading:
Third Party Ad Module

Collect information
Upload information
Download ads

Multiple Routines:

Tracking App Activities

• Granularity of Energy Accounting
– eprof supports per Process/Thread/Routine granularity

• I/O Devices
– Track system call to program entity

• Process – getpid()
• Thread – gettid()
• Routine – backtrace()

• CPU
– Just like gprof [PLDI ‘82]
– Periodic sampling of routine call stack

25

Lingering Energy Consumption
(a) Tail Energy

26

Effect on power/energy consumed by a component
because of an activity lasts beyond the end of the activity

Components with tail: Sdcard
3G
WiFi
GPS

P
o

w
e

r
C

o
n

su
m

e
d

 (
m

W
)

Time

send 10 KB

Tail (upto 7 seconds)

send completed

foo()

Lingering Energy Consumption
(b) Persistent State Wakelock

27

• Aggressive Sleeping Policies: Smartphone OSes freeze
system after brief inactivity

• Power encumbered Programming: Programmer has to
manage sleep/wake cycle of components

P
o

w
e

r
C

o
n

su
m

e
d

 (
m

W
)

Time

Acquire
wakelock

Release
wakelock

foo()
Keep the screen on !

Lingering Energy Consumption
Case 1: Single Call Single Tail

28

P
o

w
e

r
C

o
n

su
m

e
d

 (
m

W
)

Time

send 10 KB

Tail (upto 7 seconds)

send completed 1. Energy represented in terms of
an energy tuple (U, T)

2. (U, T) is attributed to entity (s)
containing send system call

T

U

Lingering Energy Consumption
Case 2: Multiple Calls Multiple Tails

29

P
o

w
e

r
C

o
n

su
m

e
d

 (
m

W
)

Time

send1

T1

U1

T2

U2

send2

How to split tail T2 among?

Average Policy: Split tail energy
T2 in weighted ratio

1. Not easy to define weights
2. Policy gets complicated in

presence of multiple system calls

Lingering Energy Consumption
Case 2: Multiple Calls Multiple Tails

30

send1 : (U1, T1)
send2 : (U2, T2)

Last-Trigger-Policy: Assign
asynchronous (tail) energy to the
last active system call

1. Not easy to define weights
2. Policy gets complicated in

presence of multiple system calls

P
o

w
e

r
C

o
n

su
m

e
d

 (
m

W
)

Time

send1

T1

U1

T2

U2

send2

eprof System
(Android and Windows Mobile)

31

Logging Overhead:
2-15% Run Time,
1-13% Run Energy

Case Studies: (a) Android Browser
Google Search

32

0 5 10 15 20 25 30

main

IdleReaper

HeapWorker

http1

http0

WVCore

Energy Percentage (%)

CPU
Net
NetTail
GPS
GPSTail

Activity Energy %

HTTP 38%

TCP Conditioning 25%

User Tracking 16%

GUI Rendering 5%

Case Studies: (b) Map Quest

33

0 5 10 15 20 25 30

SHW. run()

NetworkRequest.
DoInBackgrnd()

Search.Gas()

MapView. OnDraw()

JsonParser. parseJSON()

Energy Percentage (%)

CPU

Net

NetTail

GPS

GPSTail

Intermittent network use results in much longer tail than GPS

Case Studies: (c) Free Chess

34

Activity Energy %

Advertisement 50%

GUI Rendering 20%

AI 20%

Screen Touch Events 2%

0 10 20 30 40 50

main

IdleReaper

Http

AIMove 1

AIMove 2

AdThread

Energy Percentage (%)

CPU

Net

NetTail

GPS

GPSTail

Fetching ads and consumes 50% of app energy

Case Studies: (d) Angry Birds

35

Activity Energy %

User Tracking 45%

TCP Conditioning 28%

Game Rendering 20%

0 10 20 30 40 50

main

HeapWorker

BinderThread

GLThread

GC

FlurryAgent

Energy Percentage (%)

CPU

Net

NetTail

GPS

GPSTail

Rendering and gameplay consumes only under 30% of energy
Rest energy is spent in fetching ads and tracking user

Case Studies (e):
Facebook Wakelock Bug

36

P
o

w
e

r
C

o
n

su
m

e
d

 (
m

W
)

Time

AppSession.acquireWakelock()

FaceBookService: 25%

Google Nexus (WiFi)

App Energy Drain Characteristics

• IO consumes the most energy
– Most apps spent 50% - 90% of their energy in IO

– A linear energy presentation does not help with
debugging

• IO energy is spent in bursts, called bundles
– A bundle is defined as a continuous period where IO

component actively consumes energy

– Very few IO bundles per app

37

P
o

w
e

r
C

o
n

su
m

e
d

 (
m

W
)

Time
IO Energy Bundles

0

20

40

60

80

100

Browser AngryBirds Fchess NYTimes Mapquest Photo
Upload

%
 o

f
To

ta
l E

n
e

rg
y

IO Energy

IO Bundle Representation

38

P
o

w
e

r
C

o
n

su
m

e
d

 (
m

W
)

TimeLine

send1

T1

U1

T2

U2

send2 send3

T3

U3

One Network
Bundle

Base
State
+0mA

Net
Send
+265
mA

Net
Tail

+150
mA

Net send

Net send
5 seconds
inactivity

SendPacket()

Very Few Routines

?????

What is the app doing here?

Optimizing IO Energy using Bundles

39

Why is a bundle so long? Why are there so many bundles?

Reduced energy consumption of 4 apps by 20-65% by minimizing
number of bundles and reducing bundle lengths

Base
State
+0mA

Net
Send
+265
mA

Net
Tail

+150
mA

Net send

Net send
5 seconds
inactivity

AdWhirl.FetchAd()

PID 0 (null loop)

Base
State
+0mA

Net
Send
+265
mA

Net
Tail

+150
mA

Net send

Net send
5 seconds
inactivity

DownloadMgr.
Read()

GZipStream.read()
JsonNode.Deserialize()
SQLiteDB.insert()

18

Conclusion

• eprof: fine-grained energy profiler
– Enables opportunities for in-depth study of app

energy consumption

• Case studies of popular apps energy consumption
– 65-75% of app energy spent in tracking user and

fetching ads (for example, angrybirds)

• Bundles: IO energy representation
– Helps debugging smartphone app energy

40

Top-Down View

41

Apps (Carat)

Modules (Browser)

Subroutines (E-Prof)

Hardware Components

42

Who Killed My Battery:
Analyzing Mobile Browser Energy Consumption

Narendran Thiagarajan¹, Gaurav Aggarwal¹, Angela Nicoara²
Dan Boneh¹, Jatinder Pal Singh³

¹Department of Computer Science, Stanford University, CA
²Deutsche Telekom Innovation Labs, Silicon Valley Innovation Center, CA

³Department of Electrical Engineering, Stanford University, CA

April 18, 2012

WWW 2012 Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 18, 2012 42

http://www-cs.stanford.edu/

A Software Infrastructure for Measuring the Precise
Energy Used by a Mobile Browser

Challenge: How much energy does the
phone use to render a particular web page?

Impact of the structure of web pages on
battery usage in phone browser?

How to design web pages to minimize the
energy needed for rendering?

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 43WWW 2012

http://www-cs.stanford.edu/

Automated Energy Measurement System

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 44WWW 2012

http://www-cs.stanford.edu/

Server controls the phone and multimeter:

Automated Energy Measurement System

 Server communicates with the Browser
Profiler app on the phone

 Server instructs the Browser Profiler app to
request the running phone browser to
repeatedly load a specific URL, either with
or without caching

 Server starts the multimeter measurement

 All measurements recorded on the
multimeter are transferred to the server for
processing

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 45WWW 2012

http://www-cs.stanford.edu/

Energy for Download & Upload Data over 3G

 Average energy needed for downloading & uploading 4kB to 256kB over 3G

 Setup cost of roughly 12 Joules before the first byte can be sent

 Download energy – mostly flat (up to 256kB)

 Upload energy – increases with the amount of data being uploaded

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 46WWW 2012

http://www-cs.stanford.edu/

Energy Consumption of Top Web Sites

 Energy to download and render the web page

(energy for 3G communication + parsing + rendering web page)

 Average power consumption when the browser is idle  170 mW

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 47WWW 2012

http://www-cs.stanford.edu/

Rendering Energy Consumption of Top Web Sites

 Energy needed to parse and render the page (no energy for 3G communication)

 Energy used to render the content from local cache

 How the complexity of the web page affects the energy needed to render it

 Dynamic Javascript can greatly increase the power usage of a web page

Challenge: How much energy is used by different web elements?

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 48WWW 2012

http://www-cs.stanford.edu/

Energy Consumption of Web Components
(Transmission + Rendering)

Evaluation:
 Relative energy costs of individual web components

Results:
 CSS and Javascript – most energy consuming components in the transmission and rendering

of a web site
 “Others” – mainly includes the 3G connection setup and text rendering

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 49WWW 2012

http://www-cs.stanford.edu/

Optimizing Mobile Web Pages

 Javascript – one of the most energy consuming
components in a web page

 Optimizations:
 Shrinking Javascript on a mobile page to contain

only functions used by the page greatly reduces
energy cost

 Large CSS files with unused CSS rules consume more
then minimum required energy

 Optimizations:
 CSS should be web page specific and contain

only the rules required by the elements in the
web page

Reducing CSS Power Consumption

Reducing Javascript Power Consumption

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 50WWW 2012

http://www-cs.stanford.edu/

 JPEG is the best image format for the Android browser and holds
for all image sizes

 Using HTML links instead of Javascript greatly reduces the
rendering energy for the page

 Using links to third party tools can greatly increase the power
usage of a phone

 Using simple HTML table element to position elements on the
page instead of CSS saves energy

 Building a mobile site optimized for mobile devices conserves energy

 Guidelines also produce a faster UX and reduced data consumption

Guidelines for Designing Energy-Efficient
Web Sites

Who Killed My Battery: Analyzing Mobile Browser Energy Consumption | © April 2012 by Dr. Angela Nicoara 51WWW 2012

http://www-cs.stanford.edu/

Carat: Collaborative Energy
Diagnosis on Mobile Devices

Adam J. Oliner, Anand P. Iyer, and Ion Stoica
AMP Lab, UC Berkeley

Eemil Lagerspetz, Sasu Tarkoma
U of Helsinki

53

Users’ Dilemma

• Users love to use myriad apps

• But they hate it when their
battery drains fast

• They then wonder:

– Why is my battery draining? (hog)

– Is that normal? (bug)

– What can I do about it? (action)

54

Prior Approaches

• Focus on specific issues
– e.g., no-sleep bug

• Intrusive
– e.g., instrumentation (software or harware)

• Sledgehammer
– “Kill all background apps”
– “Dim the screen”

• Goal: a generic, software-only approach that
doesn’t require any hardware or OS mods

Collaborative Diagnostics

• Idea: use statistics to diagnose problems
• Assumption:

– mass => norm
– significant departure from mass => anomaly

• Previously used for a variety of problems:
– Windows registry issues (STRIDER, 2003)
– WiFi diagnostics (WiFiProfiler, 2006)
– Home network diagnostics (NetPrints, 2009)

• Questions:
– Which metrics to measure?
– How to gather data from a population?
– How to compare to identify anomalies?

55

56

Why Collaborative?

• Enables diagnosis

– Nearly impossible on a single device

– Normal? Trigger? Severity? Frequency?

• Distribute instrumentation overhead

• Compensate for biases and uncertainty

Carat

Carat Infrastructure

instrumentation

data

actions and

reports

Spark on

EC2

the

crowd

the

cloud

big

data

raw and

derived data

statistical analysis

DynamoDB

and S3

Carat Sampling

t4
WiFi

?
iOS

5.1? ...

t1
WiFi

?
iOS

5.1? ...

t2
WiFi

?
iOS

5.1? ...

t3
WiFi

?
iOS

5.1? ...

t2
WiFi

?
iOS

5.1? ...

t1
WiFi

?
iOS

5.1? ...

Computing Rates

∆t
∆% = discharge rate (%/s)

∆t ∆% F

| F

Energy Anomalies

Energy Rate (% / s)

P
ro

b
a
b

ili
ty

F
energy hog

Energy Anomalies

Energy Rate (% / s)

P
ro

b
a
b

ili
ty

energy bug

(Given is not a Hog.)

Without the crowd, there is no way to

know whether this is normal.

63

Original Distribution

Energy Rate (% / s)

P
ro

b
a
b

ili
ty

E[subject]
E[reference]

D

64

“Significant”

65

Classification

Energy Rate (% / s)

P
ro

b
a
b
ili

ty

Energy Rate (% / s)

P
ro

b
a
b
ili

ty

Energy Rate (% / s)

P
ro

b
a
b
ili

ty

Fnot-F

66

Diagnosis

a

not-v

x

“Killing app a will

give x±e of battery

life (95% confidence),

as would upgrading

the OS to version v.”

67

Carat Today

• 450,000+ devices

– 60% iOS

– 40% Android

• Tens of millions of samples

68

Energy Anomalies

• Hogs

– 11,256 hogs (9.4%)

– e.g., Pandora and Skype

• Bugs

– 483,354 buggy instances (5.3%)

– e.g., Kindle, Facebook, and YouTube

69

Kindle Bug (iOS)

• E-book reader

• Bug on 3.9% of clients

• Forum: WhisperSync

• Confirmed by our data

• Turn on WiFi → 36m
improvement

70

Kindle Diagnosis

Next Lecture: Mobile Communication

71

