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Abstract

In this paper we propose a new framework for analyzing the performance of prepro-
cessing algorithms. Our framework builds on the notion of kernelization from parameterized
complexity. However, as opposed to the original notion of kernelization, our definitions com-
bine well with approximation algorithms and heuristics. The key new definition is that of a
polynomial size α-approximate kernel. Loosely speaking, a polynomial size α-approximate
kernel is a polynomial time pre-processing algorithm that takes as input an instance (I, k) to
a parameterized problem, and outputs another instance (I ′, k′) to the same problem, such
that |I ′| + k′ ≤ kO(1). Additionally, for every c ≥ 1, a c-approximate solution s′ to the
pre-processed instance (I ′, k′) can be turned in polynomial time into a (c · α)-approximate
solution s to the original instance (I, k).

Our main technical contribution are α-approximate kernels of polynomial size for three
problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint
Factors. These problems are known not to admit any polynomial size kernels unless NP
⊆ coNP/Poly. Our approximate kernels simultaneously beat both the lower bounds on the
(normal) kernel size, and the hardness of approximation lower bounds for all three problems.
On the negative side we prove that Longest Path parameterized by the length of the path
and Set Cover parameterized by the universe size do not admit even an α-approximate
kernel of polynomial size, for any α ≥ 1, unless NP ⊆ coNP/Poly. In order to prove this lower
bound we need to combine in a non-trivial way the techniques used for showing kernelization
lower bounds with the methods for showing hardness of approximation.
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1 Introduction

Polynomial time preprocessing is one of the widely used methods to tackle NP-hardness in prac-
tice. However, for decades there was no mathematical framework to analyze the performance of
preprocessing heuristics. The advent of parameterized complexity made such an analysis possi-
ble. In parameterized complexity every instance I comes with an integer parameter k, and the
goal is to efficiently solve the instances whose parameter k is small. Formally a parameterized
decision problem Π is a subset of Σ∗×N, where Σ is a finite alphabet. The goal of parameterized
algorithms is to determine whether an instance (I, k) given as input belongs to Π or not.

On an intuitive level, a low value of the parameter k should reflect that the instance (I, k)
has some additional structure that can be exploited algorithmically. Consider an instance (I, k)
such that k is very small and I is very large. Since k is small, the instance is supposed to be easy.
If I is large and easy, this means that large parts of I do not contribute to the computational
hardness of the instance (I, k). The hope is that these parts can be identified and reduced in
polynomial time. This intuition is formalized as the notion of kernelization. Let g : N → N be
a function. A kernel of size g(k) for a parameterized problem Π is a polynomial time algorithm
that takes as input an instance (I, k) and outputs another instance (I ′, k′) such that (I, k) ∈ Π if
and only if (I ′, k′) ∈ Π and |I ′|+ k′ ≤ g(k). If g(k) is a linear, quadratic or polynomial function
of k, we say that this is a linear, quadratic or polynomial kernel, respectively.

The study of kernelization has turned into an active and vibrant subfield of parameterized
complexity, especially since the development of complexity-theoretic tools to show that a prob-
lem does not admit a polynomial kernel [6,7,25,32,36], or a kernel of a specific size [16,17,37].
Over the last decade many new results and several new techniques have been discovered, see
the survey articles by Kratsch [42] or Lokshtanov et al. [44] for recent developments, or the
textbooks [15,23] for an introduction to the field.

Despite the success of kernelization, the basic definition has an important drawback: it does
not combine well with approximation algorithms or with heuristics. This is a serious problem
since after all the ultimate goal of parameterized algorithms, or for that matter of any algo-
rithmic paradigm, is to eventually solve the given input instance. Thus, the application of a
pre-processing algorithm is always followed by an algorithm that finds a solution to the reduced
instance. In practice, even after applying a pre-processing procedure, the reduced instance may
not be small enough to be solved to optimality within a reasonable time bound. In these cases
one gives up on optimality and resorts to approximation algorithms or heuristics instead. Thus
it is crucial that the solution obtained by an approximation algorithm or heuristic when run
on the reduced instance provides a good solution to the original instance, or at least some
meaningful information about the original instance. The current definition of kernels allows for
kernelization algorithms with the unsavory property that running an approximation algorithm
or heuristic on the reduced instance provides no insight whatsoever about the original instance.
In particular, the only thing guaranteed by the definition of a kernel is that the reduced instance
(I ′, k′) is a yes instance if and only if the original instance (I, k) is. If we have an α-approximate
solution to (I ′, k′) there is no guarantee that we will be able to get an α-approximate solution
to (I, k), or even able to get any feasible solution to (I, k).

There is a lack of, and a real need for, a mathematical framework for analysing the per-
formance of preprocessing algorithms, such that the framework not only combines well with
parameterized and exact exponential time algorithms, but also with approximation algorithms
and heuristics. Our main conceptual contribution is an attempt at building such a framework.

The main reason that the existing notion of kernelization does not combine well with approx-
imation algorithms is that the definition of a kernel is deeply rooted in decision problems. The
starting point of our new framework is an extension of kernelization to optimization problems.
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This allows us to define α-approximate kernels. Loosely speaking an (α)-approximate kernel
of size g(k) is a polynomial time algorithm that given an instance (I, k) outputs an instance
(I ′, k′) such that |I ′| + k′ ≤ g(k) and any c-approximate solution s′ to the instance (I ′, k′)
can be turned in polynomial time into a (c · α)-approximate solution s to the original instance
(I, k). In addition to setting up the core definitions of the framework we demonstrate that our
formalization of lossy pre-processing is robust, versatile and natural.

To demonstrate robustness we show that the key notions behave consistently with related
notions from parameterized complexity, kernelization, approximation algorithms and FPT-
approximation algorithms. More concretely we show that a problem admits an α-approximate
kernel if and only if it is FPT-α-approximable, mirroring the equivalence between FPT and
kernelization [15]. Further, we show that the existence of a polynomial time α-approximation
algorithm is equivalent to the existence of an α-approximate kernel of constant size.

To demonstrate versatility we show that our framework can be deployed to measure the
efficiency of pre-processing heuristics both in terms of the value of the optimum solution, and
in terms of structural properties of the input instance that do not necessarily have any rela-
tion to the value of the optimum. In the language of parameterized complexity, we show that
framework captures approximate kernels both for problems parameterized by the value of the
optimum, and for structural parameterizations.

In order to show that the notion of α-approximate kernelization is natural, we point to sev-
eral examples in the literature where approximate kernelization has already been used implicitly
to design approximation algorithms and FPT-approximation algorithms. In particular, we show
that the best known approximation algorithm for Steiner Tree [11], and FPT-approximation
for Partial Vertex Cover [45] and for Minimal Linear Arrangement parameterized by
the vertex cover number [29] can be re-interpreted as running an approximate kernelization first
and then running an FPT-approximation algorithm on the preprocessed instance.

A common feature of the above examples of α-approximate kernels is that they beat both
the known lower bounds on kernel size of traditional kernels and the lower bounds on approxi-
mation ratios of approximation algorithms. Thus, it is quite possible that many of the problems
for which we have strong inapproximability results and lower bounds on kernel size admit small
approximate kernels with approximation factors as low as 1.1 or 1.001. If this is the case, it
would offer up at least a partial explanation of why pre-processing heuristics combined with
brute force search perform so much better than what is predicted by hardness of approximation
results and kernelization lower bounds. This gives another compelling reason for a systematic
investigation of lossy kernelization of parameterized optimization problems.

The observation that a lossy pre-processing can simultaneously achieve a better size bound
than normal kernelization algorithms as well as a better approximation factor than the ratio of
the best approximation algorithms is not new. In particular, motivated by this observation Fel-
lows et al. [30] initiated the study of lossy kernelization. Fellows et al. [30] proposed a definition
of lossy kernelization called α-fidelity kernels. Essentially, an α-fidelity kernel is a polynomial
time pre-processing procedure such that an optimal solution to the reduced instance translates
to an α-approximate solution to the original. Unfortunately this definition suffers from the
same serious drawback as the original definition of kernels - it does not combine well with ap-
proximation algorithms or with heuristics. Indeed, in the context of lossy pre-processing this
drawback is even more damning, as there is no reason why one should allow a loss of precision
in the pre-processing step, but demand that the reduced instance has to be solved to optimality.
Furthermore the definition of α-fidelity kernels is usable only for problems parameterized by
the value of the optimum, and falls short for structural parameterizations. For these reasons
we strongly believe that the notion of α-approximate kernels introduced in this work is a better
model of lossy kernelization than α-fidelity kernels are.

It is important to note that even though the definition of α-approximate kernels crucially
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Problem Name Apx. Apx. Hardness Kernel Apx. Ker. Fact. Appx. Ker. Size
Connected V.C. 2 [4, 52] (2− ε) [41] no kO(1) [22] 1 < α kf(α)

Cycle Packing O(logn) [51] (logn)
1
2−ε [33] no kO(1) [8] 1 < α kf(α)

Disjoint Factors 2 no PTAS no |Σ|O(1) [8] 1 < α |Σ|f(α)

Longest Path O( n
logn ) [2] 2(logn)1−ε [39] no kO(1) [6] any α no kO(1)

Set Cover/n lnn [55] (1− ε) lnn [47] no nO(1) [22] any α no nO(1)

Hitting Set/n O(
√
n) [48] 2(logn)1−ε [48] no nO(1) [22] any α no nO(1)

Vertex Cover 2 [55] (2− ε) [21,41] 2k [15] 1 < α < 2 2(2− α)k [30]
d-Hitting Set d [55] d− ε [20, 41] O(kd−1) [1] 1 < α < d O((k · d−α

α−1 )d−1) [30]
Steiner Tree 1.39 [11] no PTAS [12] no kO(1) [22] 1 < α kf(α)

OLA/v.c. O(
√

logn log logn) [28] no PTAS [3] f(k) [43] 1 < α < 2 f(α)2kk4

Partial V.C. ( 4
3 − ε) [27] no PTAS [49] no f(k) [35] 1 < α f(α)k5

Figure 1: Summary of known and new results for the problems considered in this paper. The columns show respec-
tively: the best factor of a known approximation algorithm, the best known lower bound on the approximation ratio of
polynomial time approximation algorithms, the best known kernel (or kernel lower bound), the approximation factor of
the relevant approximate kernel, and the size of that approximate kernel. In the problem name column, V.C. abbrevi-
ates vertex cover. For Set Cover and Hitting Set, n denotes the size of the universe. The approximate kernelization
results for the top block of problems constitute our main technical contribution. The middle block re-states the results
of Fellows et al. [30] in our terminology. For the bottom block, the stated approximate kernelization results follow eas-
ily by re-interpreting in our terminology a pre-processing step within known approximation algorithms (see Section 6).

differs from the definition of α-fidelity kernels [30], it seems that most of the pre-processing
algorithms that establish the existence of α-approximate kernels can be used to establish the
existence of α-fidelity kernels and vice versa. In particular, all of the α-fidelity kernel results of
Fellows et al. [30] can be translated to α-approximate kernels.

Our Results. Our main technical contribution is an investigation of the lossy kerneliza-
tion complexity of several parameterized optimization problems, namely Connected Vertex
Cover, Disjoint Cycle Packing, Disjoint Factors, Longest Path, Set Cover and
Hitting Set. For all of these problems there are known lower bounds [6,8,22] precluding them
from admitting polynomial kernels under widely believed complexity theoretic assumtions. In-
deed, all of these six problems have played a central role in the development of the tools and
techniques for showing kernelization lower bounds.

For Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors we
give approximate kernels that beat both the known lower bounds on kernel size and the lower
bounds on approximation ratios of approximation algorithms. On the other hand, for Longest
Path and Set Cover we show that even a constant factor approximate kernel of polynomial
size would imply NP ⊆ coNP/Poly, collapsing the polynomial hierarchy. For Hitting Set we
show that a constant factor approximate kernel of polynomial size would violate the Exponen-
tial Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [38]. Next we discuss our results
for each of the six problems in more detail. An overview of the state of the art, as well as the
results of this paper can be found in Table 1.

Approximate Kernels. In the Connected Vertex Cover problem we are given as input a
graph G, and the task is to find a smallest possible connected vertex cover S ⊆ V (G). A vertex
set S is a connected vertex cover if G[S] is connected and every edge has at least one endpoint
in S. This problem is NP-complete [4], admits a factor 2 approximation algorithm [4, 52], and
is known not to admit a factor (2 − ε) approximation algorithm assuming the Unique Games
conjecture [41]. Further, an approximation algorithm with ratio below 1.36 would imply that P
= NP [21]. From the perspective of kernelization, it is easy to show that Connected Vertex
Cover admits a kernel with at most 2k vertices [15], where k is the solution size. On the other
hand, Dom et al. [22] showed that Connected Vertex Cover does not admit a kernel of
polynomial size, unless NP ⊆ coNP/Poly. In this work we show that Connected Vertex
Cover admits a Polynomial Size Approximate Kernelization Scheme, or PSAKS, the approxi-
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mate kernelization analogue of a polynomial time approximation scheme (PTAS). In particular,
for every ε > 0, Connected Vertex Cover admits a simple (1 + ε)-approximate kernel of
polynomial size. The size of the kernel is upper bounded by kO(1/ε). Our results for Con-
nected Vertex Cover show that allowing an arbitrarily small multiplicative loss in precision
drastically improves the worst-case behaviour of preprocessing algorithms for this problem.

In the Disjoint Cycle Packing problem we are given as input a graph G, and the task is to
find a largest possible collection C of pairwise disjoint vertex sets of G, such that every set C ∈ C
induces a cycle in G. This problem admits a factor O(logn) approximation algorithm [51], and
is known not to admit an approximation algorithm [33] with factor O((logn)

1
2−ε) for any ε > 0,

unless all problems in NP can be solved in randomized quasi-polynomial time. With respect to
kernelization, Disjoint Cycle Packing is known not to admit a polynomial kernel [8] unless
NP ⊆ coNP/Poly. We prove that Disjoint Cycle Packing admits a PSAKS. More con-
cretely we show that for every ε > 0, Disjoint Cycle Packing admits a (1 + ε)-approximate
kernel of size kO( 1

ε log ε ). Again, relaxing the requirements of a kernel to allow an arbitrarily
small multiplicative loss in precision yields a qualitative leap in the upper bound on kernel size
from exponential to polynomial. Contrasting the simple approximate kernel for Connected
Vertex Cover, the approximate kernel for Disjoint Cycle Packing is quite complex.

On the way to obtaining a PSAKS for Disjoint Cycle Packing we consider the Disjoint
Factors problem. In Disjoint Factors, input is an alphabet Σ and a string s in Σ∗. For a
letter a ∈ Σ, an a-factor in s is a substring of s that starts and ends with the letter a, and a factor
in s is an a-factor for some a ∈ Σ. Two factors x and y are disjoint if they do not overlap in s.
In Disjoint Factors the goal is to find a largest possible subset S of Σ such that there exists
a collection C of pairwise disjoint factors in s, such that for every a ∈ S there is an a-factor in C.
This stringology problem shows up in the proof of the kernelization lower bound of Bodlaender
et al. [8] for Disjoint Cycle Packing. Indeed, Bodlaenderr et al. first show that Disjoint
Factors parameterized by alphabet size |Σ| does not admit a polynomial kernel, and then
reduce Disjoint Factors to Disjoint Cycle Packing in the sense that a polynomial kernel
for Disjoint Cycle Packing would yield a polynomial kernel for Disjoint Factors. Here
we go in the other direction - first we obtain a PSAKS for Disjoint Factors parameterized
by |Σ|, and then lift this result to Disjoint Cycle Packing parameterized by solution size.

Lower Bounds for Approximate Kernels. A path P in a graph G is a sequence v1v2, . . . vt
of distinct vertices, such that each pair of consecutive vertices in P are adjacent in G. The length
of the path P is t−1, the number of vertices in P minus one. In Longest Path, the input is a
graph G and the objective is to find a path of maximum length. The best approximation algo-
rithm for Longest Path [2] has factor O( n

logn), and the problem cannot be approximated [39]
within a factor 2(logn)1−ε for any ε > 0, unless NP= DTIME(2lognO(1)). Further, Longest Path
is not expected to admit a polynomial kernel. In fact it was one of the first FPT problems
for which the existence of a polynomial kernel was ruled out [6]. We show that even within
the realm of approximate kernelization, Longest Path remains hard. In particular we show
that for any α ≥ 1, Longest Path does not admit an α-approximate kernel of polynomial size
unless NP ⊆ coNP/Poly.

In order to show the approximate kernelization lower bound for Longest Path, we extend
the complexity-theoretic machinery for showing kernelization lower bounds [6,7,25,32,36] to our
framework of parameterized optimization problems. In particular we amalgamate the notion of
cross-compositions, used to show kernelization lower bounds, with gap-creating reductions, used
to show hardness of approximation bounds, and define gap creating cross-compositions. Then,
adapting the proofs of Fortnow and Santhanam [32] and Bodlaender et al. [7] to our setting, we
show that this notion can be used to prove lower bounds on the size of approximate kernels. Once
the framework of gap creating cross-compositions is set up, it trivially applies to Longest Path.
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After setting up the framework for showing lower bounds for approximate kernelization, we
consider the approximate kernelization complexity of two more problems, namely Set Cover
and Hitting Set, both parameterized by universe size. In both problems input is a family S
of subsets of a universe U . We use n for the size of the universe U and m for the number of sets
in S. A set cover is a subfamily F of S such that

⋃
S∈F S = U . In the Set Cover problem the

objective is to find a set cover F of minimum size. A hitting set is a subset X of U such that
every S ∈ S has non-empty intersection with X, and in the Hitting Set problem the goal is
to find a hitting set of minimum size.

The two problems are dual to each other in the following sense: given (S, U) we can define
the dual family (S∗, U∗) as follows. U∗ has one element uX for every set X ∈ S, and S∗ has
one set Sv for every element v ∈ U . For every X ∈ S and v ∈ U the set Sv ∈ S∗ contains
the element uX in U∗ if and only if v ∈ X. It is well known and easy to see that the dual
of the dual of (S, U) is (S, U) itself, and that hitting sets of (S, U) correspond to set covers
in (S∗, U∗) and vice versa. This duality allows us to translate algorithms and lower bounds
between Set Cover to Hitting Set. However, this translation switches the roles of n (the
universe size) and m (the number of sets). For example, Set Cover is known to admit a factor
(lnn)-approximation algorithm [55], and known not to admit a (c lnn)-approximation algorithm
for any c < 1 unless P = NP [47]. The duality translates these results to a (lnm)-approximation
algorithm, and a lower bound ruling out (c lnm)-approximation algorithms for any c < 1 for
Hitting Set. Nelson [48] gave a O(

√
m)-approximation algorithm, as well as a lower bound

ruling out a polynomial time O(2(logm)c)-approximation for any c < 1 for Set Cover, assuming
the ETH. The duality translates these results to a O(

√
n)-approximation algorithm, as well as a

lower bound under ETH ruling out a polynomial time O(2(logn)c)-approximation for any c < 1
for Hitting Set. Observe that even though Set Cover and Hitting Set are dual to each
other they behave very differently with respect to approximation algorithms that measure the
quality of the approximation in terms of the universe size n.

For kernelization parameterized by universe size n, the two problems behave in a more simi-
lar fashion. Both problems admit kernels of size O(2n), and both problems have been shown not
to admit kernels of size nO(1) [22] unless NP ⊆ coNP/Poly. However, the two lower bound proofs
are quite different, and the two lower bounds do not follow from one another using the duality.

For Set Cover parameterized by n, we deploy the framework of gap creating cross-
compositions to show that the problem does not admit an α-approximate kernel of size nO(1)

for any constant α. This can be seen as a significant strengthening of the lower bound of Dom
et al. [22]. While the gap creating cross-composition for Longest Path is very simple, the gap
creating cross-composition for Set Cover is quite delicate, and relies both on a probabilistic
construction and a de-randomization of this construction using co-non-determinism.

Our lower bound for Set Cover parameterized by universe size n translates to a lower bound
for Hitting Set parameterized by the number m of sets, but says nothing about Hitting Set
parameterized by n. We prove that for every c < 1, even a O(2(logn)c)-approximate kernel of size
nO(1) for Hitting Set would imply a O(2(logn)c′ )-approximation algorithm for Hitting Set for
some c′ < 1. By the result of Nelson [48] this would in turn imply that the ETH is false. Hence,
Hitting Set does not admit a O(2(logn)c)-approximate kernel of size nO(1) assuming the ETH.

We remark that the lower bounds proved using the framework of gap creating cross com-
positions, and in particular the lower bounds for Longest Path and Set Cover, also rule
out approximate compressions to any other parameterized optimization problems. On the other
hand, our lower bound for Hitting Set only rules out approximate kernels. As a consequence
the lower bounds for Longest Path and Set Cover have more potential as starting points
for reductions showing that even further problems do not admit approximate kernels.

Summary. In this paper we set up a new framework for the study of lossy pre-processing
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algorithms, and demonstrate that the framework is natural, versatile and robust. For several
well studied problems, including Steiner Tree, Connected Vertex Cover and Cycle
Packing we show that a “barely lossy” kernelization can get dramatically better upper bounds
on the kernel size than what is achievable with normal kernelization. We extend the machinery
for showing kernelization lower bounds to the setting of approximate kernels, and use these new
methods to prove lower bounds on the size of approximate kernels for Longest Path param-
eterized by the objective function value, and Set Cover and Hitting Set parameterized by
universe size. Especially Set Cover parameterized by universe size has been a useful starting
point for reductions showing lower bounds for traditional kernelization [10,18,22,31,34,46,56].
We are therefore confident that our work lays a solid foundation for future work on approximate
kernelization. Nevertheless, this paper raises many more questions than it answers. It is our
hope that our work will open the door for a systematic investigation of lossy pre-processing.

Organization of the Paper. In Section 2 we set up notations. In section 3 we set up the
necessary definitions to formally define and discuss approximate kernels, and relate the new no-
tions to well known definitions from approximation algorithms and parameterized complexity.
In section 4 we give a PSAKS for Connected Vertex Cover. In section 5 we give PSAKSes
for Disjoint Factors and Disjoint Cycle Packing. In section 6 we show how (parts of)
existing approximation algorithms for Partial Vertex Cover, Steiner Tree and Optimal
Linear Arrangement can be re-interpreted as approximate kernels for these problems. In
section 7 we set up a framework for proving lower bounds on the size of α-approximate kernels
for a parameterized optimization problem. In sections 8 and 9 we deploy the new framework
to prove lower bounds for approximate kernelization of Longest Path and Set Cover. In
section 10 we give a lower bound for the approximate kernelization of Hitting Set by showing
that a “too good” approximate kernel would lead to a “too good” approximation algorithm. We
conclude with an extensive list of open problems in section 11.

A Guide to the Paper. In order to read any of the sections on concrete problems, as well
as our lower bound machinery (sections 4-10) one needs more formal definitions of approximate
kernelization and related concepts than what is given in the introduction. These definitions are
given in section 3.

We have provided informal versions of the most important definitions in subsection 3.1. It
should be possible to read subsection 3.1 and then proceed directly to the technical sections
(4-10), only using the rest of section 3 occasionally as a reference. Especially the positive results
of sections 4-6 should be accessible in this way. However, a reader interested in how approximate
kernelization fits within a bigger picture containing approximation algorithms and kernelization
should delve deeper into Section 3.

All of the approximate kernelization results in sections 4-6 may be read independently of
each other, except that the kernels for Disjoint Factors and Disjoint Cycle Packing in
section 5 are related. The approximate kernel for Connected Vertex Cover given in sec-
tion 4 gives a simple first example of an approximate kernel, in fact a PSAKS. The approximate
kernels for Disjoint Factors and Disjoint Cycle Packing given in section 5 are the most
technically interesting positive results in the paper.

Section 7 sets up the methodology for proving lower bounds on approximate kernelization,
this methodology is encapsulated in Theorem 8. The statement of Theorem 8 together with the
definitions of all objects in the statement are necessary to read the two lower bound sections (8
and 9) that apply this theorem. The lower bound for Longest Path in section 8 is a direct
application of Theorem 8. The lower bound for Set Cover in section 9 is the most technically
interesting lower bound in the paper. The lower bound for Hitting Set in Section 10 does not
rely on Theorem 8, and may be read immediately after subsection 3.1
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2 Preliminaries

We use N to denote the set of natural numbers. For a graph G we use V (G) and E(G), to denote
the vertex and edge sets of the graph G respectively. We use standard terminology from the book
of Diestel [19] for those graph-related terms which are not explicitly defined here. For a vertex
v in V (G), we use dG(v) to denote the degree of v, i.e the number of edges incident on v, in the
(multi) graph G. For a vertex subset S ⊆ V (G), we use G[S] and G−S to be the graphs induced
on S and V (G)\S respectively. For a graph G and an induced subgraph G′ of G, we use G−G′ to
denote the graph G−V (G′). For a vertex subset S ⊆ V (G), we use NG(S) and NG[S] to denote
the open neighbourhood and closed neighbourhood of S in G. That is, NG(S) = {v | (u, v) ∈
E(G), u ∈ S} \S and NG[S] = NG(S)∪S. For a graph G and an edge e ∈ E(G), we use G/e to
denote the graph obtained by contracting e in G. If P is a path from a vertex u to a vertex v in
graph G then we say that u, v are the end vertices of the path P and P is a (u, v)-path. For a
path P , we use V (P ) to denote the set of vertices in the path P and the length of P is denoted
by |P | (i.e, |P | = |V (P )| − 1). For a cycle C, we use V (C) to denote the set of vertices in the
cycle C and length of C, denoted by |C|, is |V (C)|. Let P1 = x1x2 . . . xr and P2 = y1y2 . . . ys
be two paths in a graph G, V (P1) ∩ V (P2) = ∅ and xry1 ∈ E(G), then we use P1P2 to denote
the path x1x2 . . . xry1 . . . ys. We say that P = x1x2 . . . xr is an induced path in a multigraph
G, if G[V (P )] is same as the simple graph P . We say that a path P is a non trivial path if
|V (P )| ≥ 2. For a path/cycle Q we use NG(Q) and NG[Q] to denote the set NG(V (Q)) and
NG[V (Q)] respectively. For a set of paths/cycles Q, we use |Q| and V (Q) to denote the number
of paths/cycles in Q and the set

⋃
Q∈Q V (Q) respectively. The chromatic number of a graph G is

denoted by χ(G). An undirected graph G is called an interval graph, if it is formed from set I of
intervals by creating one vertex vI for each interval I ∈ I and adding edge between two vertices
vI and vI′ , if I ∩ I ′ 6= ∅. An interval representation of an interval graph G is a set of intervals
from which G can be formed as described above. The following facts are useful in later sections.

Fact 1. For any positive reals x, y, p and q, min
(
x
p ,

y
q

)
≤ x+y

p+q ≤ max
(
x
p ,

y
q

)
Fact 2. For any y ≤ 1

2 , (1− y) ≥
(

1
4

)y
.

3 Setting up the Framework

For the precise definition of approximate kernels, all its nuances, and how this new notion
relates to approximation algorithms, FPT algorithms, FPT-approximation algorithms and ker-
nelization, one should read Subsection 3.2. For the benefit of readers eager to skip ahead to
the concrete results of the paper, we include in Subsection 3.1 a “definition” of α-approximate
kernelization that should be sufficient for reading the rest of the paper and understanding most
of the arguments.

3.1 Quick and Dirty “Definition” of Approximate Kernelization

Recall that we work with parameterized problems. That is, every instance comes with a param-
eter k. Often k is “the quality of the solution we are looking for”. For example, does G have a
connected vertex cover of size at most k? Does G have at least k pairwise vertex disjoint cycles?
When we move to optimization problems, we change the above two questions to: Can you find
a connected vertex cover of size at most k in G? If yes, what is the smallest one you can find?
Or, can you find at least k pairwise vertex disjoint cycles? If no, what is the largest collection
of pairwise vertex disjoint cycles you can find? Note here the difference in how minimization
and maximization problems are handled. For minimization problems, a bigger objective func-
tion value is undesirable, and k is an “upper bound on the ‘badness’ of the solution”. That is,
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solutions worse than k are so bad we do not care precisely how bad they are. For maximization
problems, a bigger objective function value is desirable, and k is an “upper bound on how good
the solution has to be before one is fully satisfied”. That is, solutions better than k are so good
that we do not care precisely how good they are.

In many cases the parameter k does not directly relate to the quality of the solution we
are looking for. Consider for example, the following problem. Given a graph G and a set Q
of k terminals, find a smallest possible Steiner tree T in G that contains all the terminals. In
such cases, k is called a structural parameter, because k being small restricts the structure of
the input instance. In this example, the structure happens to be the fact that the number of
terminals is ‘small’.

Let α ≥ 1 be a real number. We now give an informal definition of α-approximate kernels.
The kernelization algorithm should take an instance I with parameter k, run in polynomial time,
and produce a new instance I ′ with parameter k′. Both k′ and the size of I ′ should be bounded
in terms of just the parameter k. That is, there should exist a function g(k) such that |I ′| ≤ g(k)
and k′ ≤ g(k). This function g(k) is the size of the kernel. Now, a solution s′ to the instance
I ′ should be useful for finding a good solution s to the instance I. What precisely this means
depends on whether k is a structural parameter or the “quality of the solution we are looking
for”, and whether we are working with a maximization problem or a minimization problem.

• If we are working with a structural parameter k then we require the following from α-
approximate kernels: For every c ≥ 1, a c-approximate solution s′ to I ′ can be transformed
in polynomial time into a (c · α)-approximate solution to I.

• If we are working with a minimization problem, and k is the quality of the solution we
are looking for, then k is an “upper bound on the badness of the solution”. In this case
we require the following from α-approximate kernels: For every c ≥ 1, a c-approximate
solution s′ to I ′ can be transformed in polynomial time into a (c ·α)-approximate solution
s to I. However, if the quality of s′ is “worse than” k′, or (c · α) · OPT (I) > k, the
algorithm that transforms S′ into S is allowed to fail. Here OPT (I) is the value of the
optimum solution of the instance I.
The solution lifting algorithm is allowed to fail precisely if the solution S′ given to it is
“too bad” for the instance I ′, or if the approximation guarantee of being a factor of c · α
away from the optimum for I allows it to output a solution that is “too bad” for I anyway.

• If we are working with a maximization problem, and k is the quality of the solution we
are looking for, then k is an “upper bound on how good the solution has to be before one
is fully satisfied”. In this case we require the following from α-approximate kernels: For
every c ≥ 1, if s′ is a c-approximate solution s′ to I ′ or the quality of s′ is at least k′/c,
then s′ can be transformed in polynomial time into a (c · α)-approximate solution s to I.
However, if OPT (I) > k then instead of being a (c · α)-approximate solution s to I, the
output solution s can be any solution of quality at least k/(c · α).
In particular, if OPT (I ′) > k′ then the optimal solution to I ′ is considered “good enough”,
and the approximation ratio c of the solution s′ to I ′ is computed as “distance from being
good enough”, i.e as k′/s′. Further, if OPT (I) > k then we think of the optimal solution
to I as “good enough”, and measure the approximation ratio of s in terms of “distance
from being good enough”, i.e as k/s.

We encourage the reader to instantiate the above definitions with c ∈ {1, 2} and α ∈ {1, 2}.
That is, what happens to optimal and 2-approximate solutions to the reduced instance when
the approximate kernel incurs no loss (α = 1)? What happens to optimal and 2-approximate
solutions to the reduced instance when the approximate kernel incurs a factor 2 loss (i.e α = 2)?
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Typically we are interested in α-approximate kernels of polynomial size, that is kernels where
the size function g(k) is upper bounded by kO(1). Of course the goal is to design α-approximate
kernels of smallest possible size, with smallest possible α. Sometimes we are able to obtain a
(1 + ε)-approximate kernel of polynomial size for every ε > 0. Here the exponent and the con-
stants of the polynomial may depend on ε. We call such a kernel a Polynomial Size Approximate
Kernelization Scheme, and abbreviate it as PSAKS. If only the constants of the polynomial g(k)
and not the exponent depend on ε, we say that the PSAKS is efficient. All of the positive results
achieved in this paper are PSAKSes, but not all are efficient.

3.2 Approximate Kernelization, The Real Deal.

We will be dealing with approximation algorithms and solutions that are not necessarily opti-
mal, but at the same time relatively “close” to being optimal. To properly discuss these concepts
they have to be formally defined. Our starting point is a parameterized analogue of the notion
of an optimization problem from the theory of approximation algorithms.

Definition 3.1. A parameterized optimization (minimization or maximization) problem Π is a
computable function

Π : Σ∗ × N× Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem Π are pairs (I, k) ∈ Σ∗ × N, and a
solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. The value of the solution s
is Π(I, k, s). Just as for “classical” optimization problems the instances of Π are given as input,
and the algorithmic task is to find a solution with the best possible value, where best means
minimum for minimization problems and maximum for maximization problems.

Definition 3.2. For a parameterized minimization problem Π, the optimum value of an instance
(I, k) ∈ Σ∗ × N is

OPTΠ(I, k) = min
s∈Σ∗
|s|≤|I|+k

Π(I, k, s).

For a parameterized maximization problem Π, the optimum value of (I, k) is

OPTΠ(I, k) = max
s∈Σ∗
|s|≤|I|+k

Π(I, k, s).

For an instance (I, k) of a parameterized optimization problem Π, an optimal solution is a
solution s such that Π(I, k, s) = OPTΠ(I, k).

When the problem Π is clear from context we will often drop the subscript and refer to
OPTΠ(I, k) as OPT (I, k). Observe that in the definition of OPTΠ(I, k) the set of solutions
over which we are minimizing/maximizing Π is finite, therefore the minimum or maximum is
well defined. We remark that the function Π in Definition 3.1 depends both on I and on k. Thus
it is possible to define parameterized problems such that an optimal solution s for (I, k) is not
necessarily optimal for (I, k′).

For an instance (I, k) the size of the instance is |I| + k while the integer k is referred to
as the parameter of the instance. Parameterized Complexity deals with measuring the running
time of algorithms in terms of both the input size and the parameter. In Parameter Complex-
ity a problem is fixed parameter tractable if input instances of size n with parameter k can be
“solved” in time f(k)nO(1) for a computable function f . For decision problems “solving” an
instance means to determine whether the input instance is a “yes” or a “no” instance to the
problem. Next we define what it means to “solve” an instance of a parameterized optimization
problem, and define fixed parameter tractability for parameterized optimization problems.
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Definition 3.3. Let Π be a parameterized optimization problem. An algorithm for Π is an
algorithm that given as input an instance (I, k), outputs a solution s and halts. The algorithm
solves Π if, for every instance (I, k) the solution s output by the algorithm is optimal for (I, k).
We say that a parameterized optimization problem Π is decidable if there exists an algorithm
that solves Π.

Definition 3.4. A parameterized optimization problem Π is fixed parameter tractable (FPT)
if there is an algorithm that solves Π, such that the running time of the algorithm on instances
of size n with parameter k is upper bounded by f(k)nO(1) for a computable function f .

We remark that Definition 3.3 differs from the usual formalization of what it means to
“solve” a decision problem. Solving a decision problem amounts to always returning “yes” on
“yes”-instances and “no” on “no”-instances. For parameterized optimization problems the al-
gorithm has to produce an optimal solution. This is analogous to the definition of optimization
problems most commonly used in approximation algorithms.

We remark that we could have built the framework of approximate kernelization on the exist-
ing definitions of parameterized optimization problems used in parameterized approximation al-
gorithms [45], indeed the difference between our definitions of parameterized optimization prob-
lems and those currently used in parameterized approximation algorithms are mostly notational.

Parameterizations by the Value of the Solution. At this point it is useful to consider
a few concrete examples, and to discuss the relationship between parameterized optimization
problems and decision variants of the same problem. For a concrete example, consider the
Vertex Cover problem. Here the input is a graph G, and the task is to find a smallest
possible vertex cover of G: a subset S ⊆ V (G) is a vertex cover if every edge of G has at least
one endpoint in S. This is quite clearly an optimization problem, the feasible solutions are the
vertex covers of G and the objective function is the size of S.

In the most common formalization of the Vertex Cover problem as a decision problem
parameterized by the solution size, the input instance G comes with a parameter k and the
instance (G, k) is a “yes” instance if G has a vertex cover of size at most k. Thus, the parame-
terized decision problem “does not care” whether G has a vertex cover of size even smaller than
k, the only thing that matters is whether a solution of size at most k is present.

To formalize Vertex Cover as a parameterized optimization problem, we need to deter-
mine for every instance (G, k) which value to assign to potential solutions S ⊆ V (G). We can
encode the set of feasible solutions by giving finite values for vertex covers of G and ∞ for all
other sets. We want to distinguish between graphs that do have vertex covers of size at most
k and the ones that do not. At the same time, we want the computational problem of solving
the instance (G, k) to become easier as k decreases. A way to achieve this is to assign |S| to
all vertex covers S of G of size at most k, and k + 1 for all other vertex covers. Thus, one can
formalize the Vertex Cover problem as a parameterized optimization problem as follows.

V C(G, k, S) =
{

∞ if S is not a vertex cover of G,
min(|S|, k + 1) otherwise.

Note that this formulation of Vertex Cover “cares” about solutions of size less than k. One
can think of k as a threshold: for solutions of size at most k we care about what their size is,
while all solutions of size larger than k are equally bad in our eyes, and are assigned value k+1.

Clearly any FPT algorithm that solves the parameterized optimization version of Vertex
Cover also solves the (parameterized) decision variant. Using standard self-reducibility tech-
niques [53] one can make an FPT algorithm for the decision variant solve the optimization
variant as well.
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We have seen how a minimization problem can be formalized as a parameterized optimiza-
tion problem parameterized by the value of the optimum. Next we give an example for how to
do this for maximization problems. In the Cycle Packing problem we are given as input a
graph G, and the task is to find a largest possible collection C of pairwise vertex disjoint cycles.
Here a collection of vertex disjoint cycles is a collection C of vertex subsets of G such that for
every C ∈ C, G[C] contains a cycle and for every C,C ′ ∈ C we have V (C)∩ V (C ′) = ∅. We will
often refer to a collection of vertex disjoint cycles as a cycle packing.

We can formalize the Cycle Packing problem as a parameterized optimization problem
parameterized by the value of the optimum in a manner similar to what we did for Vertex
Cover. In particular, if C is a cycle packing, then we assign it value |C| if |C| ≤ k and value
k + 1 otherwise. If |C| is not a cycle packing, we give it value −∞.

CP (G, k, C) =
{

−∞ if C is not a cycle packing,
min(|C|, k + 1) otherwise.

Thus, the only (formal) difference between the formalization of parameterized minimization and
maximization problems parameterized by the value of the optimum is how infeasible solutions
are treated. For minimization problems infeasible solutions get value∞, while for maximization
problems they get value −∞. However, there is also a “philosophical” difference between the
formalization of minimization and maximization problems. For minimization problems we do
not distinguish between feasible solutions that are “too bad”; solutions of size more than k are
all given the same value. On the other hand, for maximization problems all solutions that are
“good enough”, i.e. of size at least k + 1, are considered equal.

Observe that the “capping” of the objective function at k + 1 does not make sense for ap-
proximation algorithms if one insists on k being the (un-parameterized) optimum of the instance
I. The parameterization discussed above is by the value of the solution that we want our algo-
rithms to output, not by the unknown optimum. We will discuss this topic in more detail in the
paragraph titled “Capping the objective function at k+1”, after the notion of approximate
kernelization has been formally defined.

Structrural Parameterizations. We now give an example that demonstrates that the no-
tion of parameterized optimization problems is robust enough to capture not only parameteri-
zations by the value of the optimum, but also parameterizations by structural properties of the
instance that may or may not be connected to the value of the best solution. In the Optimal
Linear Arrangement problem we are given as input a graph G, and the task is to find a
bijection σ : V (G) → {1, . . . , n} such that

∑
uv∈E(G) |σ(u) − σ(v)| is minimized. A bijection

σ : V (G) → {1, . . . , n} is called a linear layout, and
∑
uv∈E(G) |σ(u) − σ(v)| is denoted by

val(σ,G) and is called the value of the layout σ.
We will consider the Optimal Linear Arrangement problem for graphs that have a

relatively small vertex cover. This can be formalized as a parameterized optimization problem
as follows:

OLA((G,S), k, σ) =


−∞ if S is not vertex cover of G of size at most k,
∞ if σ is not a linear layout,

val(σ,G) otherwise.

In the definition above the first case takes precendence over the second: if S is not vertex cover
of G of size at most k and σ is not a linear layout, OLA((G,S), k, σ) returns −∞. This ensures
that malformed input instances do not need to be handled.

Note that the input instances to the parameterized optimization problem described above
are pairs ((G,S), k) where G is a graph, S is a vertex cover of G of size at most k and k is the pa-
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rameter. This definition allows algorithms for Optimal Linear Arrangement parameterized
by vertex cover to assume that the vertex cover S is given as input.

Kernelization of Parameterized Optimization Problems. The notion of a kernel (or
kernelization algorithm) is a mathematical model for polynomial time pre-processing for deci-
sion problems. We will now define the corresponding notion for parameterized optimization
problems. To that end we first need to define a polynomial time pre-processing algorithm.

Definition 3.5. A polynomial time pre-processing algorithm A for a parameterized op-
timization problem Π is a pair of polynomial time algorithms. The first one is called the re-
duction algorithm, and computes a map RA : Σ∗ ×N→ Σ∗ ×N. Given as input an instance
(I, k) of Π the reduction algorithm outputs another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution lifting algorithm. This algorithm takes as
input an instance (I, k) ∈ Σ∗ × N of Π, the output instance (I ′, k′) of the reduction algorithm,
and a solution s′ to the instance (I ′, k′). The solution lifting algorithm works in time polynomial
in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k). Finally, if s′ is an optimal solution to
(I ′, k′) then s is an optimal solution to (I, k).

Observe that the solution lifting algorithm could contain the reduction algorithm as a sub-
routine. Thus, on input (I, k, I ′, k′, s′) the solution lifting algorithm could start by running
the reduction algorithm (I, k) and produce a transcript of how the reduction algorithm obtains
(I ′, k′) from (I, k). Hence, when designing the solution lifting algorithm we may assume without
loss of generality that such a transcript is given as input. For the same reason, it is not really
necessary to include (I ′, k′) as input to the solution lifting algorithm. However, to avoid start-
ing every description of a solution lifting algorithm with “we compute the instance (I ′, k′) from
(I, k)”, we include (I ′, k′) as input. The notion of polynomial time pre-processing algorithms
could be extended to randomized polynomial time pre-processing algorithms, by allowing both
the reduction algorithm and the solution lifting algorithm to draw random bits, and fail with a
small probability. With such an extension it matters whether the solution lifting algorithm has
access to the random bits drawn by the reduction algorithm, because these bits might be re-
quired to re-construct the transcript of how the reduction algorithm obtained (I ′, k′) from (I, k).
If the random bits of the reduction algorithm are provided to the solution lifting algorithm, the
discussion above applies.

A kernelization algorithm is a polynomial time pre-processing algorithm for which we can
prove an upper bound on the size of the output instances in terms of the parameter of the
instance to be preprocessed. Thus, the size of a polynomial time pre-processing algorithm A is
a function sizeA : N→ N defined as follows.

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.

In other words, we look at all possible instances of Π with a fixed parameter k, and measure
the supremum of the sizes of the output of RA on these instances. At this point, recall that
the size of an instance (I, k) is defined as |I| + k. Note that this supremum may be infinite;
this happens when we do not have any bound on the size of RA(I, k) in terms of the input
parameter k only. Kernelization algorithms are exactly these polynomial time preprocessing
algorithms whose output size is finite and bounded by a computable function of the parameter.

Definition 3.6. A kernelization (or kernel) for a parameterized optimization problem Π is a
polynomial time pre-processing algorithm A such that sizeA is upper bounded by a computable
function g : N→ N.
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If the function g in Definition 3.6 is a polynomial, we say that Π admits a polynomial ker-
nel. Similarly, if g is a linear, quadratic or cubic function of k we say that Π admits a linear,
quadratic, or cubic kernel, respectively.

One of the basic theorems in Parameterized Complexity is that a decidable parameterized
decision problem admits a kernel if and only if it is fixed parameter tractable. We now show
that this result also holds for parameterized optimization problems. We say that a parameter-
ized optimization problem Π is decidable if there exists an algorithm that solves Π, where the
definition of “solves” is given in Definition 3.3.
Proposition 3.1. A decidable parameterized optimization problem Π is FPT if and only if it
admits a kernel.
Proof. The backwards direction is trivial; on any instance (I, k) one may first run the reduction
algorithm to obtain a new instance (I ′, k′) of size bounded by a function g(k). Since the instance
(I ′, k′) has bounded size and Π is decidable one can find an optimal solution s′ to (I ′, k′) in time
upper bounded by a function g′(k). Finally one can use the solution lifting algorithm to obtain
an optimal solution s to (I, k).

For the forward direction we need to show that if a parameterized optimization problem Π is
FPT then it admits a kernel. Suppose there is an algorithm that solves instances Π of size n with
parameter k in time f(k)nc. On input (I, k) the reduction algorithm runs the FPT algorithm for
nc+1 steps. If the FPT algorithm terminates after at most nc+1 steps, the reduction algorithm
outputs an instance (I ′, k′) of constant size. The instance (I ′, k′) is hard-coded in the reduction
algorithm and does not depend on the input instance (I, k). Thus |I ′|+ k′ is upper bounded by
a constant. If the FPT algorithm does not terminate after nc+1 steps the reduction algorithm
halts and outputs the instance (I, k). Note that in this case f(k)nc > nc+1, which implies that
f(k) > |I|. Hence the size of the output instance is upper bounded by a function of k.

We now describe the solution lifting algorithm. If the reduction algorithm output (I, k)
then the solution lifting algorithm just returns the same solution that it gets as input. If the
reduction algorithm output (I ′, k′) this means that the FPT algorithm terminated in polyno-
mial time, which means that the solution lifting algorithm can use the FPT algorithm to output
an optimal solution to (I, k) in polynomial time, regardless of the solution to (I ′, k′) it gets as
input. This concludes the proof.

Parameterized Approximation and Approximate Kernelization. For some parame-
terized optimization problems we are unable to obtain FPT algorithms, and we are also unable
to find satisfactory polynomial time approximation algorithms. In this case one might aim for
FPT-approximation algorithms, algorithms that run in time f(k)nc and provide good approx-
imate solutions to the instance.
Definition 3.7. Let α ≥ 1 be constant. A fixed parameter tractable α-approximation algorithm
for a parameterized optimization problem Π is an algorithm that takes as input an instance
(I, k), runs in time f(k)|I|O(1), and outputs a solution s such that Π(I, k, s) ≤ α ·OPT (I, k) if
Π is a minimization problem, and α ·Π(I, k, s) ≥ OPT (I, k) if Π is a maximization problem.

Note that Definition 3.7 only defines constant factor FPT-approximation algorithms. The
definition can in a natural way be extended to approximation algorithms whose approximation
ratio depends on the parameter k, on the instance I, or on both.

We are now ready to define one of the key new concepts of the paper - the concept of
an α-approximate kernel. We defined kernels by first defining polynomial time pre-processing
algorithms (Definition 3.5) and then adding size constraints on the output (Definition 3.6).
In a similar manner we will first define α-approximate polynomial time pre-processing algo-
rithms, and then define α-approximate kernels by adding size constraints on the output of the
pre-processing algorithm.

13



Definition 3.8. Let α ≥ 1 be a real number and Π be a parameterized optimization problem.
An α-approximate polynomial time pre-processing algorithm A for Π is a pair of poly-
nomial time algorithms. The first one is called the reduction algorithm, and computes a map
RA : Σ∗ ×N→ Σ∗ ×N. Given as input an instance (I, k) of Π the reduction algorithm outputs
another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution lifting algorithm. This algorithm takes as
input an instance (I, k) ∈ Σ∗ × N of Π, the output instance (I ′, k′) of the reduction algorithm,
and a solution s′ to the instance (I ′, k′). The solution lifting algorithm works in time polynomial
in |I|,k,|I ′|,k′ and s′, and outputs a solution s to (I, k). If Π is a minimization problem then

Π(I, k, s)
OPT (I, k) ≤ α ·

Π(I ′, k′, s′)
OPT (I ′, k′) .

If Π is a maximization problem then

Π(I, k, s)
OPT (I, k) · α ≥

Π(I ′, k′, s′)
OPT (I ′, k′) .

Definition 3.8 only defines constant factor approximate polynomial time pre-processing al-
gorithms. The definition can in a natural way be extended approximation ratios that depend
on the parameter k, on the instance I, or on both. Additionally, the discussion following Defini-
tion 3.5 also applies here. In particular we may assume that the solution lifting algorithm also
gets as input a transcript of how the reduction algorithm obtains (I ′, k′) from (I, k). The size
of an α-approximate polynomial time pre-processing algorithm is defined in exactly the same
way as the size of a polynomial time pre-processing algorithm (from Definition 3.5).

Definition 3.9. An α-approximate kernelization (or α-approximate kernel) for a param-
eterized optimization problem Π, and real α ≥ 1, is an α-approximate polynomial time pre-
processing algorithm A such that sizeA is upper bounded by a computable function g : N→ N.

Just as for regular kernels, if the function g in Definition 3.9 is a polynomial, we say that Π
admits an α-approximate polynomial kernel. If g is a linear, quadratic or cubic function, then
Π admits a linear, quadratic or cubic α-approximate kernel, respectively.

Proposition 3.1 establishes that a parameterized optimization problem Π admits a kernel
if and only if it is FPT. Next we establish a similar equivalence between FPT-approximation
algorithms and approximate kernelization.

Proposition 3.2. For every α ≥ 1 and decidable parameterized optimization problem Π,
Π admits a fixed parameter tractable α-approximation algorithm if and only if Π has an α-
approximate kernel.

The proof of Proposition 3.2 is identical to the proof of Proposition 3.1, but with the FPT
algorithm replaced by the fixed parameter tractable α-approximation algorithm, and the kernel
replaced with the α-approximate kernel. On an intuitive level, it should be easier to compress an
instance than it is to solve it. For α-approximate kernelization this intuition can be formalized.

Theorem 1. For every α ≥ 1 and decidable parameterized optimization problem Π, Π admits
a polynomial time α-approximation algorithm if and only if Π has an α-approximate kernel of
constant size.

The proof of Theorem 1 is simple; if there is an α-approximate kernel of constant size one
can brute force the reduced instance and lift the optimal solution of the reduced instance to an
α-approximate solution to the original. On the other hand, if there is a factor α approximation
algorithm, the reduction algorithm can just output any instance of constant size. Then, the
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solution lifting algorithm can just directly compute an α-approximate solution to the original
instance using the approximation algorithm.

We remark that Proposition 3.2 and Theorem 1 also applies to approximation algorithms and
approximate kernels with super-constant approximation ratio. We also remark that with our
definition of α-approximate kernelization, by setting α = 1 we get essentially get back the notion
of kernel for the same problem. The difference arises naturally from the different goals of decision
and optimization problems. In decision problems we aim to correctly classify the instance as a
“yes” or a “no” instance. In an optimization problem we just want as good a solution as possible
for the instance at hand. In traditional kernelization, a yes/no answer to the reduced instance
translates without change to the original instance. With our definition of approximate kernels,
a sufficiently good solution (that is, a witness of a yes answer) will always yield a witness of a yes
answer to the original instance. However, the failure to produce a sufficiently good solution to
the reduced instance does not stop us from succeeding at producing a sufficiently good solution
for the original one. From the perspective of optimization problems, such an outcome is a win.

Capping the objective function at k + 1. We now return to the topic of parameterizing
optimization problems by the value of the solution, and discuss the relationship between (ap-
proximate) kernels for such parameterized optimization problems and (traditional) kernels for
the parameterized decision version of the optimization problem.

Consider a traditional optimization problem, say Vertex Cover. Here, the input is a
graph G, and the goal is to find a vertex cover S of G of minimum possible size. When pa-
rameterizing Vertex Cover by the objective function value we need to provide a parameter k
such that solving the problem on the same graph G becomes progressively easier as k decreases.
In parameterized complexity this is achieved by considering the corresponding parameterized
decision problem where we are given G and k and asked whether there exists a vertex cover of
size at most k. Here k is the parameter. If we also required an algorithm for Vertex Cover
to produce a solution, then the above parameterization can be interpreted as follows. Given G
and k, output a vertex cover of size at most k or fail (that is, return that the algorithm could
not find a vertex cover of size at most k.) If there exists a vertex cover of size at most k then
the algorithm is not allowed to fail.

A c-approximation algorithm for the Vertex Cover problem is an algorithm that given
G, outputs a solution S of size no more than c times the size of the smallest vertex cover of G.
So, how do approximation and parameterization mix? For c ≥ 1, there are two natural ways to
define a parameterized c-approximation algorithm for Vertex Cover.

(a) Given G and k, output a vertex cover of size at most k or fail (that is, return that the
algorithm could not find a vertex cover of size at most k.) If there exists a vertex cover
of size at most k/c then the algorithm is not allowed to fail.

(b) Given G and k, output a vertex cover of size at most ck or fail (that is, return that the
algorithm could not find a vertex cover of size at most ck.) If there exists a vertex cover
of size at most k then the algorithm is not allowed to fail.

Note that if we required the approximation algorithm to run in polynomial time, then both
definitions above would yield exactly the definition of polynomial time c-approximation algo-
rithms, by a linear search or binary search for the appropriate value of k. In the parameterized
setting the running time depends on k, and the two formalizations are different, but nevertheless
equivalent up to a factor c in the value of k. That is f(k) · nO(1) time algorithms and g(k) size
kernels for parameterization (b) translate to f(ck) · nO(1) time algorithms and g(ck) kernels for
parameterization (a) and vice versa.

By defining the parameterized optimization problem for Vertex Cover in such a way that
the objective function depends on the parameter k, one can achieve either one of the two dis-
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cussed formulations. By defining V C(G, k, S) = min{|S|, k + 1} for vertex covers S we obtain
formulation (a). By defining V C(G, k, S) = min{|S|, dcke + 1} for vertex covers S we obtain
formulation (b). It is more meaningful to define the computational problem independently of the
(approximation factor of) algorithms for the problem. For this reason we stick to formulation
(a) in this paper.

Reduction Rules and Strict α-Approximate Kernels. Kernelization algorithms in the
literature [15, 23] are commonly described as a set of reduction rules. Here we discuss reduc-
tion rules in the context of parameterized optimization problems. A reduction rule is simply
a polynomial time pre-processing algorithm, see Definition 3.5. The reduction rule applies if
the output instance of the reduction algorithm is not the same as the input instance. Most
kernelization algorithms consist of a set of reduction rules. In every step the algorithm checks
whether any of the reduction rules apply. If a reduction rule applies, the kernelization algorithm
runs the reduction algorithm on the instance and proceeds by working with the new instance.
This process is repeated until the instance is reduced, i.e. none of the reduction rules apply. To
prove that this is indeed a kernel (as defined in Definition 3.6) one proves an upper bound on
the size of any reduced instance.

In order to be able to make kernelization algorithms as described above, it is important
that reduction rules can be chained. That is, suppose that we have an instance (I, k) and run
a pre-processing algorithm on it to produce another instance (I ′, k′). Then we run another
pre-processing algorithm on (I ′, k′) to get a third instance (I?, k?). Given an optimal solution
s? to the last instance, we can use the solution lifting algorithm of the second pre-processing
algorithm to get an optimal solution s′ to the instance (I ′, k′). Then we can use the solution
lifting algorithm of the first pre-processing algorithm to get an optimal solution s to the original
instance (I, k).

Unfortunately, one can not chain α-approximate polynomial time pre-processing algorithms,
as defined in Definition 3.8, in this way. In particular, each successive application of an α-
approximate pre-processing algorithm increases the gap between the approximation ratio of
the solution to the reduced instance and the approximation ratio of the solution to the origi-
nal instance output by the solution lifting algorithm. For this reason we need to define strict
approximate polynomial time pre-processing algorithms.

Definition 3.10. Let α ≥ 1 be a real number, and Π be a parameterized optimization problem.
An α-approximate polynomial time pre-processing algorithm is said to be strict if, for every
instance (I, k), reduced instance (I ′, k′) = RA(I, k) and solution s′ to (I ′, k′), the solution s to
(I, k) output by the solution lifting algorithm when given s′ as input satisfies the following.

• If Π is a minimization problem then Π(I,k,s)
OPT (I,k) ≤ max

{
Π(I′,k′,s′)
OPT (I′,k′) , α

}
.

• If Π is a maximization problem then Π(I,k,s)
OPT (I,k) ≥ min

{
Π(I′,k′,s′)
OPT (I′,k′) ,

1
α

}
.

The intuition behind Definition 3.10 is that an α-strict approximate pre-processing algo-
rithm may incur error on near-optimal solutions, but that they have to preserve factor α-
approximation. If s′ is an α-approximate solution to (I ′, k′) then s must be a α-approximate
solution to (I, k) as well. Furthermore, if the ratio of Π(I ′, k′, s′) to OPT (I ′, k′) is worse than
α, then the ratio of Π(I, k, s) to OPT (I, k) should not be worse than the ratio of Π(I ′, k′, s′) to
OPT (I ′, k′).

We remark that a reduction algorithm RA and a solution lifting algorithm that together sat-
isfy the conditions of Definition 3.10, also automatically satisfy the conditions of Definition 3.8.
Therefore, to prove that RA and solution lifting algorithm constitute a strict α-approximate
polynomial time pre-processing algorithm it is not necessary to prove that they constitute a α-
approximate polynomial time pre-processing algorithm first. The advantage of Definition 3.10
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is that strict α-approximate polynomial time pre-processing algorithms do chain - the compo-
sition of two strict α-approximate polynomial time pre-processing algorithms is again a strict
α-approximate polynomial time pre-processing algorithm.

We can now formally define what a reduction rule is. A reduction rule for a parameterized
optimization problem Π is simply a polynomial time algorithm computing a map RA : Σ∗×N→
Σ∗×N. In other words, a reduction rule is “half” of a polynomial time pre-processing algorithm.
A reduction rule is only useful if the other half is there to complete the pre-processing algorithm.

Definition 3.11. A reduction rule is said to be α-safe for Π if there exists a solution lifting
algorithm, such that the rule together with the solution lifting algorithm constitute a strict α-
approximate polynomial time pre-processing algorithm for Π. A reduction rule is safe if it is
1-safe.

In some cases even the final kernelization algorithm is a strict α-approximate polynomial
time pre-processing algorithm. This happens if, for example, the kernel is obtained only by
applying α-safe reduction rules. Strictness yields a tigher connection between the quality of
solutions to the reduced instance and the quality of the solutions to the original instance output
by the solution lifting algorithms. Thus we would like to point out which kernels have this
additional property. For this reason we define strict α-approximate kernels.

Definition 3.12. An α-approximate kernel A is called strict if A is a strict α-approximate
polynomial time pre-processing algorithm.

Polynomial Size Approximate Kernelization Schemes. In approximation algorithms,
the best one can hope for is usually an approximation scheme, that is an approximation algo-
rithm that can produce a (1 + ε)-approximate solution for every ε > 0. The algorithm runs
in polynomial time for every fixed value of ε. However, as ε tends to 0 the algorithm becomes
progressively slower in such a way that the algorithm cannot be used to obtain optimal solutions
in polynomial time.

In the setting of approximate kernelization, we could end up in a situation where it is pos-
sible to produce a polynomial (1 + ε)-approximate kernel for every fixed value of ε, but that
the size of the kernel grows so fast when ε tends to 0 that this algorithm cannot be used to
give a polynomial size kernel (without any loss in solution quality). This can be formalized as
a polynomial size approximate kernelization scheme.

Definition 3.13. A polynomial size approximate kernelization scheme (PSAKS) for
a parameterized optimization problem Π is a family of α-approximate polynomial kernelization
algorithms, with one such algorithm for every α > 1.

Definition 3.13 states that a PSAKS is a family of algorithms, one for every α > 1. However,
many PSAKSes are uniform, in the sense that there exists an algorithm that given α outputs the
source code of an α-approximate polynomial kernelization algorithm for Π. In other words, one
could think of a uniform PSAKS as a single α-approximate polynomial kernelization algorithm
where α is part of the input, and the size of the output depends on α. From the definition of
a PSAKS it follows that the size of the output instances of a PSAKS when run on an instance
(I, k) with approximation parameter α can be upper bounded by f(α) ·kg(α) for some functions
f and g independent of |I| and k.

Definition 3.14. A size efficient PSAKS, or simply an efficient PSAKS (EPSAKS) is a
PSAKS such that the size of the instances output when the reduction algorithm is run on an
instance (I, k) with approximation parameter α can be upper bounded by f(α) ·kc for a function
f of α and constant c independent of I, k and α.
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Notice here the analogy to efficient polynomial time approximation schemes, which are nothing
but α-approximation algorithms with running time f(α) · nc. A PSAKS is required to run in
polynomial time for every fixed value of α, but the running time is allowed to become worse and
worse as α tends to 1. We can define time-efficient PSAKSes analagously to how we defined
EPSAKSes.

Definition 3.15. A PSAKS is said to be time efficient if (a) the running time of the reduc-
tion algorithm when run on an instance (I, k) with approximation parameter α can be upper
bounded by f(α) · |I|c for a function f of α and constant c independent of I, k, α, and (b) the
running time of the solution lifting algorithm when run on an instance (I, k), reduced instance
(I ′, k′) and solution s′ with approximation parameter α can be upper bounded by f ′(α) · |I|c for
a function f ′ of α and constant c independent of I, k and α.

Just as we distinguished between normal and strict α-approximate kernels, we say that a PSAKS
is strict if it is a strict α-approximate kernel for every α > 1.

A quasi-polynomial time algorithm is an algorithm with running time O(2(logn)c) for some
constant c. In approximation algorithms, one is sometimes unable to obtain a PTAS, but still can
make a (1+ε)-approximation algorithm that runs in quasi-polynomial time for every ε > 1. This
is called a quasi-polynomial time approximation scheme. Similarly, one might be unable to give a
PSAKS, but still be able to give a α-approximate kernel of quasi-polynomial size for every α > 1.

Definition 3.16. A quasi-polynomial size approximate kernelization scheme (QP-
SAKS) for a parameterized optimization problem Π is a family of α-approximate kernelization
algorithms, with one such algorithm for every α > 1. The size of the kernel of the α-approximate
kernelization algorithm should be upper bounded by O(f(α)2(log k)g(α)) for functions f and g in-
dependent of k.

4 Approximate Kernel for Connected Vertex Cover

In this section we design a PSAKS for Connected Vertex Cover. The parameterized opti-
mization problem Connected Vertex Cover(CVC) is defined as follows.

CV C(G, k, S) =
{

∞ if S is not a connected vertex cover of the graph G
min {|S|, k + 1} otherwise

We show that CVC has a polynomial size strict α-approximate kernel for every α > 1.
Let (G, k) be the input instance. Without loss of generality assume that the input graph G is
connected. Let d be the least positive integer such that d

d−1 ≤ α. In particular, d = d α
α−1e.

For a graph G and an integer k, define H to be the set of vertices of degree at least k + 1. We
define I to be the set of vertices which are not in H and whose neighborhood is a subset of H.
That is I = {v ∈ V (G) \H | NG(v) ⊆ H}. The kernelization algorithm works by applying two
reduction rules exhaustively. The first of the two rules is the following.

Reduction Rule 4.1. Let v ∈ I be a vertex of degree D ≥ d. Delete NG[v] from G and add
a vertex w such that the neighborhood of w is NG(NG(v)) \ {v}. Then add k degree 1 ver-
tices v1, . . . , vk whose neighbor is w. Output this graph G′, together with the new parameter
k′ = k − (D − 1).

Lemma 4.1. Reduction Rule 4.1 is α-safe.
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Proof. To show that Rule 4.1 is α-safe we need to give a solution lifting algorithm to go with
the reduction. Given a solution S′ to the instance (G′, k′), if S′ is a connected vertex cover of G′
of size at most k′ the algorithm returns the set S = (S′ \{w, v1, . . . , vk})∪NG[v]. Otherwise the
solution lifting algorithm returns V (G). We now need to show that the reduction rule together
with the above solution lifting algorithm constitutes a strict α-approximate polynomial time
pre-processing algorithm.

First we show that OPT (G′, k′) ≤ OPT (G, k) − (D − 1). Consider an optimal solution S∗

to (G, k). We have two cases based on the size of S∗. If |S∗| > k then CV C(G, k, S) = k + 1;
in fact OPT (G, k) = k + 1. Furthermore, any connected vertex cover of G′ has value at most
k′ + 1 = k − (D − 1) + 1 ≤ OPT (G, k)− (D − 1). Now we consider the case when |S∗| ≤ k. If
|S∗| ≤ k then NG(v) ⊆ S∗, since the degree of all the vertices in NG(v) is at least k + 1 and S∗
is a vertex cover of size at most k. Then (S∗ \NG[v]) ∪ {w} is a connected vertex cover of G′
of size at most |S∗| − (D − 1) = OPT (G, k)− (D − 1).

Now we show that CV C(G, k, S) ≤ CV C(G′, k′, S′) + D. If S′ is a connected vertex cover
of G′ of size strictly more than k′ then CV C(G, k, S) ≤ k + 1 = k′ + D < k′ + 1 + D =
CV C(G′, k′, S′) +D. Suppose now that S′ is a connected vertex cover of G′ of size at most k′.
Then w ∈ S′ since w has degree at least k in G′. Thus |S| ≤ |S′|−1+D+1 ≤ |S′|+D. Finally,
G[S] is connected because G[NG[v]] is connected and NG(NG[v]) = NG′(w)\{v1, . . . , vk}. Hence
S is a connected vertex cover of G. Thus CV C(G, k, S) ≤ CV C(G′, k′, S′) +D. Therefore, we
have that

CV C(G, k, S)
OPT (G, k) ≤ CV C(G′, k′, S′) +D

OPT (G′, k′) + (D − 1) ≤ max
(
CV C(G′, k′, S′)
OPT (G′, k′) , α

)
.

The last transition follows from Fact 1. This concludes the proof.

The second rule is easier than the first, if any vertex v has at least k + 1 false twins, then
remove v. A false twin of a vertex v is a vertex u such that uv /∈ E(G) and N(u) = N(v).

Reduction Rule 4.2. If a vertex v has at least k + 1 false twins, then remove v, i.e output
G′ = G− v and k′ = k.

Lemma 4.2. Reduction Rule 4.2 is 1-safe.

Proof. The solution lifting algorithm takes as input a set S′ to the reduced instance and returns
the same set S′ = S as a solution to the original instance. To see that OPT (G′, k) ≤ OPT (G, k),
consider a smallest connected vertex cover S∗ of G. Again, we will distinguish between two cases
either |S∗| > k or |S∗| ≤ k. If |S∗| > k then OPT (G′, k) ≤ k + 1 = OPT (G, k). Thus, assume
|S∗| ≤ k. Then there is a false twin u of v that is not in S∗. Then S∗ \ {v} ∪ {u} is a connected
vertex cover of G− v of size at most k.

Next we show that CV C(G, k, S) ≤ CV C(G′, k′, S′). If |S′| > k′ = k then clearly,
CV C(G, k, S) ≤ k + 1 = k′ + 1 = CV C(G′, k′, S′). So let us assume that |S′| ≤ k. Ob-
serve that, as v has k + 1 false twins, all vertices in N(v) have degree at least k + 1 in G − v.
Thus, N(v) ⊆ S′ = S and S is a connected vertex cover of G, and hence CV C(G, k, S) ≤
CV C(G′, k′, S′). As a result,

CV C(G, k, S)
OPT (G, k) ≤ CV C(G′, k′, S′)

OPT (G′, k′)

This concludes the proof.

Lemma 4.3. Let (G, k) be an instance irreducible by rules 4.1 and 4.2, such that OPT (G, k) ≤
k. Then |V (G)| ≤ O(kd + k2).
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Proof. Since OPT (G, k) ≤ k, G has a connected vertex cover S of size at most k. We analyze
separately the size of the three sets H, I and V (G) \ (H ∪ I). First H ⊆ S so |H| ≤ k.
Furthermore, every vertex in I has degree at most d−1, otherwise Rule 4.1 applies. Thus, there
are at most

( k
d−1
)

different subsets X of V (G) such that there is a vertex v in I such that N(v) =
I. Since each vertex v has at most k false twins it follows that |I| ≤

( k
d−1
)
· (k + 1) = O(kd).

Finally, every edge that has no endpoints in H has at least one endpoint in S \ H. Since
each vertex in S \H has degree at most k it follows that there are at most k|S| ≤ k2 such edges.
Each vertex that is neither in H nor in I must be incident to at least one edge with no endpoint
in H. Thus there are at most 2k2 vertices in V (G) \ (I ∪H) concluding the proof.

Theorem 2. Connected Vertex Cover admits a strict time efficient PSAKS with O(kd
α
α−1 e+

k2) vertices.

Proof. The kernelization algorithm applies the rules 4.1 and 4.2 exhaustively. If the reduced
graph G has more than O(kd + k2) vertices then, by Lemma 4.3, OPT (G, k) = k + 1 and
the algorithm may return any conneccted vertex cover of G as an optimal solution. Thus the
reduced graph has at most O(kd + k2) vertices, since d = d α

α−1e the size bound follows. The
entire reduction procedure runs in polynomial time (independent of α), hence the PSAKS is
time efficient.

5 Disjoint Factors and Disjoint Cycle Packing

In this section we give PSAKes for Disjoint Factors and Disjoint Cycle Packing. The
main ingredient of our lossy kernels is a combinatorial object that “preserves” labels of all the
independent sets of a labelled graph. We will make this precise in the next section and then use
this crucially to design PSAKes for both Disjoint Factors and Disjoint Cycle Packing.

5.1 Universal independent set covering

We start the subsection by defining a combinatorial object, which we call, ε-universal labelled
independent set covering (ε-ulisc). After formally defining it, we give an efficient construction
for finding this objects when the input graph enjoys some special properties. Informally, ε-ulisc
of a labelled graph G is an induced subgraph of G which preserves approximately all the labelled
independent sets. The formal definition is given below. Here, ε > 0 is a fixed constant.

ε-Universal Labelled Independent Set Covering (ε-ULISC)
Input: A graph G, an integer q ∈ N and a labelling function Γ : V (G)→ [q]
Output: A subset X ⊆ V (G) such that for any independent set S in G, there is an
independent set S′ in G[X] with Γ(S′) ⊆ Γ(S) and |Γ(S′)| ≥ (1 − ε)|Γ(S)|. The set X is
called ε-ulisc.

Obviously, for any ε > 0 and a labelled graph G, the whole graph G itself is an ε-ulisc. Our
objective here is to give ε-ulisc with size as small as possible. Here, we design a polynomial
time algorithm which gives an ε-ulisc for an interval graph G of size at most (q ·χ(G))O( 1

ε
log 1

ε
).

Here, χ(G) denotes the chromatic number of the graph G.

ε-ulisc for Interval Graphs. From now onwards, in this subsection whenever we will use
graph we mean an interval graph. We also assume that we have an interval representation of
the graph we are considering. We use the terms vertex as well as interval, interchangeably, to
denote the vertex of an interval graph. Let (G, q,Γ) be an input instance of ε-ULISC. We first
compute a proper coloring κ : V (G) → [χ(G)] of G. It is well known that a proper coloring of
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an interval graph with the minimum number of colors can be computed in polynomial time [14].
Now using the proper coloing function κ, we refine the labelling Γ to another labelling Λ of G
as follows: for any u ∈ V (G), Λ(u) = (Γ(u), κ(u)). An important property of the labelling Λ is
the following: for any i ∈ {(a, b) | a ∈ [q], b ∈ [χ(G)]}, Λ−1(i) is an independent set in G. From
now onwards, we will assume that we are working with the labelling function Λ : V (G)→ [k],
where k = q · χ(G) and Λ−1(i) is an independent set in G for any i ∈ [k]. We say that a subset
of labels Z ⊆ [k] is realizable in a graph G, if there exists an independent set S ⊆ V (G) such
that Λ(S) = Z. We first show that an ε-ulisc for G with respect to the labelling Λ refining Γ is
also an ε-ulisc for G with respect to the labelling Γ.

Lemma 5.1. Let X be a vertex subset of G. If X is an ε-ulisc for (G,Λ) then it is also an
ε-ulisc for (G,Γ).

Proof. Let I be an independent set of G and let Γ(I) denote the set of labels on the vertices of
I. We first compute a subset I ′ of I by selecting exactly one vertex from I for each label in Γ(I).
Clearly, Γ(I) = Γ(I ′). Observe that since any label is used at most once on any vertex in I ′ we
have that |I ′| = |Γ(I ′)| = |Λ(I ′)|. In particular, for any pair of vertices u, v ∈ I ′, Γ(u) 6= Γ(v).
By the property of the set X, we have an independent set S′ in G[X] with Λ(S′) ⊆ Λ(I ′) and
|Λ(S′)| ≥ (1 − ε)|Λ(I ′)|. Since, for any pair of vertices u, v ∈ I ′, Γ(u) 6= Γ(v), we have that
Γ(S′) ⊆ Γ(I ′) = Γ(I) and |Γ(S′)| ≥ (1− ε)|Γ(I ′)| = (1− ε)|Γ(I)|. This concludes the proof.

Lemma 5.1 implies that we can assume that the input labelling is also a proper coloring of
G by increasing the number of labels by a multiplicative factor of χ(G). We first define notions
of rich and poor labels; which will be crucially used in our algorithm.

Definition 5.1. For any induced subgraph H of G we say that a label ` ∈ [k] is rich in H, if
there are at least k vertices in H that are labelled `. Otherwise, the label ` is called poor in H.

We start with a simple lemma that shows that in an interval graph all the rich labels are
realizable by an independent set of G. In particular we show the following lemma.

Lemma 5.2. Let H be an induced subgraph of G, Λ be a labelling function as defined above
and R be the set of rich labels in H. Then R is realizable in H. Moreover, an independent set
S such that Λ(S) = R can be computed in polynomial time.

Proof. For our proof we will design an algorithm which constructs an independent set S such that
Λ(S) = R. We assume that we have an interval representation ofH and for any vertex v ∈ V (H),
let Iv be the interval corresponding to the vertex v. Our algorithm is recursive and as an input
takes the tuple (H,Λ, R). In the base case it checks whether there is a vertex w ∈ V (H) such
that Λ(w) ∈ R. If there is no w such that Λ(w) ∈ R then the algorithm outputs an ∅. Otherwise,
pick a vertex Iu in H ′ such that Λ(u) ∈ R and the value of the right endpoint of the interval
Iu is minimum among all the vertices that are labelled with labels from R in H.Having found
Iu (or u), we recursively solve the problem on the input (H ′ = H −N [u],Λ|V (H′), R \ {Λ(u)}).
Here, Λ|V (H′) is the labelling Λ restricted to the vertices in V (H ′). Let S′ be the output of the
recursive call on the input (H ′,Λ|V (H′), R \ {Λ(u)}). Our algorithm will output S′ ∪ {u}.

Now we prove the correctness of the algorithm. Towards this we prove the following state-
ment using induction on |R|: for any induced subgraph H of G and R ⊆ [k] such that for any
j ∈ R, the number of vertices in H labelled with j is at least |R|, then the above algorithm on
input (H,Λ, R) will output an independent set S such that Λ(S) = R. The base case is when
|R| = 0, and statement holds trivially. Now consider the induction step. Let u be the vertex
picked by the algorithm such that Λ(u) ∈ R and the value of the right endpoint of the interval
Iu, corresponding to u, is the minimum among all such intervals. Since for any j ∈ R, Λ−1(j)
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is independent, and Iu is an interval (vertex) with minimum right endpoint value, we have that
for any i ∈ R, the number of intervals labelled with i that intersects with Iu is at most 1. This
implies that for any i ∈ R\{Λ(u)}, the number of vertices labelled with i in H−N [u] is at least
|R|−1 (because the number of vertices labelled with i in H is at least |R|). Hence, by the induc-
tion hypothesis, the recursive call on the input (H ′ = H−N [u],Λ|V (H′), R\{Λ(u)}) will output
an independent set S′ such that Λ(S′) = R\{Λ(u)}. Since S′∩N [u] = ∅, we have that S′∪{u} is
the required independent set for the input (H,Λ, R). This completes the correctness proof.

Before we give the formal construction for the desired ε-ulisc for G, we first give an intuitive
explanation of our strategy. If we are seeking for an upper bound on ε-ulisc in terms of k, then
Lemma 5.2 suggests the following natural strategy: for rich labels, we find an independent set,
say Irich, of size at most k (as the number of labels itself is upper bounded by k) that realizes it
and add all the vertices in this set to ε-ulisc we are constructing. Let us denote the the ε-ulisc
we are constructing by X. For the poor labels, we know that by definition each label appears
on at most k vertices and thus in total the number of vertices that have poor labels is upper
bounded by k2. We include all the vertices that have poor labels to ε-ulisc (the set X) we are
constructing. So at this stage if G has an independent set S such that all the labels used on the
vertices in S (Λ(S)) are rich then we can find an appropriate independent subset of Irich that
realizes all the labels of Λ(S). On the other hand, if we have an independent set S such that all
the labels used on the vertices in S are poor then it self realizes itself. That is, since we have kept
all the vertices that are poor, the set S itself is a contained inside the ε-ulisc we are constructing
and thus it self realizes itself. The problem arises when we have an independent set S that has
vertices having both rich labels as well as poor labels. We deal with this case essentially by
the following case distinctions. Let Λ(S) denote the set of labels used on the vertices in S and
Λ(S)rich and Λ(S)poor denote the set of rich and poor labels in Λ(S), respectively.

1. If |Λ(S)rich| ≥ (1 − ε)|Λ(S)|, then we are again done as we can find an appropriate inde-
pendent subset of Irich that realizes all the labels of Λ(S)rich.

2. Since the first case does not arise we have that the number of rich labels in Λ(S), that is,
|Λ(S)rich| is upper bounded by (1− ε)|Λ(S)| and that |Λ(S)poor| ≥ ε|Λ(S)|. Thus, in this
case it is possible that |Λ(S)poor| = |Λ(S)rich| = 1

2 |Λ(S)| and hence it is possible that there
is no independent set S′ in G[X] (the set X constructed so far) with Λ(S′) ⊆ Λ(S) and
|Λ(S′)| ≥ (1 − ε)|Λ(S)|. Thus, we need to enrich the set X further. Towards this we use
the following strategy. Let Q be the set of endpoints of the intervals labelled with poor
labels. Furthermore, assume that all the intervals of G are between (0, a). Now for every
p, q ∈ Q ∪ {0, a}, let Yp,q denote the set of intervals of G which is fully contained in the
open interval (p, q). For every, p, q ∈ Q ∪ {0, a}, we recursively find the desired ε-ulisc in
G[Yp,q] and then take the union. Clearly, this is a branching algorithm with every node in
the recursion tree having O(k4) children. See Figure 2 for an illustration of the process.
The idea of this branching procedure is that given an independent set S we would like
to pack all the vertices in S with poor labels and then having made this choice we get
disjoint induced subgraph of G (by removing all the vertices in S with poor labels and
their neighorhiood) where we “would like to pack” the vertices in S that have rich labels.
By our construction it is evident that the set S′ we will obtain by packing labels in the
disjoint induced subgraphs of G is compatible with the choice of packing all the vertices
with poor labels in S. To get an upper bound on the size of the set X we are constructing
we show that the recursion tree can be truncated at the depth of dO(1

ε log 1
ε )e

Now we give our main lemma that gives an algorithm for finding the desired ε-ulisc for G
with respect to the labelling function Λ.
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Figure 2: An illustration for the process of obtaining ε-ulisc. Intervals colored with red denote Irich and intervals
colored with blue denote vertices labelled with poor label. The instance below corresponds to branching on (a2, b3).

Lemma 5.3. Let G be an interval graph, k ∈ N and ε′ > 0. Let Λ : V (G)→ [k] be a labelling
function such that for any i ∈ [k], Λ−1(i) is an independent set in G. Then, there is a polynomial
time algorithm that finds a set X ⊆ V (G) of cardinality kO( 1

ε′ log 1
ε′ ) such that for any realizable

set Z ⊆ [k] in G, there is a realizable subset Z ′ ⊆ Z of cardinality at least (1− 2ε′)|Z| in G[X].

Proof. Our polynomial time algorithm is a bounded depth recursive procedure. Towards that
we define a recursive marking procedure Mark-Interval which takes as input an induced sub-
graph of G and a positive integer and marks intervals of G. Vertices corresponding to the marked
intervals will correspond to the desired set X. Our algorithm is called Mark-Interval. See
Algorithm 1 for a detailed formal description of the algorithm. We call the procedure Mark-
Interval on input (G, d = d 1

ε′ log 1
ε′ e) to get the required set X, which is the set of vertices

marked by the procedure. Without loss of generality we assume that all the intervals in G are
contained in (0, a) for some a ∈ N.

We first show that the procedure Mark-Interval on input (G, d) marks at most kO(d) =
kO( 1

ε′ log 1
ε′ ) intervals. Let X be the set of marked intervals. In Step 5, Mark-Interval marks

at most k intervals, one for each rich label in G. In Step 7, Mark-Interval mark all intervals
which are labelled with poor labels in G and the number of such intervals is at most k2. This
implies that number of points in Q is at most 2k2 + 2. Hence the procedure makes at most(2k2+2

2
)

recursive calls. Thus, the total number of marked intervals is bounded by the recurrence
relation, T (d) ≤ (k2+k)+

(2k2+2
2
)
T (d−1) and T (1) = 0. This recurrence relation solves to kO(d).

This implies that the cardinality of the set of marked vertices by Mark-Interval(G, d 1
ε′ log 1

ε′ e)
is at most kO( 1

ε′ log 1
ε′ ).

Now we show the correctness of the algorithm. Towards that we first prove the following
claim.
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Algorithm 1: Mark-Interval (H, d′), where H is an induced subgraph of G and d′ ∈ N
1 if d′ = 1 then
2 return
3 Let R be the set of rich labels in H.
4 Apply the algorithm mentioned

in Lemma 5.2 and let S be its output (Note that S is an independent set and Λ(S) = R).
5 Mark all the intervals in S.
6 Let P be the set of intervals which are labelled with poor labels in H.
7 Mark all the intervals in P .
8 Let Q be the set of endpoints of the intervals in P .
9 forall the p, q ∈ Q ∪ {0, a} do

10 Mark-Interval(H[Yp,q], d′ − 1), where Yp,q is the set of intervals of H which is fully
contained in the open interval (p, q).

Claim 5.1. Let H be an induced subgraph of G, d′ ≤ d be a positive integer and X ′ be
the set of marked vertices by the procedure Mark-Interval on input (H, d′). If W ⊆ [k]
is realizable in H, then there is a subset W ′ ⊆ W such that W ′ is realizable in H[X ′] and
|W ′| ≥ (1− ε′ − (1− ε′)d′)|W |.

Proof. We prove the claim using induction on d′. The base case is when d′ = 1. When d′ = 1,
(1 − ε′ − (1 − ε′)d′)|W | = 0 and empty set is the required set W ′ of labels. Now consider the
induction step. We assume that the claim is true for any 1 ≤ d′′ < d′. If at least (1 − ε′)|W |
labels in W are rich then in Step 4, the procedure Mark-Interval computes an independent
set S such that Λ(S) is the set of all rich labels in H and vertices in S is marked in Step 5. This
implies that at leasts (1− ε′)|W | ≥ (1− ε′ − (1− ε′)d′)|W | labels in W are realizable in H[X ′].
Now we are in the case where strictly less than (1 − ε′)|W | labels in W are rich. That is, the
number of poor labels contained in W appearing on the vertices of H is at least ε′|W |. Let U be
an independent set in H such that Λ(U) = W and let Up be the subset of U which are labeled
with poor labels from H. Notice that |Up| ≥ ε′|W |. In Step 7, procedure Mark-Interval
marks all the intervals in Up. Let [a1, b1], . . . , [a`, b`] be the set of intervals in Up such that
a1 < b1 < a2 < b2 < . . . < b`. All the intervals in U \ Up are disjoint from Up. That is, there
exists a family of intervals {V0, V1, . . . , V`} such that

⋃`
i=0 Vi = U \Up and for any i ∈ {0, . . . , `},

the intervals in Vi are contained in (bi, ai+1), where b0 = 0 and a`+1 = a. The recursive
procedure Mark-Interval on input (H, d′) calls recursively with inputs (H[Ybi,ai+1 ], d′ − 1),
i ∈ {0, . . . , `}. Here Vi ⊆ Ybi,ai+1 . Let Wi = Λ(Vi). Notice that Wi ∩ Wj = ∅ for i 6= j

and Λ(Up) ∪
⋃`
i=0Wi = W . By induction hypothesis, for any i ∈ {0, . . . , `}, there exists

W ′i ⊆ Wi ⊆ W such that |W ′i | ≥ (1 − ε′ − (1 − ε′)d′−1)|Wi| and W ′i is realizable in H[Xi]
where Xi is the set of vertices marked by Mark-Interval(H[Ybi,ai+1 ], d′ − 1). This implies
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that Λ(Up) ∪
⋃`
i=0W

′
i is realizable in H[X]. Now we lower bound the size of Λ(Up) ∪

⋃`
i=0W

′
i .

|Λ(Up) ∪
⋃̀
i=0

W ′i | ≥ |Λ(Up)|+
∑̀
i=0

(1− ε′ − (1− ε′)d′−1)|Wi|

= |Λ(Up)|+ (1− ε′ − (1− ε′)d′−1)
∑̀
i=0
|Wi|

= |Λ(Up)|+ (1− ε′ − (1− ε′)d′−1)|W \ Λ(Up)|+ |W \ Λ(Up)| − |W \ Λ(Up)|
≥ |W | − (ε′ + (1− ε′)d′−1)|W \ Λ(Up)|
≥ |W | − ε′|W | − (1− ε′)d′−1|W \ Λ(Up)|
≥ |W | − ε′|W | − (1− ε′)d′ |W | (Because |W \ Λ(Up)| < (1− ε′)|W |)
≥ (1− ε′ − (1− ε′)d′)|W |

This completes the proof of the claim.

Let Z ⊆ [k] be a set of labels which is realizable in G. Now, by Claim 5.1, we have that there
exists Z ′ ⊆ Z such that Z ′ is realizable inG[X] and |Z ′| ≥ (1−ε′−(1−ε′)

1
ε′ log 1

ε′ )|Z| ≥ (1−2ε′)|Z|.
This completes the proof.

Now we are ready to prove the main result of this section.

Lemma 5.4. Let G be an interval graph, q ∈ N, ε > 0, and Γ : V (G) → [q] be a labelling
function. Then there is a polynomial time algorithm which finds a set X ⊆ V (G) of cardinality
(q · χ(G))O( 1

ε
log 1

ε
) such that X ε-ulisc of G.

Proof. We start by refining the labelling Γ to Λ such that Λ is a proper coloring of G. As
explained before, we first compute a proper coloring κ : V (G) → [χ(G)] of G in polynomial
time [14]. Now using the proper coloing function κ and the labelling Γ, we define labelling Λ of
G as follows: for any u ∈ V (G), Λ(u) = (Γ(u), κ(u)). Now we set ε′ = ε

2 and apply Lemma 5.3
on G, Λ, k = q · χ(G) and ε′ to get a set X ⊆ V (G) of cardinality kO( 1

ε′ log 1
ε′ ) such that for any

realizable set Z ⊆ [k] in G, there is a realizable subset Z ′ ⊆ Z of cardinality at least (1−2ε′)|Z|
in G[X]. That is, X ⊆ V (G) is of cardinality kO( 1

ε
log 1

ε
) such that for any realizable set Z ⊆ [k]

in G, there is a realizable subset Z ′ ⊆ Z of cardinality at least (1 − ε)|Z| in G[X]. Note that
a set X is ε-ulisc for G if and only if for any realizable set Z ⊆ [k] in G, there is a realizable
subset Z ′ ⊆ Z of cardinality at least (1−ε)|Z| in G[X]. This implies that X is ε-ulisc for (G,Λ).
However, by Lemma 5.1, we know that if X is an ε-ulisc for (G,Λ) then it is also an ε-ulisc for
(G,Γ). This concludes the proof.

5.2 Disjoint Factors

In this section, we give a PSAKS for the parameterized optimization problem Disjoint Fac-
tors (DF). To define this problem we first need to set up some definitions. For a string
L = a1a2 . . . an over an alphabet Σ, we use L[i, j], where 1 ≤ i ≤ j ≤ n, to denote the substring
ai . . . aj . In this section we would like to distinguish between two substrings L[i, j] and L[i′, j′],
where i 6= i′ or j 6= j′, even if the string L[i, j] is exactly same as the string L[i′, j′]. Thus we
call L′ is a “position substring” of L, to emphasize L′ is substring of L associated with two
indices. We say two position substrings L1 and L2 are disjoint if they do not overlap (even at
the starting or at the ending of the substrings). For example L[i, j] and L[j, j′] are overlapping
and not disjoint. We say that a string L′ is a string minor of L, if L′ can be obtained from L by
deleting some position substrings of L. A factor of a string L is a position substring of length
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at least 2 which starts and ends with the same letter (symbol). A factor is called x-factor if the
factor starts and end at a letter x ∈ Σ. Two factors are called distinct if they start at different
letters. A set S of factors in L is called a set of disjoint factors if each pair of factors in S are
disjoint and distinct. That is, no two factors in S start at the same letter and pairwise they do
not overlap. This immediately implies that for any string L over Σ, the cardinality of any set
of disjoint factors is at most |Σ|. For a set of disjoint factors S of L and Σ′ ⊆ Σ, we say that S
is a Σ′-factor if for each element x in Σ′, there is a factor in S, starting and ending at x.

In the Disjoint Factors problem, introduced in [8], input is an alphabet Σ and a string
L in Σ∗, the task is to find a maximum cardinality set of disjoint factors in L. Bodlaen-
der et al. [8] proved that Disjoint Factors is NP-complete by reduction from 3-SAT, and
also that Disjoint Factors parameterized by |Σ| does not admit a polynomial kernel unless
coNP ⊆ NP/Poly. The reduction of Bodlaender et al. started from a gap variant of 3-SAT
where every variable appears in at most a constant number of clauses [54] shows that Disjoint
Factors is in fact APX-hard, which means that it does not admit a PTAS unless P = NP. We
will consider Disjoint Factors when parameterized by the alphabet size |Σ|. Formally, the
parameterized optimization problem that we consider is defined as follows.

DF (L, |Σ|,S) =
{
−∞ if S is not a set of disjoint factors of L
|S| otherwise

We remark that in the original definition of Disjoint Factors of Bodlaender et al. [8], the
objective is simply to decide whether it is possible to find |Σ| disjoint factors in the input
string L. The variant of the problem discussed here is the natural maximization variant of the
original problem. Next we give a PSAKS for this problem, in other words a polynomial size
α-approximate kernel for any α > 1.

Definition 5.2. Let S = {S1, . . . , St} be a set of mutually disjoint position substrings of a string
L. Then we use L/S to denote the string obtained from L after deleting all position substrings
in S. For example if L = a1 · · · a11 and S = {L[2, 4], L[7, 9]}, then L/S = a1a5a6a10a11.

The following lemma states that we can pull back a solution of a string from a solution of
its string minor.

Lemma 5.5. Let L be a string over an alphabet Σ and S be a set containing distinct position
substrings (non-overlapping strings). Let L′ be a string minor of L obtained by deleting position
substrings in S. Then, there is a polynomial time algorithm, given L,L′,S and a solution F ′ of
(L′, |Σ|), computes a solution F of (L, |Σ|) of cardinality |F ′|.

Proof. The proof follows from the fact that for each string w in F ′ we can associate indices i
and j in L such that L[i, j] is an x-factor if and only if w is an x-factor in L′. Clearly, the
algorithms runs in polynomial time.

Theorem 3. Disjoint Factors parameterized by |Σ| admits a PSAKS.

Proof. We need to show that for any ε > 0, there is a polynomial sized (1 − ε)-approximate
kernel for Disjoint Factors. Towards that given an instance of Disjoint Factors, we will
construct a labelled interval graph G and use ε-ulisc of G to reduce the length of the input string.
Let (L, |Σ|) be an input instance of Disjoint Factors and k = |Σ|. Now we construct an in-
stance (G, |Σ|,Γ) of ε-ULISC. We define the graph and the labelling function Γ : V (G) → Σ
as follows. Let L = a1a2 . . . an where ai ∈ Σ. For any i 6= j such that ai = aj and ar 6= ai for
all i < r < j, we construct an interval Ii,j = [i, j] on real line and label it with ai. Observe
that since ai = aj , we have that it is an ai-factor. The set of intervals constructed form the
interval representation of G. Each interval in G corresponds to a factor in L. By construction,
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we have that any point belongs to at most two intervals of the same label. This implies that
the cardinality of largest clique in G, and hence χ(G), is upper bounded by 2|Σ| (because in-
terval graphs are perfect graphs). Now we apply Lemma 5.4 on input (G, |Σ|,Γ) and ε. Let
X ⊆ V (G) be the output of the algorithm. By Lemma 5.4, we have that |X| = |Σ|O( 1

ε
log 1

ε
). Let

P = {q : q is an endpoint of an interval in X} and S = {L[j, j] : j ∈ [n] \ P}. The reduction
algorithm will output (L′ = L/S, |Σ|) as the reduced instance. Since |P | = |Σ|O( 1

ε
log 1

ε
), we have

that the length of L/S is at most |Σ|O( 1
ε

log 1
ε
).

The solution lifting algorithm is same as the one mentioned in Lemma 5.5. Let F ′ be
a set of disjoint factors of the reduced instance (L′, |Σ|) and let F be the output of solu-
tion lifting algorithm. By Lemma 5.5, we have that |F| = |F ′|. To prove the correct-
ness we need to prove the approximation guarantee of F . Towards that we first show that
OPT (L/S, |Σ|) ≥ (1 − ε)OPT (L, |Σ|). Let P be a set of maximum sized disjoint factors in L.
Without loss of generality we can assume that for each factor L[i, j] in P, L[i′] 6= L[i] for all
i < i′ < j. This implies that each factor in P corresponds to an interval in G. Moreover, these
set of intervals U (intervals corresponding to P) form an independent set in G with distinct
labels. By Lemma 5.4, there is an independent set Y in G[X] such that Γ(Y ) ⊆ Γ(U) and
|Γ(Y )| ≥ (1 − ε)|Γ(U)|. Each interval in Y corresponds to a factor in L/S and its label corre-
sponds to the starting symbol of the factor. This implies that L/S has a set of disjoint factors
of cardinality at least (1− ε)|P| = (1− ε)OPT (L, |Σ|). Hence, we have

|F|
OPT (L, |Σ|) ≥ (1− ε) |F ′|

OPT (L/S, |Σ|) .

This concludes the proof.

5.3 Disjoint Cycle Packing

In this subsection we design a PSAKS for the Disjoint Cycle Packing (CP ) problem. The
parameterized optimization problem Disjoint Cycle Packing (CP ) is formally defined as,

CP (G, k, P ) =
{

−∞ if P is not a set of vertex disjoint cycles in G
min {|P |, k + 1} otherwise

We start by defining feedback vertex sets of a graph. Given a graph G and a vertex subset
F ⊆ V (G), F is called a feedback veretx set of G if G − F is a forest. We will make use of
the following well-known Erdős-Pósa Theorem relating feedback vertex set and the number of
vertex disjoint cycles in a graph.

Lemma 5.6 ( [26]). There exists a constant c such that for each positive integer k, every
(multi) graph either contains k vertex disjoint cycles or it has a feedback vertex set of size at most
ck log k. Moreover, there is a polynomial time algorithm that takes a graph G and an integer k as
input, and outputs either k vertex disjoint cycles or a feedback vertex set of size at most ck log k.

The following lemma allows us to reduce the size of the input graph G if it has a small
feedback vertex set.

Lemma 5.7. Let (G, k) be an instance of Disjoint Cycle Packing and F be a feedback ver-
tex set of G. Suppose there are strictly more than |F |2(2|F |+ 1) vertices in G−F whose degree
in G − F is at most 1. Then there is a polynomial time algorithm A that, given an instance
(G, k) and a feedback vertex set satisfying the above properties, returns a graph G′ (which is a
minor of G) such that OPT (G, k) = OPT (G′, k), |V (G′)| = |V (G)| − 1 and F ⊆ V (G′) is still
a feedback vertex set of G′. Further, given a cycle packing S ′ in G′, there is a polynomial time
algorithm B which outputs a cycle packing S in G such that |S| = |S ′|.
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Proof. The algorithm A works as follows. Let |F | = ` and for (u, v) ∈ F ×F , let L(u, v) be the
set of vertices of degree at most 1 in G − F such that each x ∈ L(u, v) is adjacent to both u
and v (if u = v, then L(u, u) is the set of vertices which have degree at most 1 in G − F and
at least two edges to u). Suppose that the number of vertices of degree at most 1 in G − F is
strictly more than `2(2`+ 1). For each pair (u, v) ∈ F ×F , if L(u, v) > 2`+ 1 then we mark an
arbitrary set of 2`+ 1 vertices from L(u, v), else we mark all the vertices in L(u, v). Since there
are at most `2(2`+ 1) marked vertices, there exists an unmarked vertex w in G− F such that
dG−F (w) ≤ 1. If dG−F (w) = 0, then algorithm A returns (G − w, k). Suppose dG−F (w) = 1.
Let e be the unique edge in G−F which is incident to w. Algorithm A returns (G/e, k). Clearly
F ⊆ V (G′) and F is a feedback vertex set of G′.

Let (G′, k) be the instance returned by algorithm A. Since G′ is a minor of G, OPT (G, k) ≥
OPT (G′, k). (A graph H is called a minor of an undirected graph G?, if we can obtain H from
G? by a sequence of edge deletions, vertex deletions and edge contractions.) Now we show that
OPT (G, k) ≤ OPT (G′, k). Let G′ = G/e, e = (w, z), dG−F (w) = 1 and w is an unmarked ver-
tex. Let C be a maximum set of vertex disjoint cycles in G. Observe that if C does not contain a
pair of cycles each intersecting a different endpoint of e, then contracting e will keep the result-
ing cycles vertex disjoint in G/e. Therefore, we may assume that C contains 2 cycles Cw and Cz
where Cw contains w and Cz contains z. Now, the neighbor(s) of w in Cw must lie in F . Let these
neighbors be x and y (again, x and y are not necessarily distinct). Since w ∈ L(x, y) and it is un-
marked, there are 2`+1 vertices in L(x, y) which are already marked by the marking procedure.
Further, since for each vertex u ∈ V (C), with dG−F (u) ≤ 1, at least one neighbour of u in the cy-
cle packing C is from F and each vertex v ∈ V (C)∩F can be adjacent to at most 2 vertices from
L(x, y), we have that at most 2` vertices from L(x, y) are in V (C). This implies that at least one
vertex (call it w′), marked for L(x, y) is not in V (C). Therefore we can route the cycle Cw through
w′ instead of w, which gives us a set of |C| vertex disjoint cycles in G/e. Suppose G′ = G − w
and dG−F (w) = 0. Then by similar arguments we can show that OPT (G, k) = OPT (G−w, k).

Algorithm B takes a solution S ′ of the instance (G′, k) and outputs a solution S of (G, k)
as follows. If G′ is a subgraph of G (i.e, G′ is obtained by deleting a vertex), then S = S ′.
Otherwise, let G′ = G/e, e = (u, v) and let w be the vertex in G′ created by contracting (u, v).
If w /∈ V (S ′), then S = S ′. Otherwise let C = wv1 . . . v` be the cycle in S ′ containing w. We
know that v1, v` ∈ NG({u, v}). If v1, v` ∈ NG(u), then C ′ = uv1 . . . v` is a cycle in G which
is vertex disjoint from S ′ \ {C}. If v1, v` ∈ NG(v), then C ′ = vv1 . . . v` is a cycle in G which
is vertex disjoint from S ′ \ {C}. In either case S = (S ′ \ {C}) ∪ {C ′}. If v1 ∈ NG(u) and
v` ∈ NG(v), then C ′′ = uv1 . . . v`vu is a cycle in G which is vertex disjoint from S ′ \ {C}. In
this case S = (S ′ \ {C}) ∪ {C ′′}. This completes the proof of the lemma.

Lemma 5.7 leads to the following reduction rule which is 1-safe (follows from Lemma 5.7).
Reduction Rule 5.1. Let (G, k) be an instance of Disjoint Cycle Packing and let F be a
feedback vertex set of G such that the forest G − F contains strictly more than |F |2(2|F | + 1)
vertices of degree at most 1. Then run the algorithm A mentioned in Lemma 5.7 on (G, k) and
F , and return (G′, k), where G′, a minor of G, is the output of the algorithm A.

The following observation follows from Lemma 5.7.
Observation 5.1. Let (G, k) be an instance of Disjoint Cycle Packing and (G′, k) be the
instance obtained after applying Reduction Rule 5.1. Then OPT (G, k) = OPT (G′, k).

The Reduction Rule 5.1, may create multiple edges in the reduced instance. To bound the
number of multi-edges between a pair of vertices, we use the following simple reduction rule.
Reduction Rule 5.2. Let (G, k) be an instance of Disjoint Cycle Packing and there exist
two vertices u, v ∈ G such that there are at least 3 edges between u and v. Then delete all but
two edges between u and v.
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(a) F = {f1, f2, z1, z2, z3} is a feedback vertex set
of G and the tree G − F is rooted at o1. Algorithm
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when k > 3.
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(b) The vertices of S is drawn separately with edges
between S and G− F colored green

Figure 3: An example of Lemma 5.8

Since any set of vertex disjoint cycles in G can use at most two edges between u and v, it is
safe to delete remaining edges between them and hence Reduction Rule 5.2 is 1-safe. Hence, in
the rest of the section we always assume that the number of edges between any pair of vertices
is at most 2. The following lemma allows us to find a subset F ′, of a feedback vertex set F , of
cardinality at most OPT (G, k) such that the large portion of the graph G− F is connected to
F ′ and not to F \ F ′.

Lemma 5.8. Let (G, k) be an instance of Disjoint Cycle Packing and let F be a feed-
back vertex set of G. Then there is a polynomial time algorithm B that given (G, k) and F ,
either outputs k vertex disjoint cycles in G or two sets F ′ ⊆ F and S ⊆ V (G − F ) such that
(i) |F ′|, |S| ≤ OPT (G, k) and (ii) for any w ∈ F \ F ′ and any connected component C of
G− (F ∪ S), |N(w) ∩ V (C)| ≤ 1.

Proof. We know that G−F is a forest. We consider each tree in G−F as a rooted tree, where
the root is chosen arbitrarily. Now we create a dummy root r and connect to all the roots in
G− F . The resulting graph T with vertex set (V (G) ∪ {r}) \ F is a tree rooted at r. The level
of a vertex v ∈ V (T ) is the distance between r and v, denoted by dT (r, v). Let T ′ be a rooted
tree, then for a vertex v ∈ V (T ′) we use T ′v to denote the subtree of T ′ rooted at v.

Now we are ready to give a procedure to find the desired sets F ′ and S. Initially we set
T ′ := T , F ′ := ∅ and S := ∅. Let u ∈ V (T ′) such that dT ′(r, u) is maximized and there is a
vertex w ∈ F \F ′ with the property that G[V (T ′u)∪{w}] has a cycle. Then, we set T ′ := T ′−T ′u,
F ′ := F ′ ∪ {w} and S := S ∪ {u}. We continue this procedure until |F ′| = |S| = k or the above
step is not applicable. Let F ′ = {w1, . . . , wk′}. Notice that by the above process there are vertex
disjoint subtrees T1, . . . , Tk′ of T − r such that for each i ∈ [k′], G[V (Ti) ∪ {wi}] has a cycle.
Thus when k′ = k, our algorithm B will output one cycle from each G[V (Ti) ∪ {wi}], i ∈ [k]
as the output. Otherwise, since in each step the algorithm picks a vertex with highest level,
each connected component C of T − S and w ∈ F \ F ′, |N(w) ∩ V (C)| ≤ 1. Algorithm B will
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output F ′ and S are the required sets. Notice that, in this case |F ′| = |S| = k′ < k. We have
seen that there are |F ′| vertex disjoint cycles in G. This implies that |F ′| = |S| ≤ OPT (G, k).
An illustration is given in Figure 3. Figure 3a depicts a graph G with a feedback vertex set F
and the sets F ′ and S chosen by the algorithm. In Figure 3b, the graph G− (F ′ ∪ S) is drawn
separately to see the properties mentioned in the lemma.

Using Lemma 5.8, we will prove the following decomposition lemma and after this the struc-
ture of the reduced graph becomes “nice” and our algorithm boils down to applications of
ε-ULISC on multiple auxiliary interval graphs.

Lemma 5.9. Let (G, k) be an instance of Disjoint Cycle Packing. Then there is a poly-
nomial time algorithm A which either outputs k vertex disjoint cycles or a minor G′ of G, and
Z,R ⊆ V (G′) with the following properties.

(i) OPT (G, k) = OPT (G′, k),
(ii) |Z| ≤ OPT (G, k), |R| = O(k4 log4 k),

(iii) G′ − (Z ∪R) is a collection P of O(k4 log4 k) non trivial paths, and
(iv) for each path P = u1 · · ·ur in P, no internal vertex is adjacent to a vertex in R,

dG′[R∪{u1}](u1) ≤ 1, and dG′[R∪{ur}](ur) ≤ 1.

Furthermore, given a cycle packing S ′ in G′, there is a polynomial time algorithm D which
outputs a cycle packing S in G such that |S| = |S ′|.

Proof. We first give a description of the polynomial time algorithm A mentioned in the state-
ment of the lemma. It starts by running the algorithm mentioned in Lemma 5.6 on input (G, k)
and if it returns k vertex disjoint cycles, then A returns k vertex disjoint cycles in G and stops.
Otherwise, let F be a feedback vertex set of G. Now A applies Reduction Rule 5.1 repeatedly
using the feedback vertex set F until Reduction Rule 5.1 is no longer applicable. Let (G′, k) be
the reduced instance after the exhaustive application of Reduction Rule 5.1. By Lemma 5.7,
we have that F ⊆ V (G′) and G′ − F is a forest. Now, A runs the algorithm B mentioned in
Lemma 5.8 on input (G′, k) and F . If B returns k vertex disjoint cycles in G′, then A also
returns k vertex disjoint cycles in G. The last assertion follows from the fact that Reduction
Rule 5.1 (applied to get G′) is 1-safe. Otherwise, let F ′ ⊆ F and S ⊆ V (G′ − F ) be the output
of B. Next we define a few sets that will be used by A to construct its output.

1. Let Q be the set of vertices of G′ − F whose degree in G′ − F is at least 3.
2. Let O =

⋃
w∈F\F ′ N(w) ∩ V (G′ − F ); and

3. let W be the vertices of degree 0 in G′ − (F ∪Q ∪O ∪ S).

Algorithm A returns G′, Z = F ′ and R = Q∪O∪S∪W∪(F \F ′) as output. In the example given
in Figure 3, Z = {z1, z2, z3}, F \ F ′ = {f1, f2}, S = {s1, s2, s3}, Q = {q1, s2, s3}, O = {o1, o2}
and W = {w1}.

Now we prove the correctness of the algorithm. If A outputs k vertex disjoint cycles in G,
then we are done. Otherwise, let Z = F ′ and R = Q∪O∪S ∪W ∪ (F \F ′) be the output of A.
Now we prove G′, Z and R indeed satisfy the properties mentioned in the statement of lemma.
Since G′ is obtained after repeated applications of Reduction Rule 5.1, by Observation 5.1, we
get that OPT (G, k) = OPT (G′, k) and hence proving property (i).

By Lemma 5.8, we have that |F ′| = |S| ≤ OPT (G, k). Hence the size of Z(= F ′) is as
desired. Next we bound the size of R. By Lemma 5.6, we have that |F | ≤ ck log k, where c is a
fixed constant. By Lemma 5.7, we have that F ⊆ V (G′), G′ − F is a forest, and the number of
vertices of degree at most 1 in G′−F is upper bounded by |F |2(2|F |+ 1) = O(k3 log3 k). Since
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the number of vertices of degree at least 3 in a forest is at most the number of leaves in the
forest, we can conclude that cardinality of Q, the set of vertices of degree at least 3 in G′ − F
is upper bounded by O(k3 log3 k). It is well-known that the number of maximal degree 2 paths
in a forest is upper bounded by the sum of the number of leaves and the vertices of degree at
least 3 (for example see [50] for a proof). This immediately implies the following claim.

Claim 5.2. G′ − (F ∪Q) is a collection of O(k3 log3 k) paths.

The following claim proves properties (ii) and (iii) stated in the lemma.

Claim 5.3. |R| = O(k4 log4 k) and the number of paths in P is at most O(k4 log4 k).

Proof. Observe that G′ − (F ∪Q) is a collection of O(k3 log3 k) paths and thus it has at most
O(k3 log3 k) connected components. This implies that, G′−(F ∪Q∪S) has at most O(k3 log3 k)
connected components and in particular G′ − (F ∪ S) has at most O(k3 log3 k) connected com-
ponents. Let γs denote the number of connected components of G′−(F ∪S). By Lemma 5.8, we
have that for any w ∈ F\F ′ and any connected component C ofG′−(F∪S), |NG′(w)∩V (C)| ≤ 1.
Thus, for every vertex w ∈ F \ F ′ we have that |N(w) ∩ V (G′ − F )| ≤ |S|+ γs = O(k3 log3 k).
This implies that the cardinality of O, the set

⋃
w∈F\F ′ N(w)∩V (G′−F ), is upper bounded by

O(|F \ F ′| · k3 log3 k) = O(k4 log4 k). By Lemma 5.8, we have that |S| ≤ OPT (G, k) ≤ k + 1.
Since |O ∪ S| = O(k4 log4 k) and by Claim 5.2, we can conclude that the number of paths in
G′−(F∪Q∪O∪S) is at most O(k4 log4 k). Notice that W is the family of paths on single vertices
in the collection of paths ofG′−(F∪Q∪O∪S). Since the number of maximal paths inG′−(F∪Q∪
O∪S) is at mostO(k4 log4 k), we have that |W | = O(k4 log4 k) and the number of maximal paths
in G′−(F ∪Q∪O∪S∪W ) = G′−(Z∪R) (i.e, the number of paths in P) is at most O(k4 log4 k).

Since |S| ≤ OPT (G, k) ≤ k + 1, |F | ≤ ck log k, |Q| = O(k3 log3 k), |O ∪ S| = O(k4 log4 k)
and |W | = O(k4 log4 k), we can conclude that the cardinality of R = Q∪O ∪ S ∪W ∪ (F \F ′),
is upper bounded by O(k4 log4 k). This concludes the proof.

Finally, we will show the last property stated in the lemma. Since G′−F is a forest and Q is
the set of vertices of degree at least 3 in the forest G′−F , we have that any internal vertex of any
path in G′− (Q∪F ) is not adjacent to Q. Also, since any vertex w, which is an internal vertex
of a path in G′− (Q∪F ) and adjacent to a vertex in F \F ′, belongs to O, we can conclude that
no internal vertex of any path in G′− (Q∪O ∪F ) is adjacent to Q∪O ∪ (F \F ′). This implies
that no internal vertex of any path in G′ − (Q ∪O ∪ S ∪W ∪ F ) = G′ − (Z ∪R) is adjacent to
Q∪O∪S∪W ∪(F \F ′) = R. Now we claim that an endpoint u of a path P in P has at most one
edge between u and R. Let u be an endpoint of P . Since O =

⋃
w∈F\F ′ N(w) ∩ V (G′ − F ) and

u /∈ O, we can conclude that u is not adjacent to any vertex in F \F ′. Since u ∈ V (G′−(F ∪Q)),
the degree of u inG′−F is at most 2. Since P is a non trivial path |N(u)∩(V (G′−F )\V (P ))| ≤ 1.
Since G′ − F is a forest, |N(u) ∩ (V (G′ − F ) \ V (P ))| ≤ 1, and u is not adjacent to any vertex
in F \ F ′, we conclude that dG′[R∪{u}](u) ≤ 1.

The solution lifting algorithm, D, is basically obtained by solution lifting algorithm used
in the Reduction Rule 5.1. That is, given a cycle packing S ′ in G′, D repeatedly applies the
solution lifting algorithm of Reduction Rule 5.1 to obtain a cycle packing S in G such that
|S| = |S ′|. The correctness of the algorithm D follows from the fact that Reduction Rule 5.1 is
1-safe, and G′ is obtained from G by repeated application of Reduction Rule 5.1. An illustration
of a path P ∈ P, Z and R can be found in Figure 4. This completes the proof of the lemma.

Observe that Lemma 5.9 decomposes the graph into kO(1) simple structures, namely, paths
in P combined together with a set of size kO(1). Note that the only unbounded objects in G′

are the paths in P. The reason we can not reduce the size of P is that a vertex in Z can
have unbounded neighbors on it. See Figure 4 for an illustration. However, Lemma 5.9 still
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P •••••••••

Z •••••
u5u4u3u2u1

•••••R

Figure 4: An example of a path P in P, Z and R

provides us the required decomposition which will be used to cast several instances of ε-ULISC.
In particular for every path P ∈ P, we will have one instance of ε-ULISC. We will compute
ε-ulisc for each of these instances and reduce the path size to get the desired kernel.

Theorem 4. For any ε > 0, there is polynomial sized (1− ε)-approximate kernel for Disjoint
Cycle Packing. That is, Disjoint Cycle Packing admits a PSAKS.

Proof. Let (G, k) be an input instance of Disjoint Cycle Packing. The reduction algorithm
R works as follows. It first runs the algorithm A mentioned in Lemma 5.9. If the algorithm
returns k vertex disjoint cycles, then R return these cycles. Otherwise, let G′, Z and R be the
output of A, satisfying four properties mentioned in Lemma 5.9. Important properties that will
be most useful in our context are:

• |Z| ≤ OPT (G, k), |R| = O(k4 log4 k); and
• G′ − (Z ∪R) is a collection P of non trivial paths such that for any path P ∈ P we have

that no internal vertex of P is adjacent to any vertex of R.

Now R will solve several instances of ε-ULISC to bound the length of each path in P. Towards
this we fix a path

P = v1v2 . . . v` in P.

Our objective is to apply Lemma 5.4 to reduce the length of P . Our algorithm finds a set
of small number of relevant vertices on P and reduces P in a single step even though we use
Lemma 5.4 several times to identify relevant vertices. Next we give the construction for apply-
ing Lemma 5.4 in order to find the relevant vertices. To find relevant vertices of P , we create
(|Z|+ 1)2 labelled interval graphs, one for every (x, y) ∈ Z ∪ {♣} × Z ∪ {♣} with Z × Z being
the set of labels. That is, for the path P and (x, y) ∈ Z ∪ {♣} × Z ∪ {♣} we create a labelled
interval graph H

(x,y)
P as follows. Our labelling function will be denoted by Γ(x,y)

P .

1. The set of labels is Σ = Z × Z.
2. Let P (x,y) = vr . . . vr′ be the subpath of P such that vr−1 is the first vertex in P adjacent

to x and vr′+1 is the last vertex on P adjacent to y. If x = ♣, then vr = v1 and if y = ♣,
then vr′ = v`. Indeed, if x = ♣ and y = ♣ then vr = v1 and vr′ = v`.

3. We say that a subpath Q′ of P (x,y) is a potential (u1, u2)-subpath, where (u1, u2) ∈ Z ×Z,
if either u1Q

′u2 or u2Q
′u1 is an induced path (induced cycle when u1 = u2) in G′. Es-

sentially, the potential subpath is trying to capture the way a cycle can interact with a
subpath in P with its neighbors on the cycle being u1 and u2.

4. For each (u1, u2) ∈ Z×Z and a potential (u1, u2)-subpath Q′ = vi . . . vj we create an inter-
val I(u1,u2)

Q′ = [i, j] and label it with (u1, u2). That is, Γ(x,y)
P (I(u1,u2)

Q′ ) = (u1, u2). We would
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P • • • • • • • • • •

Z • • • • •
u1 u2 u3 u4 u5

(u1, u2) (u1, u2)
(u2, u1) (u2, u1)

(u4, u4)•
(u1, u1)

(u1, u2)
(u1, u2)

1 2 3 4 5 6 7 8

Figure 5: An example of H(u1,u5)
P . The interval representation of H(u1,u5)

P along with labels is drawn below the
path P . The real line is represented using a dotted line.

like to emphasize that when u1 = u2 and vi = vj , we create an interval I(u1,u2)
Q′ = [i, j] only

if there are two edges between u1 and vi. Also notice that if we have created an interval
I

(u1,u2)
Q′ = [i, j] with label (u1, u2), then we have created an interval I(u2,u1)

Q′ = [i, j] with
label (u2, u1) as well.

This completes the construction of H(x,y)
P and the labelling function Γ(x,y)

P . See Figure 5 for
an illustration. The fact that H(x,y)

P is an interval graph follows from the fact that in fact to
construct H(x,y)

P , we have given an interval representation for it. Having, created the interval
graph and a labelling function R runs the following steps.

1. Now using Lemma 5.9, R computes a set X(x,y)
P such that X(x,y)

P is a ε
2 -ulisc of H(x,y)

P .
Now we define a few sets.

S
(x,y)
P = {vi : i is an endpoint of an interval in H

(x,y)
P }

KP = {v1, v`} ∪
⋃
u∈Z
{v : v is the first or last vertex on P such that uv ∈ E(G′)}

SP =
⋃

(x,y)∈Z∪{♣}×Z∪{♣}
S

(x,y)
P

DP = V (P ) \ (SP ∪KP ).

2. Now, R will do the following modification to shorten P : delete all the edges between DP

and Z, and then contract all the remaining edges incident with vertices in DP . In other
words, let {vi1 , . . . vi`′} = SP ∪KP , where 1 = i1 < i2 < . . . < i`′ = `. Then delete DP

and add edges vijvij+1 , j ∈ [`′ − 1]. Let P ′ be the path obtained from P , by the above
process. We use the same vertex names in P ′ as well to represent a vertex. That is, if a
vertex u in V (P ) is not deleted to obtain P ′, we use u to represent the same vertex.

3. Let G′′ be the graph obtained after this modification has been done for all paths P ∈ P.
Finally, R returns (G′′, k) as the reduced instance.

Solution Lifting Algorithm. Notice that G′′ is a minor of G′ and hence a minor of G. Given
a set S′ of vertex disjoint cycles in G′′, the solution lifting algorithm computes a set S of vertex
disjoint cycles in G of cardinality |S′| by doing reverse of the minor operations used to obtain G′′
from G. All this can be done in polynomial time because the solution lifting algorithm knows
the minor operations done to get G′′ from G.
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I3

I1
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•

Figure 6: Illustration of proof of Claim 5.4. The case when I3 = [p, p] is drawn in the left and middle figures. The
figure in the middle represents the case when j1 = p and u1 = u2. The case when I1 and I2 intersects at strictly
more than one point can be seen in the right most figure. The black dotted curves represent the edges in the graph.

Next we need to prove the correctness of the algorithm. Towards that we first bound the
size of G′′.

Bounding the size of G′′. As a first step to bound the size of G′′, we bound the chromatic
number of H(x,y)

P , where P ∈ P and (x, y) ∈ Z ∪ {♣} × Z ∪ {♣}. In fact what we will bound is
the size of the maximum clique of H(x,y)

P .

Claim 5.4. For any P ∈ P and (x, y) ∈ Z ∪ {♣} × Z ∪ {♣}, χ(H(x,y)
P ) = O(k2).

Proof. To prove the claim, it is enough to show that the size of a maximum clique in H
(x,y)
P is

at most O(k2). Let P (x,y) = vr . . . vr′ . We know that in the interval representation of H(x,y)
P , all

the intervals are contained in [r, r′]. We claim that for any point p ∈ [r, r′] and (u1, u2) ∈ Z×Z,
the number of intervals labelled (u1, u2) and containing the point p is at most 2. Towards a
contradiction assume that there are three intervals I1 = [i1, j1], I2 = [i2, j2], I3 = [i3, j3] such
that Γ(x,y)

P (I1) = Γ(x,y)
P (I2) = Γ(x,y)

P (I3) = (u1, u2) and all the intervals I1, I2 and I3 contain the
point p. Since for each r ≤ i, j ≤ r′ and (u1, u2) ∈ Z × Z we have created at most one interval
[i, j] with label (u1, u2), all the intervals I1, I2 and I3 are distinct intervals in the real line.

We first claim that no interval in {I1, I2, I3} is same as [p, p]. Suppose I3 = [p, p]. Since all
the interval in {I1, I2, I3}, are different and I3 = [p, p] we have that I1 6= [p, p], but contains p.
This implies that either i1 6= p or j1 6= p. We consider the case i1 6= p. The case that j1 6= p is
symmetric. Let Q1 = vi1vi1+1 . . . vj1 . We know that u1vpu2 is an induced path (induced cycle
when u1 = u2 and two edges between u1 and p). This implies that neither u1Q1u2 nor u2Q1u1
is an induced path, because vp ∈ {vi1+1 . . . vj1}. We would like to clarify that when j1 = p and
u1 = u2, u1Q1u1 is cycle and there are two edges between vj1 and u1. This implies that u1Q1u1
is a not an induced cycle. See Figure 6 for illustration.

Since p is a common point in I1, I2 and I3 and none of these intervals is equal to [p, p], there
are two intervals in {I1, I2, I3} such that they intersect at strictly more than one point. Without
loss of generality we assume that the intersection of I1 and I2 contains at least 2 points. Also,
since I1 and I2 are different intervals on the real line, one endpoint of an interval is fully inside
another interval (not as the endpoint of the other interval). Let Q2 = vi2vi2+1 . . . vj2 . Assume
that i1 ∈ (i2, j2). All other cases are symmetric to this case. We know that u1vi1 ∈ E(G′) or
u2vi1 ∈ E(G′). This implies that neither u1Q2u2 nor u2Q2u1 is an induced path. This contra-
dicts the fact that we created an interval [i2, j2] with label (u1, u2). See Figure 6 for illustration.

We have proved that for any point p ∈ [r, r′], the number of intervals containing p with the
same label is upper bounded by 2. This implies that the cardinality of a largest clique in H(x,y)

P

is at most twice the number of labels. Thus, the size of the largest cliques is upper bounded by
O(|Z|2). By Lemma 5.9, we know that |Z| ≤ OPT (G, k) ≤ k + 1 and thus O(|Z|2) is bounded
by O(k2). Since the chromatic number of an interval graph is upper bounded by the size of a
maximum clique, the proof of the claim follows.

By Lemma 5.9, we know that |P| = O(k4 log4 k). For each P ∈ P and (x, y) ∈ Z ∪ {♣} ×
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P • • • ◦ • ◦ • • ◦ •

Z • • • • •
u1 u2 u3 u4 u5

Q1 Q2 Q3 Q4
P ′ • • • • • • •

Z • • • • •
u1 u2 u3 u4 u5

Q′1 Q′2 Q′4

Figure 7: An example of intersection of C and a path P ∈ P. The vertices in P colored black belong to V (P ′).
The intersection of C and P are the set of paths Q = {Q1, Q2, Q3, Q4}. Here Q2, Q3 ∈ Q1 and Q1, Q4 ∈ Q2. The
substitute paths for Q is in the figure at the right hand side

Z ∪{♣}, we created a subset S(x,y)
P of V (P ) of cardinality (|Z|2 ·χ(H(x,y)

P )O( 2
ε

log 2
ε
) = kO( 1

ε
log 1

ε
).

Hence, the cardinality of SP is also upper bounded by kO( 1
ε

log 1
ε
). The cardinality of KP is

at most 2|Z| + 2 = O(k). This implies that the reduced path P ′ has at most kO( 1
ε

log 1
ε
) ver-

tices. Also, we know that |P| = O(k4 log4 k), hence the total number of vertices across all the
paths of P after the reduction is upper bounded by kO( 1

ε
log 1

ε
). This together with the fact that

|Z| ≤ OPT (G, k) and |R| = O(k4 log4 k) imply that |V (G′′)| is upper bounded by kO( 1
ε

log 1
ε
).

This completes the proof of upper bound on the size of G′′.

Correctness of lossy reduction. Finally, we show that indeed (G′′, k) is a (1−ε)-approximate
kernel for Disjoint Cycle Packing. Towards this we show the following claim.

Claim 5.5. OPT (G′′, k) ≥ (1− ε)OPT (G′, k).

Proof. Let C be an optimum solution to (G′, k). Without loss of generality we can assume that
each cycle in C is a chordless cycle. LetQ be the non-empty subpaths of cycles in C induced in the
graph G′−(Z∪R). That is, Q is the collection of supaths in the intersection of C and P. For any
Q ∈ Q, there exists two vertices u, v ∈ R∪Z such that uQv is a subpath in C. Because of property
(iv) of Lemma 5.9, for any Q ∈ Q with |V (Q)| = 1, at least one of the endpoint of Q is connected
to a vertex from Z in the cycle packing C. We say a path Q′ is a substitute for Q ∈ Q if uQ′v is a
subpath inG′′ where u, v ∈ R∪Z and uQv is a subpath in C. In what follows, for at least (1−ε)|Q|
paths in Q, we identify substitutes in the reduced graph G′′ which are pairwise vertex disjoint.

We partition the paths in Q into Q1 and Q2. Notice that Qi ∈ Q is a subpath of a cycle
C ∈ C and the neighbors (could be the same) of both the endpoints of Qi on C are in R∪Z. If
the neighbors of both endpoints of Qi on C are in Z, then we include Qi in Q1. Otherwise Qi is
in Q2. See Figure 7 for an illustration. For each Q ∈ Q2, we give a substitute path as follows.
We know that there is a path P ∈ P such that either P = QQ′ or P = Q′Q for some Q′ where
V (Q′) can be an empty set too. If Q = P , then we replace Q with P ′ (Note that P ′ is the path
obtained from P in the reduction process). Also, notice that end vertices of P and P ′ are same
(because endvertices of P belong to KP ) and hence P ′ is a substitute for Q. Suppose P = QQ′

where V (Q′) 6= ∅. Let CQ be the cycle in C such that Q is a subpath of CQ. Let Q = v1 . . . vd.
Let z be the neighbour of vd in CQ which is from Z (recall that no internal vertex of P is
adjacent to any vertex of R). Since CQ is a chordless cycle, none of v1, . . . , vd−1 is adjacent to z.
This implies that v1, vd ∈ KP and hence P ′ contains a subpath P ′Q from v1 to vd−1 with internal
vertices from {v2, . . . , vd−1}. In this case P ′Q is a substitute for Q. In a similar way, we can
construct a substitute for Q when P = Q′Q where V (Q′) 6= ∅. Let Q′2 be the set of substitute
paths constructed for paths in Q2. Notice that Q′2 is a collection of vertex disjoint paths in
G′′ − (Z ∪R) and it has one substitute path for each Q ∈ Q2. See Figure 7 for an illustration.

Now we construct substitute paths for Q1. Here, we construct substitute paths for at least
(1− ε)|Q1| paths and these paths will be vertex disjoint. Moreover, these paths will be vertex
disjoint from the paths in Q′2 as well. Let P be a path in P such that at least one path in Q1 is a
subpath of P . Let Q1(P ) ⊆ Q1 be a subset of Q1 containing all the paths in Q1 that is a subpath
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of P . There are at most two paths in Q2 which are subpaths of P . Let F and L be these paths,
where F and L could be empty too. Let the neighbours of F and L in Z in the cycle packing C
be x and y, respectively (here, x = ♣ if F = ∅ and y = ♣ if L = ∅). Then, consider the following
decomposition of path P = FP ?L. We claim that P ? = P (x,y). That is, P ? is a path for which
we would have created the interval graph H

(x,y)
P . Observe that, if F is non-empty then x does

not have any neighbor on F as cycles in C are chordless. Similarly, if L is non-empty then y does
not have any neighbor on L. Thus, if F and L are both non-empty then indeed the last vertex
of F is the first vertex on P that is a neighbor of x and the first vertex of L is the last vertex
on P that is a neighbor of y. This implies that indeed we would have created the interval graph
H

(x,y)
P . We can argue similarly if either F is empty or L is empty. Now consider the interval

graph H(x,y)
P . This graph is constructed from P (x,y). Since each cycle in C is a chordless cycle, we

have that each subpath Q ∈ Q1(P ) is a potential (u1, u2)-subpath of P (x,y) where either u1Qu2
or u2Qu1 is a subpath of C and u1, u2 ∈ Z. Since each vertex in V (C) has degree two in C, for a
pair (u1, u2) we have at most two potential (u1, u2) paths Q1 and Q2 in Q1(P ). Also note that
these supaths Q1 and Q2 are potential (u2, u1)-subpaths as well. So when there are two paths
Q1, Q2 ∈ Q1(P ) such that u1Q1u2 and u1Q2u2 are subpaths of C, then we consider Q1 as a
potential (u1, u2)-subpath and Q2 as a potential (u2, u1)-subpath. Now we can consider Q1(P )
as a set of potential subpaths of P (x,y). That is, for each Q ∈ Q1(P ), there is an interval I(u1,u2)

Q

with label (u1, u2) and (u1, u2) is not a label of any other intervals corresponding to a subpath
in Q1(P ) \ {Q}. Let I1(P ) be the set of interval created for the potential subpaths in Q1(P ).
We have explained that for any (u1, u2) ∈ Z×Z, there is at most one potential (u1, u2)-subpath
in Q1(P ). Also notice that, since Q1(P ) is a collection of vertex disjoint paths, the interval
constructed for corresponding potential subpaths are disjoint. This implies that I1(P ) is an
independent set in H(x,y)

P and |Γ(x,y)
P (I1(P ))| = |I1(P )|. By Lemma 5.4, we have that there is a

subset Σ′ ⊆ Γ(x,y)
P (I1(P )) such that there is an independent set S of cardinality (1− ε

2)|I1(P )| in
X

(x,y)
P and Γ(x,y)

P (S) = Σ′. This implies that there are at least (1− ε
2)|I1(P )| = (1− ε

2)|Q1(P )|
of paths in Q1(P ) has substitute paths in P ′ which are vertex disjoint from F and L, where
P ′ is the path obtained from P in the reduction process using Lemma 5.4. This implies that
for each P ∈ P, at least (1 − ε

2)|Q1(P )| paths has substitute paths in G′′ and they are vertex
disjoint subpaths of P ′ and does not intersect with F and L. We denote the set of substitute
paths in P ′ by Q′1(P ′). This implies that the substitute paths for Q1 are vertex disjoint and
they are vertex disjoint from the substitute paths for Q2. Let these substitute paths form a set
Q′1 = ∪P∈PQ′1(P ′). Also notice that since each vertex u ∈ Z, has degree at most 2 in C and
|Z| ≤ OPT (G′, k), the total number of paths in Q1 is at most 2OPT (G′, k). From each Q1(P ),
at least (1− ε

2)|Q1(P )| paths have substitute paths in G′′. Recall that,

Q1 =
⊎
P∈P
Q1(P ) and Q′1 =

⊎
P∈P
Q′1(P ′).

That is, Q1 (Q′1) is the disjoint union of Q1(P ) (Q′1(P ′)) for P ∈ P. Thus,

|Q1| − |Q′1| =
∑
P∈P
|Q1(P )| − |Q′1(P ′)|

≤
∑
P∈P
|Q1(P )| −

(
1− ε

2

)
|Q1(P )|

=
(∑
P∈P

ε

2 |Q1(P )|
)

= ε

2 |Q1|.

This implies that |Q1| − |Q′1| ≤ ε
2 |Q1| ≤ εOPT (G′, k). This implies that Q′1 ∪ Q′2 contains at

least (1− ε)OPT (G′, k) substitute paths. Each path in Q for which we do not have a substitute
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path can destroy at most one cycle in C. Recall that, C is an optimum solution to (G′, k). This
implies that G′′ contains at least (1 − ε)OPT (G′, k) vertex disjoin cycles. This completes the
proof of the claim.

By Lemma 5.9, we know that OPT (G′, k) = OPT (G, k) and hence by Claim 5.5 we get
that OPT (G′′, k) ≥ (1− ε)OPT (G, k). We know that given a solution S ′ of (G′′, k) the solution
lifting algorithm will output a solution S of same cardinality for (G, k). Therefore, we have

|S|
OPT (G, k) ≥ (1− ε) |S ′|

OPT (G′′, k) .

This gives the desired PSAKS for Disjoint Cycle Packing and completes the proof.

6 Approximate Kernelization in Previous Work

In this section we show how some of the existing approximation algorithms and FPT approxi-
mation algorithms can be re-interpreted as first computing an α-approximate kernel, and then
running a brute force search or an approximation algorithm on the reduced instance.

6.1 Partial Vertex Cover

In the Partial Vertex Cover problem the input is a graph G on n vertices, and an integer
k. The task is to find a vertex set S ⊆ V (G) of size k, maximizing the number of edges with
at least one end-point in S. We will consider the problem parameterized by the solution size
k. Note that the solution size is not the objective function value. We define Partial Vertex
Cover as a parameterized optimization problem as follows.

PV C(G, k, S) =
{
−∞ |S| > k

Number of edges incident on S Otherwise

Partial Vertex Cover is W[1]-hard [35], thus we do not expect an FPT algorithm or
a kernel of any size to exist for this problem. On the other hand, Marx [45] gave a (1 + ε)-
approximation algorithm for the problem with running time f(k, ε)nO(1). We show here that
the approximation algorithm of Marx [45] can be re-interpreted as a PSAKS.

Theorem 5. Partial Vertex Cover admits a strict time and size efficient PSAKS.

Proof. We give an α-approximate kernelization algorithm for the problem for every α > 1. Let
ε = 1− 1

α and β = 1
ε . Let (G, k) be the input instance. Let v1, v2, . . . , vn be the vertices of G in

the non-increasing order of degree, i.e dG(vi) ≥ dG(vj) for all 1 ≥ i > j ≥ n. The kernelization
algorithm has two cases based on degree of v1.
Case 1: dG(v1) ≥ β

(k
2
)
. In this case S = {v1, . . . , vk} is a α-approximate solution. The number

of edges incident to S is at least (
∑k
i=1 dG(vi))−

(k
2
)
, because at most

(k
2
)

edges have both end
points in S and they are counted twice in the sum (

∑k
i=1 dG(vi)). The value of the optimum

solution is at most
∑k
i=1 dG(vi). Now consider the value, PV C(G, k, S)/OPT (G, k).

PV C(G, k, S)
OPT (G, k) ≥

(
∑k
i=1 dG(vi))−

(k
2
)∑k

i=1 dG(vi)
≥ 1−

(k
2
)

dG(v1) ≥ 1− 1
β

= 1
α

The above inequality implies that S is an α-approximate solution. So the kernelization algorithm
outputs a trivial instance (∅, 0) in this case.
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Case 2: dG(v1) < β
(k

2
)
. Let V ′ = {v1, v2, . . . , vkdβ(k2)e+1}. In this case the algorithm outputs

(G′, k), where G′ = G[NG[V ′]]. We first clam that OPT (G′, k) = OPT (G, k). Since G′ is
a subgraph of G, OPT (G′, k) ≤ OPT (G, k). Now it is enough to show that OPT (G′, k) ≥
OPT (G, k). Towards that, we prove that there is an optimum solution that contains only ver-
tices from the set V ′. Suppose not, then consider the solution S which is lexicographically
smallest in the ordered list v1, . . . vn. The set S contains at most k − 1 vertices from V ′ and at
least one from V \V ′. Since degree of each vertex in G is at most dβ

(k
2
)
e−1 and |S| ≤ k, we have

that |NG[S]| ≤ kdβ
(k

2
)
e. This implies that there exists a vertex v ∈ V ′ such that v /∈ NG[S].

Hence by including the vertex v and removing a vertex from S \ V ′, we can cover at least as
many edges as S can cover. This contradicts our assumption that S is lexicographically small-
est. Since G′ is a subgraph of G any solution of G′ is also a solution of G. Thus we have shown
that OPT (G′, k) = OPT (G, k). So the algorithm returns the instance (G′, k) as the reduced
instance. Since G′ is a subgraph of G, in this case, the solution lifting algorithm takes a solution
S′ of (G′, k) as input and outputs S′ as a solution of (G, k). Since OPT (G′, k) = OPT (G, k),
it follows that PV C(G,k,S′)

OPT (G,k) = PV C(G′,k,S′)
OPT (G′,k) .

The number of vertices in the reduced instance is O(k · d1
ε

(k
2
)
e2) = O(k5). The running

time of the algorithm is polynomial in the size of G. Since the algorithm either finds an α-
approximate solution (Case 1) or reduces the instance by a 1-safe reduction rule (Case 2), this
kernelization scheme is strict.

6.2 Steiner Tree

In the Steiner Tree problem we are given as input a graph G, a subset R of V (G) called
the terminals and a weight function w : E(G) → N. A Steiner tree is a subtree T of G such
that R ⊆ V (T ), and the cost of a tree T is defined as w(T ) =

∑
e∈E(T )w(e). The task is to

find a Steiner tree of minimum cost. We may assume without loss of generality that the input
graph G is complete and that w satisfies the triangle inequality: for all u, v, w ∈ V (G) we have
w(uw) ≤ w(uv) + w(vw). This assumption can be justified by adding for every pair of vertices
u,v the edge uv to G and making the weight of uv equal the shortest path distance between u and
v. If multiple edges are created between the same pair of vertices, only the lightest edge is kept.

Most approximation algorithms for the Steiner Tree problem rely on the notion of a k-
restricted Steiner tree, defined as follows. A component is a tree whose leaves coincide with a sub-
set of terminals, and a k-component is a component with at most k leaves. A k-restricted Steiner
tree S is a collection of k-components, such that the union of these components is a Steiner tree
T . The cost of S is the sum of the costs of all the k-components in S. Thus an edge that appears
in several different k-components of S will contribute several times to the cost of S, but only once
to the cost of T . The following result by Borchers and Du [9] shows that for every ε > 0 there
exists a k such that the cost of the best k-restricted Steiner tree S is not more than (1+ε) times
the cost of the best Steiner tree. Thus approximation algorithms for Steiner Tree only need
to focus on the best possible way to “piece together” k-components to connect all the terminals.

Proposition 6.1 ( [9]). For every k ≥ 1, graph G, terminal set R, weight function w : E(G)→
N and Steiner tree T , there is a k-restricted Steiner Tree S in G of cost at most (1+ 1

blog2 kc
)·w(T ).

Proposition 6.1 can easily be turned into a PSAKS for Steiner Tree parameterized by the
number of terminals, defined below.

ST ((G,R), k′, T ) =


−∞ if |R| > k′

∞ if T is not a Steiner tree for R
w(T ) otherwise
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To get a (1 + ε)-approximate kernel it is sufficent to pick k based on ε, compute for each k-sized
subset R′ ⊆ R of terminals an optimal Steiner tree for R′, and only keep vertices in G that
appear in these Steiner trees. This reduces the number of vertices of G to O(|R|k), but the edge
weights can still be large making the bitsize of the kernel super-polynomial in |R|. However, it
is quite easy to show that keeping only O(log |R|) bits for each weight is more than sufficient
for the desired precision.

Theorem 6. Steiner Tree parameterized by the number of terminals admits a PSAKS.

Proof. Start by computing a 2-approximate Steiner tree T2 using the classic factor 2 approxima-
tion algorithm [55]. For every vertex v /∈ R such that minx∈R w(vx) ≥ w(T2) delete v from G as
v may never participate in any optimal solution. By the triangle inequality we may now assume
without loss of generality that for every edge uv ∈ E(G) we have w(uv) ≤ 6OPT (G,R,w).

Working towards a (1 + ε)-approximate kernel of polynomial size, set k to be the small-
est integer such that 1

blog2 kc
≤ ε/2. For each subset R′ of R of size at most k, compute an

optimal steiner tree TR′ for the instance (G,R′, w) in time O(3k|E(G)||V (G)|) using the al-
gorithm of Dreyfus and Wagner [24]. Mark all the vertices in V (TR′). After this process is
done, some O(k|R|k) vertices in G are marked. Obtain G′ from G by deleting all the unmarked
vertices in V (G) \R. Clearly every Steiner tree in G′ is also a Steiner tree in G, we argue that
OPT (G′, R,w) ≤ (1 + ε

2)OPT (G,R,w).
Consider an optimal Steiner tree T for the instance (G,R,w). By Proposition 6.1 there is

a k-restricted Steiner Tree S in G of cost at most (1 + 1
blog2 kc

) · w(T ) ≤ (1 + ε
2)OPT (G,R,w).

Consider a k-component C ∈ S, and let R′ be the set of leaves of C - note that these are exactly
the terminals appearing in C. C is a Steiner tree for R′, and so TR′ is a Steiner tree for R′ with
w(TR′) ≤ w(C). Then S ′ = (S \ {C}) ∪ {TR′} is a k-restricted Steiner Tree of cost no more
than (1 + ε

2)OPT (G,R,w). Repeating this argument for all k-components of S we conclude
that there exists a k-restricted Steiner Tree S in G of cost at most (1 + ε

2)OPT (G,R,w), such
that all k-components in S only use marked vertices. The union of all of the k-components in
S is then a Steiner tree in G′ of cost at most (1 + ε

2)OPT (G,R,w).
We now define a new weight function ŵ : E(G′)→ N, by setting

ŵ(e) =
⌊
w(e) · 4|R|

ε ·OPT (G,R,w)

⌋

Note that since w(e) ≤ 6 · OPT (G,R,w) it follows that ŵ(e) ≤ 24|R|
ε . Thus it takes only

O(log |R| + log 1
ε ) bits to store each edge weight. It follows that the bitsize of the instance

(G′, R, ŵ) is |R|2O(1/ε) . We now argue that, for every c ≥ 1, a c-approximate Steiner tree T ′ for
the instance (G′, R, ŵ) is also a c(1 + ε)-approximate Steiner tree for the instance (G,R,w).

First, observe that the definition of ŵ implies that for every edge e we have the inequality

w(e) ≤ ŵ(e) · ε ·OPT (G,R,w)
4|R| + ε ·OPT (G,R,w)

4|R| .

In a complete graph that satisfies the triangle inequality, a Steiner tree on |R| terminals has at
most |R| − 1 non-terminal vertices. Thus it follows that T ′ has at most 2|R| edges. Therefore,

w(T ′) ≤ ŵ(T ′) · ε ·OPT (G,R,w)
4|R| + ε

2OPT (G,R,w).

Consider now an optimal Steiner tree Q for the instance (G′, R,w). We have that

w(Q) · 4|R|
ε ·OPT (G,R,w) ≥ ŵ(Q),
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which in turn implies that

OPT (G′, R,w) ≥ OPT (G′, R, ŵ) · ε ·OPT (G,R,w)
4|R| .

We can now wrap up the analysis by comparing w(T ′) with OPT (G,R,w).

w(T ′) ≤ ŵ(T ′) · ε ·OPT (G,R,w)
4|R| + ε

2OPT (G,R,w)

≤ c ·OPT (G′, R, ŵ) · ε ·OPT (G,R,w)
4|R| + ε

2OPT (G,R,w)

≤ c ·OPT (G′, R,w) + ε

2OPT (G,R,w)

≤ c · (1 + ε/2) ·OPT (G,R,w) + ε

2OPT (G,R,w)

≤ c · (1 + ε) ·OPT (G,R,w)

This implies that a T ′ is a c(1+ε)-approximate Steiner tree for the instance (G,R,w), concluding
the proof.

6.3 Optimal Linear Arrangement

In the Optimal Linear Arrangement problem we are given as input an undirected graph G
on n vertices. The task is to find a permutation σ : V (G) → {1, . . . , n} minimizing the cost of
σ. Here the cost of a permutation σ is val(σ,G) =

∑
uv∈E(G) |σ(u)− σ(v)|. Recall the problem

Optimal Linear Arrangement parameterized by vertex cover:

OLA((G,C), k, σ) =


−∞ if C is not vertex cover of G of size at most k,
∞ if σ is not a linear layout,

val(σ,G) otherwise.

Fellows et al. [29] gave an FPT approximation scheme for Optimal Linear Arrangement
parameterized by vertex cover. Their algorithm can be interpreted as a 2k · (1

ε ) size (1 + ε)-
approximate kernel combined with a brute force algorithm on the reduced instance. Next we ex-
plain how to turn the approximation algorithm of Fellows et al. into a (1+ε)-approximate kernel.

Let ((G,C), k) be the given instance of Optimal Linear Arrangement and C be a
vertex cover of G. The remaining set of vertices I = V (G) \ C forms an independent set.
Furthermore, I can be partitioned into at most 2k sets: for each subset S of C we define
IS = {v ∈ I : N(v) = S}. Let m = |E(G)|.

Based on ε we pick an integer x = b εn
4k2·k2·2k+4 c. From G we make a new graph G1 by

deleting for each S ⊆ C at most x vertices from IS , such that the size of IS becomes divisible by
x. Clearly OPT (G1) ≤ OPT (G) since G1 is an induced subgraph of G. Furthermore, for any
ordering σ1 of G1 one can make an ordering σ of G by appending all the vertices in V (G)\V (G1)
at the end of the ordering. Since there are 2k choices for S ⊆ C, each vertex in V (G) \ V (G1)
has degree at most k it follows that

val(σ,G) ≤ val(σ1, G1) + 2k · x · k · n (1)

One might think that an additive error of 2k · x · k ·n is quite a bit, however Fellows et al. show
that the optimum value is so large that this is quite insignificant.

Lemma 6.1 ( [29]). OPT (G) ≥ m2

4k2
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In the following discussion let I1 be the V (G1) \ C and let I1
S = {v ∈ I1 : N(v) = S} for

every S ⊆ C. Proceed as follows for each S ⊆ C. Since |I1
S | is divisible by x, we can group

I1
S into |I

1
S |
x groups, each of size x. Define ÔPT (G1) to be the value of the best ordering of G1

among the orderings where, for every group, the vertices in that group appear consecutively.
Next we prove the following lemma, which states that there is a near-optimal solution for G1 ,
where vertices in the same group appear consecutively.

Lemma 6.2. ÔPT (G1) ≤ OPT (G1) + (kn+m) · 2k · (k + 1) · x

To prove Lemma 6.2 we first need an intermediate result. We say that an ordering σ is ho-
mogenous if, for every u, v ∈ I such that N(u) = N(v), σ(u) < σ(v) and there is no c ∈ C such
that σ(u) < σ(c) < σ(v), we have that for every w such that σ(u) < σ(w) < σ(v), N(w) = N(u).
Informally this means that between two consecutive vertices of C, the vertices from different
sets IS and IS′ “don’t mix”.

Lemma 6.3 ( [29]). There exists a homogenous optimal linear arrangement of G1.

Proof of Lemma 6.2. Consider an optimal linear arrangement of G1 that is homogenous, as
guaranteed by Lemma 6.3. From such an arrangement one can move around at most 2k ·(k+1)·x
vertices (at most (k+ 1) ·x vertices for each set I1

S) and make a new one where for every group,
the vertices in that group appear consecutively. Since moving a single vertex of degree at most k
in an ordering σ can only increase the cost of σ by at most (kn+m), this concludes the proof.

In the graph G1, each set I1
S is partitioned into |I

1
S |
x groups, each of size x. From G1 we

can make a new graph G2 by keeping C and exactly one vertex from each group, and deleting
all other vertices. Thus G2 is a graph on |C| + n−|C|

x vertices. Each ordering σ2 of V (G2)
corresponds to an ordering σ1 of V (G1) where for every group, the vertices in that group appear
consecutively. We will say that the ordering σ1 is the ordering of V (G1) corresponding to σ2.
Note that for every ordering of σ1 of V (G1) where for every group, the vertices in that group
appear consecutively there is an ordering σ2 of G2 such that σ1 corresponds to σ2. The next
lemma summarizes the relationship between the cost of σ1 (in G1) and the cost of σ2 (in G2).

Lemma 6.4. Let σ2 be an ordering of G2 and σ1 be the ordering of G1 corresponding to σ2.
Then the following two inequalities hold.

val(σ1, G1) ≤ x2 · val(σ2, G2) (2)

val(σ2, G2) ≤ val(σ1, G1)
x2 + (k + 1)m

x
+ k2n

x
(3)

Proof. For the first inequality observe that there is a natural correspondence between edges
in G1 and edges in G2. Each edge in G2 corresponds to either 1 or x edges, depending
on whether it goes between two vertices of C or between a vertex in C and a vertex in
V (G2) \ C. Furthermore, for any edge uv in G1 corresponding to an edge u′v′ in G2 we have
that |σ1(u)− σ1(v)| ≤ x · |σ2(u′)− σ2(v′)|. This concludes the proof of the first inequality.

For the second inequality, observe that for every edge uv in G1 corresponding to an edge
u′v′ in G2 we have that

|σ2(u′)− σ2(v′)| ≤ |σ1(u)− σ1(v)|
x

+ k + 1.

For each edge u′v′ in G2 between a vertex in C and a vertex in V (G2) \ C, there are exactly x
edges in G1 corresponding to it. These x edges contribute at least x(|σ2(u′)−σ2(v′)|−k−1) each
to val(σ1, G1), thus contributing at least |σ2(u′)−σ2(v′)|−k−1 to val(σ1,G1)

x2 . Since there are at
most m

x edges inG2, and at most k2 edges between vertices in C (and thus un-accounted for in the
argument above), each contributing at most n

x to val(σ2, G2), the second inequality follows.
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Observe that the second inequality of Lemma 6.4 immediately implies that

OPT (G2) ≤ ÔPT (G1)
x2 + (k + 1)m

x
+ k2n

x
(4)

We are now ready to state our main result.

Theorem 7. Optimal Linear Arrangement parameterized by vertex cover has a (1 + ε)-
approximate kernel of size O(1

ε2
kk4).

Proof. The kernelization algorithm outputs the graph G2 as described above. G2 has at most
k+ n/x ≤ O(1

ε2
kk4) vertices, so it remains to show how a c-approximate solution σ2 to G2 can

be turned into a c(1 + ε)-approximate solution σ of G.
Given a c-approximate solution σ2 to G2, this solution corresponds to a solution σ1 of G1.

The ordering σ1 of V (G1) corresponds to an ordering σ of V (G), as described in the paragraph
right before Lemma 6.1. We claim that this ordering σ is in fact a c(1+ ε)-approximate solution
σ of G.

val(σ,G) ≤ val(σ1, G1) + 2k · x · k · n (By Equation (1))
≤ x2 · val(σ2, G2) + 2k · x · k · n (By Equation (2))
≤ x2 · c ·OPT (G2) + 2k · x · k · n

≤ x2 · c
(
ÔPT (G1)

x2 + (k + 1)m
x

+ k2n

x

)
+ 2k · x · k · n (By Equation (4))

≤ c · ÔPT (G1) + c · 3k2 · n · x+ 2k · x · k · n (Because m ≤ k · n)
≤ c ·

(
OPT (G1) + (kn+m)(k + 1)2k · x

)
+ c · 2k+2 · x · k · n (By Lemma 6.2)

≤ c ·OPT (G1) + c · k22k+4 · x · n (Because m ≤ k · n)
≤ c ·OPT (G) + c · k22k+4 · x · n

≤ c ·OPT (G) + c · ε n
2

4k2

≤ c · (1 + ε) ·OPT (G) (By Lemma (6.1))

This concludes the proof.

7 Lower Bounds for Approximate Kernelization

In this section we set up a framework for proving lower bounds on the size of α-approximate ker-
nels for a parameterized optimization problem. For normal kernelization, the most commonly
used tool for establishing kernel lower bounds is by using cross compositions [7]. In particular,
Bodlaender et al. [7] defined cross composition and showed that if an NP-hard language L ad-
mits a cross composition into a parameterized (decision) problem Π and Π admits a polynomial
kernel, then L has an OR-distillation algorithm. Fortnow and Santhanam [32] proved that if
an NP-hard language L has an OR-distillation, then NP ⊆ coNP/Poly.

In order to prove a kernelization lower bound for a parameterized decision problem Π, all
we have to do is to find an NP-hard langluage L and give a cross composition from L into Π.
Then, if Π has a polynomial kernel, then combining the cross composition and the kernel with
the results of Bodlaender et al. [7] and Fortnow and Santhanam [32] would prove that NP ⊆
coNP/Poly. In other words a cross composition from L into Π proves that Π does not have a
polynomial kernel unless NP ⊆ coNP/Poly.
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In order to prove lower bounds on the size of α-approximate kernels, we generalize the no-
tion of cross compositions to α-gap cross compositions, which are hybrid of cross compositions
and gap creating reductions found in hardness of approximation proofs. To give the formal
definition of α-gap cross compositions, we first need to recall the definition of Bodlaender et
al. [7] of polynomial equivalence relations on Σ∗, where Σ is a finite alphabet.

Definition 7.1 (polynomial equivalence relation [7]). An equivalence relation R on Σ∗, where
Σ is a finite alphabet, is called a polynomial equivalence relation if (i) equivalence of any x, y ∈
Σ∗ can be checked in time polynomial in |x| + |y|, and (ii) any finite set S ⊆ Σ∗ has at
most (maxx∈S |x|)O(1) equivalence classes.

Now we define the notion of α-gap cross composition.

Definition 7.2 (α-gap cross composition for maximization problem). Let L ⊆ Σ∗ be a language,
where Σ is a finite alphabet and let Π be a parameterized maximization problem. We say that L α-
gap cross composes into Π (where α ≥ 1), if there is a polynomial equivalence relation R and an
algorithm which, given t strings x1, . . . , xt belonging to the same equivalence class of R, computes
an instance (y, k) of Π and r ∈ R, in time polynomial in

∑t
i=1 |xi| such that the following holds:

(i) OPT (y, k) ≥ r if and only if xi ∈ L for some 1 ≤ i ≤ t;
(ii) OPT (y, k) < r

α if and only if xi /∈ L for all 1 ≤ i ≤ t; and
(iii) k is bounded by a polynomial in log t+ max1≤i≤t |xi|.

If such an algorithm exists, then we say that L α-gap cross composes to Π.

One can similarly define α-gap cross compositions for minimization problems.

Definition 7.3. The definition of α-gap cross composition for minimization problem Π can be
obtained by replacing conditions (i) and (ii) of Definition 7.2 with the following conditions (a)
and (b) respectively: (a) OPT (y, k) ≤ r if and only if xi ∈ L for some 1 ≤ i ≤ t, and (b)
OPT (y, k) > r · α if and only if xi /∈ L for all 1 ≤ i ≤ t.

Similarly to the definition of α-approximate kernels, Definition 7.3 can be extended to en-
compass α-gap cross composition where α is not a constant, but rather a function of the (out-
put) instance (y, k). Such compositions can be used to prove lower bounds on the size of
α-approximate kernels where α is super-constant.

One of the main ingredient to prove hardness about computations in different algorithmic
models is an appropriate notion of a reduction from a problem to another. Next, we define a
notion of a polynomial time reduction appropriate for obtaining lower bounds for α-approximate
kernels. As we will see this is very similar to the definition of α-approximate polynomial time
pre-processing algorithm (Definition 3.8).

Definition 7.4. Let α ≥ 1 be a real number. Let Π and Π′ be two parameterized optimization
problems. An α-approximate polynomial parameter transformation (α-appt for short)
A from Π to Π′ is a pair of polynomial time algorithms, called reduction algorithm RA and so-
lution lifting algorithm. Given as input an instance (I, k) of Π the reduction algorithm outputs
an instance (I ′, k′) of Π′. The solution lifting algorithm takes as input an instance (I, k) of Π,
the output instance (I ′, k′) = RA(I, k) of Π′, and a solution s′ to the instance I ′ and outputs a
solution s to (I, k). If Π is a minimization problem then

Π(I, k, s)
OPTΠ(I, k) ≤ α ·

Π′((I ′, k′), s′)
OPTΠ′(I ′, k′)

.
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If Π is a maximization problem then

Π(I, k, s)
OPTΠ(I, k) · α ≥

Π′((I ′, k′), s′)
OPTΠ′(I ′, k′)

.

If there is a an α-appt from Π to Π′ then in short we denote it by Π ≺α−appt Π′.

In the standard kernelization setting lower bounds machinery also rules out existence of
compression algorithms. Similar to this our lower bound machinery also rules out existence of
compression algorithms. Towards that we need to generalize the definition of α-approximate
kernel to α-approximate compression. The only difference is that in the later case the reduced
instance can be an instance of any parameterized optimization problem.

Definition 7.5. Let α ≥ 1 be a real number. Let Π and Π′ be two parameterized optimization
problems. An α-approximate compression from Π to Π′ is an α-appt A from Π to Π′ such
that sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}, is upper bounded by a computable
function g : N→ N, where RA is the reduction algorithm in A.

For the sake of proving approximate kernel lower bounds, it is immaterial that Π′ in the Def-
inition 7.5 is a parameterized optimization problem and in fact it can also be a unparameterized
optimization problem. However, for clarity of presentation we will stick to parameterized opti-
mization problem in this paper. Whenever we talk about an existence of an α-approximate com-
pression and we do not specify the target problem Π′, we mean the existence of α-approximate
compression into any optimization problem Π′. For more detailed exposition about lower bound
machinery about polynomial compression for decision problems we refer to the textbook [15].

Towards building a framework for lower bounds we would like to prove a theorem analo-
gous to the one by Bodlaender et al. [7]. In particular, we would like to show that an α-gap
cross composition from an NP-hard language L into a parameterized optimization problem Π,
together with an α-approximate compression of polynomial size yield an OR-distillation for the
language L. Then the result of Fortnow and Santhanam [32] would immediately imply that any
parameterized optimization problem Π that has an α-gap cross composition from an NP-hard
language L can not have an α-approximate compression unless NP ⊆ coNP/Poly. Unfortunately,
for technical reasons, it seems difficult to make such an argument. Luckily, we can complete a
very similar argument yielding essentially the same conclusion, but instead of relying on “OR-
distillations” and the result of Fortnow and Santhanam [32], we make use of the more general
result of Dell and van Melkebeek [17] that rules out cheap oracle communication protocols for
NP-hard problems. We first give necessary definitions that allow us to formulate our statements.

Definition 7.6 (Oracle Communication Protocol [17]). Let L ⊆ Σ∗ be a language, where Σ is a
finite alphabet. An oracle communication protocol for the language L is a communication proto-
col between two players. The first player is given the input x and has to run in time polynomial
in the length of x; the second player is computationally unbounded but is not given any part of
x. At the end of the protocol the first player should be able to decide whether x ∈ L. The cost of
the protocol is the number of bits of communication from the first player to the second player.

Lemma 7.1 (Complementary Witness Lemma [17]). Let L be a language and t : N → N be
polynomial function such that the problem of deciding whether at least one out of t(s) inputs
of length at most s belongs to L has an oracle communication protocol of cost O(t(s) log t(s)),
where the first player can be conondeterministic. Then L ∈ coNP/Poly.

Our lower bound technique for α-approximate compression for a parameterized optimiza-
tion problem Π requires the problem Π to be polynomial time verifiable. By this we mean that
the function Π is computable in polynomial time. We call such problems nice parameterized
optimization problems. We are now in position to prove the main lemma of this section.
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Lemma 7.2. Let L be a language and Π be a nice parameterized optimization problem. If L
α-gap cross composes to Π, and Π has a polynomial sized α-approximate compression, then L ∈
coNP/Poly.

Proof. We prove the theorem for the case when Π is a maximization problem. The proof when
Π is a minimization problem is analogous and thus it is omitted. By our assumption L α-gap
cross composes to Π. That is, there exists a polynomial time algorithm A that given t(s) strings
x1, . . . , xt(s), each of length at most s, outputs an instance (y, k) of Π and a number r ∈ R such
that the following holds.

(i) OPT (y, k) ≥ r if and only if xi ∈ L for some 1 ≤ i ≤ t(s)
(ii) OPT (y, k) < r

α if and only if xi /∈ L for all 1 ≤ i ≤ t(s)
(iii) k is upper bounded by a polynomial P1 of s+ log(t(s)). That is, k ≤ P1(s+ log(t(s))).

By our assumption Π has a polynomial sized α-approximate compression. That is, there is a
pair of polynomial time algorithms B and C, and an optimization problem Π′ with the follow-
ing properties: (a) B is a reduction algorithm, which takes input (y, k) of Π and outputs an
instance (y′, k′) of Π′ such that |y′| + k′ ≤ P2(k) for a polynomial P2 and (b) C is a solution
lifting algorithm, which given an instance (y, k) of Π, an instance (y′, k′)of Π′ and a solution S′
to (y′, k′), outputs a solution S of (y, k) such that

Π(y, k, S)
OPTΠ(y, k) · α ≥

Π′(y′, k′, S′)
OPTΠ′(y′, k′)

.

Let t = P1 ◦ P2, that is, t(s) = P2(P1(s)). We design an oracle communication protocol for the
language L using algorithms A,B and C. The oracle communication protocol for L works as
follows.

Step 1: The first player runs the algorithm A on the t(s) input strings x1, . . . , xt(s), each of
length at most s, and produces in polynomial time, an instance (y, k) of Π and a number
r ∈ R. Here the value k is upper bounded by P1(s+ log(t(s))) (by condition (iii)).

Step 2: The first player runs the reduction algorithm B on (y, k), producing an instance
(y′, k′) of Π′. Then the first player sends the instance (y′, k′) to the second player.
By the property of algorithm B, the size of the instance (y′, k′) is upper bounded by
P2(k) = P2(P1(s+ log(t(s)))), which in turn is equal to t(s+ log(t(s))).

Step 3: The (computationally unbounded) second player sends an optimum solution S′ of
(y′, k′) back to the first player.

Step 4: The first player runs the solution lifting algorithm C on input (y, k), (y′, k′) and S′,
and it outputs a solution S of (y, k). Then, if Π(y, k, S) ≥ r

α the first player declares that
there exists an i such that xi ∈ L. Otherwise the first player declares that xi /∈ L for all i.

All the actions of the first player are performed in polynomial time. The cost of communi-
cation is t(s + log(t(s))) = O(t(s)), since t is a polynomial. We now show that the protocol is
correct. Let xi ∈ L for some 1 ≤ i ≤ t(s). Since A is an α-gap cross composition we have that
OPT (y, k) ≥ r (by condition (i)). Since S′ is an optimum solution, by the property of solution
lifting algorithm C, S is a solution of (y, k) such that Π(y, k, S) ≥ OPT (y,k)

α ≥ r
α . This implies

that in Step 4, the first player declares that xi ∈ L for some i. Suppose now that xi /∈ L for all i.
Then, by the definition of α-gap cross composition algorithms A, we have that OPT (y, k) < r

α .
This implies that for any S, Π(y, k, S) < r

α . Thus in Step 4, the first player declares that xi /∈ L
for all i. We have just verified that the described oracle communication protocol satisfies all the
conditions of Lemma 7.1. Thus, by Lemma 7.1, we have that L ∈ coNP/Poly. This completes
the proof.
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The main theorem of the section follows from Lemma 7.2.

Theorem 8. Let L be an NP-hard language and Π be a nice parameterized optimization prob-
lem. If L α-gap cross composes to Π, and Π has a polynomial sized α-approximate compression,
then NP ⊆ coNP/Poly.

We note that Lemma 7.1 applies even if the first player works in co-nondeterministic polyno-
mial time. Thus, a co-nondeterministic α-gap cross composition together with an α-approximate
compression from an NP-hard language would still yield that NP ⊆ coNP/Poly. For clarity we
formally define co-nondeterministic α-gap cross composition for minimization problem which
we later use in this section to derive a lower bound on Set Cover.

Definition 7.7 (co-nondeterministic α-gap cross composition for minimization problem). Let L ⊆
Σ∗ be a language, where Σ is a finite alphabet and let Π be a parameterized minimization prob-
lem. We say that L co-nondeterministically α-gap cross composes into Π (where α ≥ 1), if
there is a polynomial equivalence relation R and a nondeterministic algorithm A which, given t
strings x1, x2, . . . , xt belonging to the same equivalence class of R, computes an instance (y, k)
of Π and r ∈ R, in time polynomial in

∑t
i=1 |xi| such that the following holds.

(i) if xi ∈ L for some i ∈ [t], then in all the computation paths of A, OPT (y, k) ≤ r,
(ii) if xi /∈ L for all i ∈ [t], then there is a computation path in A with OPT (y, k) > r ·α, and

(iii) k is bounded by a polynomial in log t+ max1≤i≤t |xi|.

If such an algorithm exists, then we say L co-nondeterministically α-gap cross composes to Π.

8 Longest Path

In this Section we show that Longest Path does not admit an α-approximate compression of
polynomial size for any α ≥ 1 unless NP ⊆ coNP/Poly. The parameterized optimization version
of the Longest Path problem, that we call Path, is defined as follows.

Path(G, k, P ) =
{
−∞ if P is not a path in G

min {k + 1, |V (P )| − 1} otherwise

We show that Path does not have a polynomial sized α-approximate compression for any
constant α ≥ 1. We prove this by giving an α-gap cross composition from a α-Gap Long
Path. The problem α-Gap Long Path is a promise problem which is defined as follows.

Definition 8.1. The α-Gap Long Path problem is to determine, given a graph G and an
integer k whether:

• G has a path of length at least k, in which case we say that (G, k) is a Yes instance of
α-Gap Long Path.
• the longest path in G has length strictly less than k

α , in which case we say that (G, k) is a
No instance of α-Gap Long Path.

It is known that α-Gap Long Path is NP-hard [39].

Lemma 8.1. α-Gap Long Path α-gap cross composes to Path for any α ≥ 1.

Proof. First we make the following polynomial equivalence relation: two instances (G1, k1) and
(G2, k2) are in the same equivalence class if k1 = k2. Now given t instances (G1, k), . . . , (Gt, k)
of α-Gap Long Path, the α-gap cross composition algorithm A just outputs an instance (G, k)
of Path, where G is the disjoint union of G1, . . . , Gt.
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Clearly, G contains a path of length k if and only if there exists an i such that Gi contains
a path of length k. Thus, OPT (G, k) ≥ r if and only if there is an i such that (Gi, k) is a yes
instance of α-Gap Long Path. For the same reason OPT (G, k) < r

α if and only if (Gi, k) is a
No instance of α-Gap Long Path for every i. Finally the parameter k of the output instance
is upper bounded by the size of the graphs Gi. This concludes the proof.

Theorem 8 and Lemma 8.1 yields the following theorem.

Theorem 9. Path does not have a polynomial size α-approximate compression for any α ≥ 1,
unless NP ⊆ coNP/Poly.

9 Set Cover

In this section we show that parameterized optimization version of Set Cover parameterized
by universe size does not admit an α-approximate compression of polynomial size for any α ≥ 1
unless NP ⊆ coNP/Poly. The input of Set Cover is a family S of subsets of a universe U and
the objective is to choose a minimum sized subfamily F of S such that

⋃
S∈F S = U . Such a set

F is called a set cover of (S, U). Since the parameter used here is a structural parameter, both
Set Cover (SC) and its parameterized version Set Cover/n (SC/n) can be defined as follows.

SC/n((S, U), |U |,F) = SC((S, U),F) =
{
|F| if F is a set cover of (S, U)
∞ otherwise

We show Set Cover/n does not have a polynomial sized α-approximate compression for
any constant α ≥ 1. Towards this we first define the d-Set Cover problem, d ∈ N. The d-Set
Cover problem is a restriction of Set Cover, where each set in the family S is bounded by
d. We show the desired lower bound on Set Cover/n by giving a co-nondeterministic α-gap
cross composition from a gap version of d-Set Cover. The problem α-Gap d-Set Cover is
a promise problem defined as follows.

Definition 9.1. The α-Gap d-Set Cover problem is to determine, given a set family S over
a universe U , where the size of each set in S is upper bounded by d, and an integer r whether:

• OPTSC(S, U) ≤ r, in which case we say that ((S, U), r) is a Yes instance of α-Gap d-Set
Cover.
• OPTSC(S, U) > rα, in which case we say that ((S, U), r) is a No instance of α-Gap
d-Set Cover.

We will use the following known result regarding α-Gap d-Set Cover for our purpose.

Theorem 10 ( [12,54]). For any α ≥ 1, there is a constant d such that α-Gap d-Set Cover
is NP-hard.

To show a lower bound of α-approximate compression for Set Cover/n, our aim here is
to give co-nondeterministic α-gap cross composition from α-Gap d-Set Cover. To give a
co-nondeterministic cross composition algorithm it is enough to give a randomized cross com-
position algorithm which is always correct when it returns a No instance. We give a formal
proof about this after the following lemma.

Lemma 9.1. Given t instances of α-Gap d-Set Cover, ((S1, U1), r), . . . , ((St, Ut), r) of size
s each, |U1| = · · · = |Ut| = n, and |S1| = · · · = |St| = m, there is a randomized polynomial time
algorithm (i.e, polynomial in t ·s) with one sided error, which outputs an instance (S, U) of Set
Cover with following guarantees.
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U1 • • • • •

S1 • • • • • • • • •

• ••

• • • • • Ut

St1 • • • • • • • • • St

• • • . . . • • Uu1 u2 u3 uN−1uN

Figure 8: An illustration of proof of Lemma 9.1. Every set and every element is represented using bullets. An
element in a set is represented using an edge between the element and the set. The random assignment to each
element in U is represented using dotted lines. The set S′t1 created from St1 is {u1, u2, u3, uN}.

(a) if ((Si, Ui), r) is an Yes instance of α-Gap d-Set Cover for some i ∈ [t], then

Pr[OPTSC(S, U) ≤ r] = 1,

(b) if ((Si, Ui), r) is a No instance of α-Gap d-Set Cover for all i ∈ [t], then

Pr[OPTSC(S, U) > rα] > 0, and

(c) |U | = n2d · 4d · 2 log
(m·t
r·α
)
.

Proof. We design an algorithm A with properties mentioned in the statement of the lemma. We
know that n = |U1| = . . . = |Ut|. For any i ∈ [t], let Si = {Si1, . . . ,Sim}. Algorithm A creates
a universe U with N = n2d · 4d · 2 log

(m·t
r·α
)

elements. Now we describe the random process by
which we construct the set family S.

For each u ∈ U and i ∈ [t], uniformly at random assign an element from Ui to u.

That is, in this random process t elements are assigned to each element u ∈ U , one from each
Ui. We use Γi : U → Ui to represent the random assignment. That is, for each u ∈ U , i ∈ [t],
Γi(u) denotes the element in Ui that is assigned to u. Observe that an element w ∈ Ui can be
assigned to several elements of U . In other words, the set Γ−1

i (w) can have arbitrary size. For
each Sij , i ∈ [t], j ∈ [m], algorithm A, creates a set

S′ij =
⋃

w∈Sij
Γ−1
i (w).

Notice that |S′ij | need not be bounded by any function of d. Let S = {S′ij : i ∈ [t], j ∈ [m]}.
Algorithm A outputs (S, U). An illustration is given in Figure 8.

Now we prove the correctness of the algorithm. Suppose there exists i ∈ [t] such that
((Si, Ui), r) is a Yes instance of α-Gap d-Set Cover. That is, there exist Sij1 , . . . , Sijr ∈ Si
such that Sij1 ∪ · · · ∪ Sijr = Ui. We know that for each u ∈ U , there is a w ∈ Ui such that
Γi(u) = w. Since Sij1 ∪ · · · ∪ Sijr = Ui and for each u ∈ U , there is a w ∈ Ui with Γi(u) = w,
we can conclude that

S′ij1 ∪ · · · ∪ S
′
ijr =

⋃
`∈[r],w∈Sij`

Γ−1
i (w) =

⋃
w∈Ui

Γ−1
i (w) = U.

This implies that {S′ij1 , . . . , S
′
ijr} is a set cover of (S, U). This proves condition (a) of the lemma.
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Now we prove condition (b). In this case, for all i ∈ [t], ((Si, Ui), r) is a No instance of
α-Gap d-Set Cover. That is, for any i ∈ [t], (Si, Ui) does not have a set cover of cardinality
at most rα. Let Sinput =

⋃
i∈[t] Si. Each set in S′ij ∈ S, i ∈ [t], j ∈ [m] is a random variable

defined by
⋃
w∈Sij Γ−1

i (w). We call S′ij a set-random variable. Thus, S is a set of mt-set random
variables where the domain of each set-random variable is the power set of U (that is, 2U ).
Thus, to show that Pr[OPTSC(S, U) > rα] > 0, we need to show that probability of union
of any αr set-random variables covering U is strictly less than 1

(mtrα) . For an ease of presen-

tation, for any Sij ∈ Sinput, we call
⋃
w∈Sij Γ−1

i (w), as Image(Sij). Observe that Image(Sij) is
also a random variable and it is same as S′ij . For a subset F ⊆ Sinput, by Image(F) we mean
{Image(S) | S ∈ F}. Now we are ready to state and prove our main claim.

Claim 9.1. For any F ⊆ Sinput of cardinality rα, Pr[Image(F) is a set cover of (S, U)] < 1
(mtrα) .

Proof. We can partition F = F1 ] . . . ] Ft such that Fi = F ∩ {Si1, . . . , Sim}. Similarly, we
can partition Image(F) into Image(F1) ] . . . ] Image(Ft) such that Image(Fi) = Image(F) ∩
{S′i1, . . . , S′im}. Le U ′i be the subset of elements of Ui covered by the sets in Fi. Let Xi = |U ′i |.
Because of our assumption that ((Si, Ui), r) is a No instance of α-Gap d-Set Cover, we have
that the subset U ′i covered by Fi is a strict subset of Ui and hence

for all i ∈ [t], Xi < n (5)

Since |
⋃
i∈[t]Fi| = |F| = rα and the cardinality of each set in F is at most d, we have∑

i∈[t]
Xi < rαd < nd (6)

Since ((Si, Ui), r) is a No instance of α-Gap d-Set Cover for any i ∈ [t], we have rα < n and
hence the last inequality of Equation 6 follows. Towards bounding the probability mentioned
in the claim, we first lower bound the following probability, Pr[u is not covered by Image(F)],
for any fixed u ∈ U .

Pr[u is not covered by Image(F)] =
∧
i∈[t]

Pr[u is not covered by Image(Fi)]

=
∧
i∈[t]

(1− Pr[u is covered by Image(Fi)])

=
∧
i∈[t]

(
1− Pr[Γi(u) ∈ U ′i ]

)
=

∏
i∈[t]

(
1− |U

′
i |
n

)
(Because, ∀w ∈ Ui,Pr[Γi(u) = w] = 1

n
)

=
∏
i∈[t]

(
1− Xi

n

)

=
∏

i∈[t] such that
Xi≤n2

(
1− Xi

n

)
·

∏
i∈[t] such that

Xi>
n
2

(
1− Xi

n

)
(7)

We know, by Equation 6, that
∑
i∈[t]Xi < nd. This implies that the number of Xi’s such that

Xi >
n
2 is at most 2d. By Equation 5, we have that for any i ∈ [t],

(
1− Xi

n

)
≥
(
1− n−1

n

)
= 1

n .
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Since the number of Xi’s with Xi >
n
2 is at most 2d and

(
1− Xi

n

)
≥ 1

n , we can rewrite Equa-
tion 7, as follows.

Pr[u is not covered by Image(F)] ≥


∏

i∈[t] such that
Xi≤n2

(
1− Xi

n

) · 1
n2d

≥ 1
n2d

∏
i∈[t] such that

Xi≤n2

(1
4

)Xi
n

(By Fact 2)

≥ 1
n2d ·

(1
4

)∑Xi
n

≥ 1
n2d ·

(1
4

)d
(By Equation 6) (8)

Since the set of events “u is covered by Image(F)”, where u ∈ U , are independent events, we have

Pr[Image(F) is a set cover of (S, U)] ≤
∏
u∈U

Pr[u is covered by Image(F)]

≤
∏
u∈U

(
1− 1

n2d · 4d
)

(By Equation 8)

≤
∏
u∈U

e
−1

n2d·4d

<
1(mt
rα

) (Because |U | = n2d · 4d · 2 log
(
mt

rα

)
)

This completes the proof of the claim.

Since the number of subsets of cardinality rα of Sinput, is at most
(mt
rα

)
, by Claim 9.1 and

union bound we get that

Pr[∃ a set F ⊆ Sinput of cardinality rα such that Image(F) is a set cover of (S, U)] < 1.

This completes the proof of condition (b). Condition (c) trivially follows from the construction
of U .

Now we will use the construction given in Lemma 9.1 to prove the main lemma of this section.

Lemma 9.2. α-Gap d-Set Cover co-nondeterministically α-gap cross composes to Set
Cover/n for any α ≥ 1.

Proof. First we make the following polynomial equivalence relation: two instances ((S, U), r)
and ((S ′, U ′), r′) of α-Gap d-Set Cover are in the same equivalence class if |S| = |S ′|, |U | =
|U ′| and r = r′. Towards proving the lemma we need to design an algorithm B with the proper-
ties of Definition 7.7. Let ((S1, U1), r), . . . , ((St, Ut), r) be instances of α-Gap d-Set Cover of
size s each, |U1| = · · · = |Ut| = n, and |S1| = · · · = |St| = m. Here, t is polynomially bounded in
s. Since ((Si, Ui), r), i ∈ [t], are instances of α-Gap d-Set Cover, m ≤

(n
d

)
and hence t ≤ nc

for some constant c. Now B runs the algorithm A mentioned in the Lemma 9.1, but instead of
using the random bits it nondeterministically guesses these bits while running A. Algorithm B
returns (S, U) and r as output, where (S, U) is the output of A.
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If there exists i ∈ [t] such that ((Si, Ui), r) is a Yes instance of α-Gap d-Set Cover, by
condition (a) of Lemma 9.1, we can conclude that OPTSC/n((S, U), |U |) ≤ r and hence satisfies
property (i) of Definition 7.7. Suppose ((Si, Ui), r) is a No instance for all i ∈ [t]. Because of
condition (b) of Lemma 9.1, there is a choice of random bits B such that if A uses B as the ran-
dom bits then OPTSC(S, U) > rα. Hence, for the nondeterministic guess B of the algorithm B,
we get that OPTSC/n((S, U), |U |) = OPTSC(S, U) > rα. This proves property (ii) of Defini-
tion 7.7. By condition (c) of Lemma 9.1, and the facts that m, t ∈ nO(1), we get that |U | = nO(1).
This implies the property (iii) of Definition 7.7. This completes the proof of the lemma.

Theorems 8 and 10, and Lemma 9.2 yields the following theorem.

Theorem 11. Set Cover/n does not have a polynomial size α-approximate compression for
any α ≥ 1, unless NP⊆ coNP/Poly.

10 Hitting Set

In this section we show that a parameterized optimization version of Hitting Set does not
admit an O(2logc n)-approximate kernel of polynomial size for any c < 1, unless CNF-SAT can
be solved in slightly subexponential time, where universe size n of the input instance is the
parameter. Compare to Set Cover our result in this section are much more stronger, but
unlike Set Cover here we can only rule out an existence of an approximate kernel and not an
approximate compression. The input of Hitting Set is a family S of subsets of a universe U
and the objective is to choose a minimum cardinality subset X ⊆ U such that for all S ∈ S,
S ∩ X 6= ∅. Such a subset X is called a hitting set of (S, U). Since the parameter used here
is a structural parameter, both Hitting Set (HS) and its parameterized version Hitting
Set/n (HS/n) can be defined as follows.

HS/n((S, U), |U |, X) = HS((S, U), X) =
{
|X| if X is a hitting set of (S, U)
∞ otherwise

The following lemma shows that in fact Hitting Set is same as Set Cover but with a
different parameter.

Lemma 10.1. Let (S, U) be an instance of Hitting Set. Let Fu = {S ∈ S : u ∈ S} for all
u ∈ U and let F = {Fu : u ∈ U}. Then OPTHS(S, U) = OPTSC(F ,S)

Proof. Let X ⊆ U be a hitting set of (S, U). Consider the set FX = {Fu ∈ F : u ∈ X}. Since
X is a hitting set of S, for any S ∈ S, there is an element u ∈ X such that S ∈ Fu. This implies
that FX is a set cover of (F ,S).

Let F ′ ⊆ F be a set cover of (F ,S). Let X = {u ∈ U : Fu ∈ F ′}. Since F ′ is a set cover of
(F ,S), for any S ∈ S, there is a set Fu ∈ F ′ such that S ∈ Fu. This implies that X is a hitting
set of (S, U). This completes the proof of the lemma.

The following Lemma follows from the O(logn)-approximation algorithm of Set Cover [13]
and Lemma 10.1

Lemma 10.2 ( [13]). There is a polynomial time algorithm which given an instance (S, U) of
Hitting Set, outputs a hitting set of cardinality bounded by O(OPTHS(S, U) · log |S|).

The following theorem is a slight weakening of a result by Nelson [48], which we use to prove
our theorem.
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Theorem 12 ( [48]). For any c < 1, Hitting Set has no polynomial time O(2logc n)-approximation

unless CNF-SAT with n-variables can be solved in time 2O(2log1−1/(log logn)1/3
n).

The assumption used in Theorem 12, implies the Exponential Time Hypothesis (ETH) of
Impagliazzo, Paturi and Zane [38] and hence it is weaker than ETH.

Theorem 13. For any c < 1, Hitting Set/n does not admits a O(2logc n)-approximate kernel,

unless CNF-SAT with n-variables can be solved in time 2O(2log1−1/(log logn)1/3
n).

Proof. Suppose there is a O(2logc n)-approximate kernel A for Hitting Set/n for some c < 1.

Then, we argue that we can solve CNF-SAT on n variables in time 2O(2log1−1/(log logn)1/3
n). To-

wards that, by Theorem 12, it is enough to give a O(2logc
′
n) -approximation algorithm for

Hitting Set for some c′ < 1, where n is the cardinality of the universe in the input instance.
Fix a constant c′ such that c < c′ < 1. We design a O(2logc

′
n)-approximation algorithm

for Hitting Set using A. Let (S, U) be an instance of HS and let |U | = n. Let RA and
LA be the reduction algorithm and solution lifting algorithm of A respectively. We run the
algorithm RA on ((S, U), n) and let ((S ′, U ′), |U ′|) be the output of RA. We know that
|S ′| + |U ′| = nO(1). Then, by Lemma 10.2, we compute a hitting set W of (S ′, U ′), of car-
dinality bounded by O(OPTHS(S ′, U ′) · logn). Then, by using solution lifting algorithm LA,
we compute a hitting set X of ((S, U), n). By the property of O(2logc n) -approximate kernel A,
we can conclude that the cardinality of X is bounded by O(2logc n ·logn·OPTHS/n((S, U), n)) =

O(2logc
′
n ·OPTHS/n((S, U), n)). This implies that X is a O(2logc

′
n) -approximate solution of

(S, U). This completes the proof of the theorem.

11 Conclusion and Discussions

In this paper we have set up a framework for studying lossy kernelization, and showed that
for several problems it is possible to obtain approximate kernels with better approximation ra-
tio than that of the best possible approximation algorithms, and better size bound than what
is achievable by regular kernels. We have also developed methods for showing lower bounds
for approximate kernelization. There are plenty of problems that are waiting to be attacked
within this new framework. Indeed, one can systematically go through the list of all param-
eterized problems, and investigate their approximate kernelization complexity. For problems
that provably do not admit polynomial size kernels but do admit constant factor approximation
algorithms, one should search for PSAKSes. For problems with PSAKSes one should search for
efficient PSAKSes. For problems with no polynomial kernel and no constant factor approxima-
tion, one may look for a constant factor approximate kernel of polynomial size. For problems
that do have polynomial kernels, one can search for approximate kernels that are even smaller.
We conclude with a list of concrete interesting problems.

• Does Connected Vertex Cover, Disjoint Factors or Disjoint Cycle Packing
admit an EPSAKS?
• Does Edge Clique Cover admit a constant factor approximate kernel of polynomial

size?
• Does Directed Feedback Vertex Set admit a constant factor approximate kernel of

polynomial size?
• Does Multiway Cut or Subset Feedback Vertex Set have a PSAKS?
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• Does Disjoint Hole Packing admit a PSAKS? Here a hole in a graph G is an induced
cycle of length 4 or more.
• Does Optimal Linear Arrangement parameterized by vertex cover admit a constant

factor approximate kernel of polynomial size, or even a PSAKS?
• Does Maximum Disjoint Paths admit a constant factor approximate kernel, or even a

PSAKS? Here the input is a graph G together with a set of vertex pairs (s1, t1), (s2, t2),
. . ., (s`, t`). The goal is to find a maximum size subset R ⊆ {1, . . . , `} and, for every i ∈ R
a path Pi from si to ti, such that for every i, j ∈ R with i 6= j the paths Pi and Pj are
vertex disjoint. What happens to this problem when input is restricted to be a planar
graph? Or a graph excluding a fixed graph H as a minor? What about chordal graphs,
or interval graphs?
• It is known that d-Hitting Set admits a kernel if size O(kd), this kernel is also a strict

1-approximate kernel. d-Hitting Set also admits a factor d-approximation in polyno-
mial time, this is a d-approximate kernel of constant size. Can one interpolate between
these two extremes by giving an α-approximate kernel of size O(kf(α)) with f(1) = d,
f(d) = O(1), and f being a continuous function?
• Our lower bound for approximate kernelization of Hitting Set parameterized by universe

size n does not apply to compressions. Can one rule out polynomial size constant factor
approximate compressions of Hitting Set parameterized by universe size n assuming NP
6⊆ coNP/Poly or another reasonable complexity theoretic assumption?
• One may extend the notion of approximate kernels to approximate Turing kernels [15]

in a natural way. Does Independent Set parameterized by treewidth admit a polyno-
mial size approximate Turing kernel with a constant approximation ratio? What about a
Turing PSAKS?
• Does Treewidth admit an constant factor approximate kernel of polynomial size? Here

even a Turing kernel (with a constant factor approximation) would be very interesting.
• What is the complexity of approximate kernelization of Unique Label Cover? [5, 40]
• The notion of α-gap cross compositions can be modified to “AND α-gap cross composi-

tions” in the same way that AND-compositions relate to OR-compositions [6]. In order
to directly use such “AND α-gap cross compositions” to show lower bounds for approx-
imate kernelization, one needs an analogue of Lemma 7.1 for the problem of deciding
whether all of the t(s) inputs belong to L. This is essentially a strengthening of the AND-
distillation conjecture [6,25] to oracle communication protocols (see the conclusion section
of Drucker [25], open question number 1). Can this strengthening of the AND-distillation
conjecture be related to a well known complexity theoretic assumption?

Acknowledgement. The authors thank Dániel Marx for enlightening discussions on related
work in the literature, and Magnus Wahlström for pointing out the remark about randomized
pre-processing algorithms following Definition 3.5.
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