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Abstract

In this thesis we study different randomized techniques used in parametrized com-
plexity. These techniques include Color Coding, Divide and Color, Cut and Count
and certain algebraic techniques. We illustrate these techniques by doing a case
study on the problem of finding a path of length k − 1 in an undirected graph.
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1
Introduction

1.1 Introduction

Good algorithms have fast running time and always output correct answer. Un-
fortunately, many real world problems do not seem to have such good algorithms.
So the algorithm designers have to compromise either on running time or on cor-
rectness or on both. Parameterized complexity is one such paradigm where we
want the output to be correct but the running time is allowed to be exponential
in a carefully chosen parameter. Parameterized complexity allows us to solve the
problem more efficiently than brute force: here the aim is to restrict the combina-
torial explosion to a parameter that is hopefully much smaller than the input size.
Formally, a parameterization of a problem is assigning an integer k to each in-
put instance and we say that a parameterized problem is fixed-parameter tractable
(FPT) if there is an algorithm that solves the problem in time f(k)|I|O(1), where
|I| is the size of the input and f is an arbitrary computable function depending on
the parameter k only.

In classical complexity the main two resources considered are time and space
used for computation. However in the last two decades “randomness” as a resource
has been studied in algorithms and complexity. In randomized algorithms we ran-
domly sample an object (like coin toss) and use this information along with the
input to compute the output. Here we are interested in randomized algorithms,
which run in FPT time, but may give wrong answer with a small constant proba-
bility.

In this thesis we study different randomized techniques used in parameterized

1



Chapter 1. Introduction

complexity. The techniques are

• Color Coding

• Divide and Color

• Cut and Count

• Koutis Williams approach

• Narrow sieve

We illustrate these techniques by doing a case study on k-path, the problem of
finding a path of length k − 1 in an undirected graph, formally defined as follows

k-path

Input: An undirected graph G = (V,E) and a positive integer k
Parameter: k

Question: Does there exist a path of length k − 1 in G

Color Coding is used to solve the problem of detecting a k-sized subgraph of
constant treewidth in an input graph. The idea of this technique is to randomly
color the entire graph with a set of colors with the number of colors chosen in a
way that if the smaller graph does exist in this graph as a subgraph, with high
probability it will be colored in a way that we can find it efficiently. Divide and
Color is a combination of Divide and Conquer paradigm and Color Coding. Cut
and Count technique is introduced to solve connectivity type graph problems.
The idea of this technique is to reduce the original problem to the task of counting
possibly disconnected “cut solutions” modulo 2 by making sure that number of
disconnected cut solutions is always even and number of connected solution is odd
with good probability in single exponential time on graphs of bounded treewidth.
In Koutis Williams approach and Narrow Sieve, original problem is reduced to
algebraic problems. In Koutis Williams approach k-path is reduced to the problem
of detecting an odd multilinear term in a multivariate polynomial and in Narrow
Sieve k-path is reduced to polynomial identity testing.

Organization of the Thesis. In the rest of the chapter we present basic
definitions and notations which we will follow in this thesis. In Chapter 2 we
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Chapter 1. Introduction

construct pseudo random objects like family of perfect hash functions and universal
sets which we use to derandomize algorithms. In chapter 3, we explain the Color
Coding technique, solve k-path and derandomize the algorithm developed using
family of perfect hash functions. In chapter 4, we describe Divide and Color
technique, develop a randomized algorithm for k-path and derandomize it using
universal sets. In chapter 5, we describe the general framework of Cut and Count
technique and solve k-path using this technique. In chapter 6, we explain two
algebraic techniques to solve k-path. The techniques areKoutis Williams approach
and Narrow Sieve.

1.2 Preliminaries and notation

1.2.1 Basic Notations

We assume that the reader is familiar with basic notions like sets, functions, poly-
nomials, matrices, vectors etc.

We use Zn and [n] to denote the set {0, 1, ..., n − 1} and Z∗p to denote the set
{1, 2, ..., p − 1}. The set of k sized subsets of [n] can be denoted by

(
[n]
k

)
and by

2U we mean the set of subsets of U . If M is a square matrix, then trace(M) is
the sum of main diagonal elements of M and MT represents the transpose of M .
By ~0 we mean zero vector of any dimension where the notion of dimension will be
clear from the context. If w : U → {1, 2, ..., N}, we shorthand w(S) =

∑
e∈S w(e)

for S ⊆ U . If f is a function from set X to set Y and g is function from set Y
to set Z, then the composite function denoted by g ◦ f , from X to Z is defined as
(g ◦ f)(x) = g(f(x)). If s is a function from X to Y , then we use s[x1 → y1] to
denote a function which agrees on s for all values of X except that it maps x1 to
y1. If P is a logical proposition, then we use [P ] to denote the value (0 or 1) of the
proposition P .

Growth of Functions

We employ mainly the big-Oh (O) notation (see [6]) and the big-Oh-star (O∗)
notation introduced in [21]. Let f : N → N and g : N → N be two functions
from Natural numbers to Natural numbers. We say that f(n) = O(g(n)) if there
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Chapter 1. Introduction

exist constants c, and n0 such that for all n ≥ n0, f(n) ≤ c.g(n). The notation
O∗ is essentially the big-Oh notation which hides polynomial factors and hence is
used only for exponential time algorithms. We use O∗(f(n)) to denote O(f(n).nc)

where c is some constant. In this thesis, we will use the O∗ notation to hide factors
polynomial in input size in order to focus on the function of the parameter. Hence,
for us, O∗(f(k)) denotes O(f(k).nc) where k is the value of some parameter, n is
the size of the input instance, and c is some constant.

Graphs

An undirected graph G is a pair = (V,E) where V and E are unordered sets. The
elements of V are called vertices of G. E consists of unordered pairs of vertices
and elements of E are called edges of G. An edge between vertices u and v is
represented as (u, v). Note that (u, v) = (v, u) in an undirected graph. A vertex
u and a vertex v are said to be adjacent if E contains the pair (u, v). The edge
(u, v) is said to be incident on the vertices u and v, while u and v are called
the endpoints of the edge (u, v). Degree of a vertex v in a graph G, denoted by
degreeG(v) is the number of edges incident on it. An undirected graph G is called
a simple undirected graph if there is no edge in E of the form (v, v) where v is a
vertex of G. In this thesis, the graphs we consider are all simple undirected graphs.
Sometimes the set of vertices and the set of edges of a graph G are denoted by
V (G) and E(G) respectively. The set of endpoints of edges in X ⊆ E are denoted
by V (X). If Y is a subset of V in a graph G = (V,E), then the subgraph induced
on Y can be denoted by G[Y ]. If A is a subset of E in a graph G = (V,E), then
the subgraph with vertex set V (A) and edge set A can be denoted by G[A]. A
walk in the graph G is a sequence W = v1, ..., vt of vertices such that (vi, vi+1) ∈ E
for every 1 ≤ i ≤ t − 1 and it is called a walk from v1 to vt in G. The length of
this walk is t−1. A walk in which any vertex occurs at most once is called a path.
By u k−→ v we mean there exists a path of length k − 1 from u to v. A walk where
the first vertex is same as the last vertex and all the other vertices are distinct is
called a cycle. The walks vi, vi+1, ..., vj, 1 ≤ i ≤ j ≤ t are called subwalks of the
walk W . Number of connected components in a graph G is represented by cc(G)
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Chapter 1. Introduction

Strings

Let A be a set whose elements can be viewed as the symbols of an alphabet. A
string of length l over A is a sequence S = s1s2...sl with si ∈ A for each i = 1, 2, ..., l.
We say that si is the symbol at position i of the string. The reverse of a string
S = s1s2...sl is

←−
S = slsl−1...s1. The concatenation of two strings S = s1s2...sl and

T = t1t2...tk is ST = s1s2...slt1t2...tk. A palindrome is a string that is identical to
its reverse. For A1, A2, ..., Al ⊆ A, we say that a string s1s2...sl is an A1A2...Al-
string if si ∈ Ai holds for every i = 1, 2, ..., l. The set of strings of length n over
an alphabet A can be represented as An.

1.2.2 Inclusion Exclusion Principle

Let U be a finite set (we call U as universe) and A1, A2, ..., An ⊆ U . The number
of elements in U which is not in any Ai is given by,

∣∣Ā1 ∩ Ā2 ∩ ... ∩ Ān
∣∣ = |U |+

n∑
k=1

(−1)k
∑

i1<i2<...<ik

|Ai1 ∩ Ai2 ∩ ... ∩ Aik |

1.2.3 Probability

We assume that the reader is familiar with basics of probability theory. In this
section we list some definitions and rules in probability theory.

Definition 1 (Conditional probability). The conditional probability of an event E1

given another event E2 is denoted by Pr[E1 | E2] and is given by

Pr[E1 ∩ E2]

Pr[E2]

Proposition 2 (Union bound). In probability theory, union bound says that for
any finite number of events, the probability that at least one of the events happen
is not greater than the sum of the probabilities of the individual events. That is,
for a set of events {E1, E2..., Ek}

Pr[E1 ∪ E2 ∪ ... ∪ Ek] ≤ Pr[E1] + Pr[E2] + ...+ Pr[Ek]
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Definition 3 (k-wise independent). A random variable X = X1X2...Xn chosen
uniformly at random from a sample space Hn,k,b ⊆ [b]n is said to be k-wise in-
dependent if for any k positions i1 < i2 < ... < ik and any string α ∈ [b]k, we
have

Pr[Xi1Xi2 ...Xik = α] =
1

bk

Proposition 4 ([2]). There exists a k-wise independent probability space Hn,k,b of
size O(nk) and it can be constructed efficiently in time linear in the output size.

1.2.4 Treewidth

Definition 5 (Tree Decomposition, [16]). A tree decomposition of a (undirected or
directed) graph G = (V,E) is a tree T in which each vertex x ∈ T has an assigned
set of vertices Bx ⊆ V (called a bag) such that

⋃
x∈T Bx = V with the following

properties:

• for any (u, v) ∈ E, there exists an x ∈ T such that u, v ∈ Bx.

• if v ∈ Bx and v ∈ By, then v ∈ Bz for all z on the path from x to y in T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of
T minus one, and the treewidth of a graph G is the minimum treewidth over all
possible tree decompositions of G.

Dynamic programming algorithms on tree decompositions are often presented
on nice tree decompositions which were introduced by Kloks [10]. We refer to the
tree decomposition definition given by Kloks as standard nice tree decomposition.

Definition 6 (Standard Nice Tree Decomposition, [10]). Standard nice tree de-
composition is a tree decomposition where:

• every bag has at most two children

• if a bag x has two children l, r, then Bx = Bl = Br

• if a bag x has one child y, then either |Bx| = |By| + 1 and By ⊆ Bx or
|Bx|+ 1 = |By| and Bx ⊆ By

Definition 7 (Nice Tree Decomposition, [7]). A nice tree decomposition is a tree
decomposition with one special bag z called the root with Bz = ∅ and in which each
bag is one of the following types:
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• Leaf bag: a leaf x of T with Bx = ∅.

• Introduce vertex bag: an internal vertex x of T with one child vertex y for
which Bx = By ∪ {v} for some v /∈ By. This bag is said to introduce v.

• Introduce edge bag: an internal vertex x of T labeled with an edge (u, v) ∈
E with one child bag y for which u, v ∈ Bx = By. This bag is said to introduce
(u, v).

• Forget bag: an internal vertex x of T with one child bag y for which Bx =

By \ {v} for some v ∈ By. This bag is said to forget v.

• Join bag: an internal vertex x with two child vertices l and r with Bx =

Br = Bl

We additionally require that every edge in E is introduced exactly once.

Given a tree decomposition, a standard nice tree decomposition of equal width
can be found in polynomial time [10] and in polynomial time, it can easily be
modified to meet extra requirements of nice tree decomposition, as follows: add
a series of forget bags to the old root, and add a series of introduce vertex bags
below old leaf bags that are nonempty; Finally, for every edge (u, v) ∈ E add an
introduce edge bag above the first bag with respect to the in-order traversal of T
that contains u and v. By fixing the root of T, we associate with each bag x in a
tree decomposition T a vertex set Vx ⊆ V where a vertex v belongs to Vx if and
only if there is a bag y which is a descendant of x in T with v ∈ By (recall that x
is its own descendant). We also associate with each bag x of T a subgraph of G as
follows:

Gx = (Vx, Ex = {e ∈ E|e is introduced in a descendant of x})

1.2.5 Algebraic structures

Definition 8 (Group). A group is a set G, together with a binary operation · (also
called group operation) that combines any two elements a and b to form another
element, denoted a · b or ab. To qualify as a group, the set and operation, (G, ·),
must satisfy four requirements known as the group axioms:
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• Closure: For all a, b ∈ G, the result of the operation, a · b, is also in G.

• Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).

• Identity element: There exists an element e in G, called the identity el-
ement, such that for every element a ∈ G, e · a = a · e = a. The identity
element of a group G is often written as 1 or 1G.

• Inverse element: For each a ∈ G, there exists an element b ∈ G such that
a · b = b · a = 1G.

If the group operation of a group G is commutative (i.e, a ·b = b ·a for all a, b ∈ G),
then we say G is an abelian group.

In this thesis we are interested in the following groups

1. Z2 : Set {0, 1} with binary operation addition modulo 2.

2. Z : Set {0, 1, 2, ...} with normal addition operation.

3. Zk
2 : Set of {0, 1} vectors of length k with the group operation being entry-

wise addition modulo 2.

Definition 9 (Ring). A ring is a set R equipped with two binary operations + :

R×R→ R and · : R×R→ R, called addition and multiplication. To qualify as a
ring, the set and two operations, (R,+, ·), must satisfy the following requirements.

• (R,+) is required to be an abelian group.

• Closure under multiplication: ∀a, b ∈ R, a · b ∈ R

• Associativity of multiplication: ∀a, b, c ∈ R, (a · b) · c = a · (b · c)

• Existence of multiplicative identity: There exists an element 1 ∈ R,
such that for all elements a ∈ R, 1 · a = a · 1 = a

• The distributive laws:

1. ∀a, b, c ∈ R, a · (b+ c) = (a · b) + (a · c).

2. ∀a, b, c ∈ R, (a+ b) · c = (a · c) + (b · c).

8
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Rings that also satisfy commutativity for multiplication are called commutative
rings.

Definition 10 (Field). A field is a set F with two binary operations – addition,
denoted by + and multiplication, denoted by · satisfying following properties

1. (F,+) is an abelian group.

2. (F \ {0}, ·) is an abelian group where 0 is the identity element of the group
(F,+) which is called additive identity or zero element of the field.

3. Multiplication is distributive over addition, i.e,
∀ a, b, c ∈ F, a · (b+ c) = (a · b) + (a · c).

In this thesis we are interested in the following fields.

1. Z: Set {0, 1, 2, ...} with operations addition and multiplication.

2. Zp: Set {0, 1, ..., p−1} with operations addition modulo p and multiplication
modulo p where p is a prime.

3. F2n : Elements of this field are univariate polynomials of degree less than n
over Z2 and the operations are addition modulo R and multiplication modulo
R where R is an irreducible polynomial of degree n over Z2.

Definition 11. The characteristic of a field F is defined to be the smallest number
of times one must use the field’s multiplicative identity element in a sum to get
the additive identity element; the field is said to have characteristic zero if this
repeated sum never reaches the additive identity.

Definition 12 (Polynomial ring). The set of all polynomials with coefficients in
the field K forms a commutative ring denoted K[X] and is called the ring of poly-
nomials over K where X is a set of variables. The two ring operations of K[X]

are polynomial addition and polynomial multiplication.

Definition 13 (Group algebra). The group algebra K[G] where K is a field and
G is a group, is the set of mappings f : G → K of finite support (i.e, finitely
many elements from G are mapped to non-zero elements in K). Each element of
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K[G], f : G → K can be denoted as linear combinations of elements of G, with
coefficients in K: ∑

g∈G

f(g)g

The following operations are defined in group algebra

(i) The addition operator of K[G] is defined by∑
g∈G

f1(g)g +
∑
g∈G

f2(g)g =
∑
g∈G

(f1(g) + f2(g)) g

(ii) Multiplication by a scalar α ∈ K is defined by

α

(∑
g∈G

f(g)g

)
=
∑
g∈G

(αf(g))g

(iii) The multiplication operator of K[G] is defined by(∑
g∈G

f1(g)g

)(∑
g∈G

f2(g)g

)
=

∑
g1,g2∈G

(
f1(g1)f2(g2)

)
(g1g2)

We are interested in group algebras Z[Zk
2] and Z2[Zk

2]. In case of Z2[Zk
2] an

element can also be seen as a subset of Zk
2

Representation of Zk
2 and Z[Zk

2]

Invertible matrices of dimension d with integer entries form a group Md×d with
matrix multiplication and an algebra Md×d with matrix addition, multiplication
by a scalar, and matrix multiplication. A representation of a group G is a group
homomorphism ρ : G→Md×d, i.e, ρ should hold following properties:

• ρ(g1g2) = ρ(g1)ρ(g2)

• ρ(1G) = I, where I is identity matrix

It is well known ([19]) that there is a one-to-one homomorphism ρ : Zk
2 →M2k×2k .

For Z2, the map ρ : Z2 →M2×2 is defined by the representations of the Z2 elements:

10



Chapter 1. Introduction

ρ(0) =

(
1 0

0 1

)
and ρ(1) =

(
0 1

1 0

)

The map ρ for Zk
2 can be inductively defined as

ρ(v1v2...vk) =



(
X 0

0 X

)
if vk = 0

(
0 X

X 0

)
if vk = 1

where X = ρ(v1v2...vk−1)

The map ρ can be extended to a one-to-one map of Z[Zk
2] to M2k×2k , as follows:

ρ(
∑
v∈Zk

2

avv) =
∑
v∈Zk

2

avρ(v)

It can be verified that if w1, w2 are elements of Z[Zk
2] and α ∈ Z, we have ρ(w1 +

w2) = ρ(w1) + ρ(w2), ρ(w1w2) = ρ(w1)ρ(w2) and ρ(αw1) = αρ(w1). In fact, the
map ρ defines an isomorphic matrix algebra which we will denote by ρ(Z[Zk

2]).
The matrices in the set ρ(Zk

2) of matrix representations of the Zk
2 elements, are

simultaneously diagonalizable, i.e. there is a matrix U such that for all v ∈ Zk
2,

we have ρ(v) = U−1ΛvU , where Λv are the eigenvalues of ρ(v), also known as the
characters of v. If b(i) is the vector containing the k-bit binary form of i, the ith

eigenvalue of ρ(v) is given by (−1)v
T b(i−1) [19].

1.3 Parameterized Complexity

Definition 14 ([15]). A parameterized problem is a language L ⊆ Σ∗×N, where Σ

is a finite alphabet. The second component is called the parameter of the problem.

Definition 15 ([15]). A parameterized problem L is said to be Fixed Parameter
Tractable (FPT) if it can be determined in time f(k).nO(1) whether or not (x, k) ∈
L, where f is a computable function depending only on k and n = |(x, k)|. The
complexity class containing all fixed parameter tractable problems is called FPT.
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2
Pseudo Random Objects

In this chapter we discuss about the (n, k, l)-family of perfect hash functions and
(n, k)-universal sets which are family of functions satisfying some properties. Here
we are interested in constructing an (n, k, k)-family of perfect hash functions and
(n, k)-universal sets of size as small as possible, because we want to use these ob-
jects to derandomize algorithms whose running time will depend on the size of these
objects. FKS Hashing can be used to create (n, k, k)-family of perfect hash func-
tions of size 2O(k) log2 n [9, 17]. Since in parameterized complexity we are concerned
about the the base of the exponential function, we describe another construction
of (n, k, k)-family of perfect hash functions of size ekkO(log k) log2 n via splitters [14].
In section 2.1, we define these objects and splitters. Since construction of (n, k, k)-
family of perfect hash functions using splitters uses the (n, k, k2)-family of perfect
hash functions constructed using FKS Hashing, we describe this construction in
section 2.2. In section 2.3, we describe the construction of (n, k, k)-family of perfect
hash functions and (n, k)-universal sets using splitters.

2.1 Definitions

Definition 16. An (n, k, l)-splitter H is a family of functions from [n] to [l] such
that for all S ∈

(
[n]
k

)
, there is an h ∈ H that splits S perfectly, i.e., into equal sized

parts h−1(j) ∩ S, j = 1, 2, ..., l (or as equal as possible, if l does not divide k).

Definition 17. Let H be a family of functions from [n] to [l]. H is an (n, k, l)-
family of perfect hash functions if for all S ∈

(
[n]
k

)
, there is an h ∈ H which is

12
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one-to-one on S. Notice that an (n, k, l)- family of perfect hash functions is a
(n, k, l)-splitter, where l ≥ k

Definition 18. Set of vectors T ⊆ {0, 1}n is a (n, k)-universal set, if for any
index set S ⊆ [n] with |S| = k, the projection of T on S contains all possible 2k

configurations.

2.2 FKS Hashing

In this section we discuss about an explicit construction of (n, k, k2)-family of per-
fect hash functions developed in [9]. Consider the case where we want to construct
family of hash functions H from [n] to [l] where l ≥ k such that for any subset
S ∈

(
[n]
k

)
, there exists h ∈ H such that h is one-to-one on S.

Lemma 19 ([9]). Fix a prime number p, such that n < p < 2n. Let S ∈
(

[n]
k

)
and

a ∈ Z∗p and l ≥ k. Let B(l, S, a, j) = |{x|x ∈ S and (ax mod p) mod l = j}| for all
0 ≤ j ≤ l − 1. In other words, B(l, S, a, j) is the number of times the value j is
attained by the function x → (ax mod p) mod l when x is restricted to S. Then
there exists a ∈ Z∗p such that

l−1∑
j=0

(
B(l, S, a, j)

2

)
<
k2

l
(2.2.1)

Proof. We show that

p−1∑
a=1

l−1∑
j=0

(
B(l, S, a, j)

2

)
<

(p− 1)k2

l
(2.2.2)

from which the lemma follows immediately. The sum in (2.2.2) is the number of
pairs (a, {x, y}), with x, y ∈ S, x 6= y, 1 ≤ a < p such that

(ax mod p) mod l = (ay mod p) mod l.

The contribution of {x, y}, x 6= y to this quantity is at most the number of a such
that

a(x− y) mod p ∈ {l, 2l, ..., p− l, p− 2l, ...} (2.2.3)

13
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Since p is prime and Z∗p is a field, there is a unique solution for a satisfying the
equation a(x−y) mod p = c for any c. This implies that the number of a satisfying
(2.2.3) is at most 2(p−1)

l
. Since the number of choices of {x, y}, with x, y ∈ S and

x 6= y is
(
k
2

)
, we obtain

p−1∑
a=1

l−1∑
j=0

(
B(l, S, a, j)

2

)
≤
(
k

2

)
2(p− 1)

l
<

(p− 1)k2

l

Hence we get the following corollary

Corollary 20 ([9]). For all S ∈
(

[n]
k

)
, there exist a ∈ Z∗p such that the mapping

x → (ax mod p) mod k2 is one-to-one when restricted to S. In other words there
exists an (n, k, k2)-family of perfect hash functions of size O(n)

The following lemma can be proved using lemma 19

Lemma 21 ([9]). For all S ∈
(

[n]
k

)
, there exists a ∈ Z∗p such that

∑k−1
j=0 B(k, S, a, j)2 <

3k

Proof. By Lemma 19 we know that for all S ∈
(

[n]
k

)
there exist a ∈ Z∗p such that

k−1∑
j=0

(
B(k, S, a, j)

2

)
< k

1

2

k−1∑
j=0

B(k, S, a, j)2 −B(k, S, a, j) < k

k−1∑
j=0

B(k, S, a, j)2 < 2k +
k−1∑
j=0

B(k, S, a, j)

k−1∑
j=0

B(k, S, a, j)2 < 3k

(
∵

k−1∑
j=0

B(k, S, a, j) = k

)

Now using prime number theorem we will prove that we can construct (n, k, l)-
family of perfect hash functions of size O(k2 log n) in time O(poly(k, log n)), where
l < k2 log n.

14
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Lemma 22 ([9]). Let S ∈
(

[n]
k

)
. Then there exists a prime p < k2 log n such that

the function λp : x→ x mod p is one-to-one on S, i.e., for all x, y ∈ S with x 6= y,
x mod p 6= y mod p.

Proof. Let S = {x1, x2, ...., xk} and t =
∏

i<j(xi−xj). Then log |t| ≤
(
k
2

)
log n. By

prime number theorem, log
(∏

p<x, p prime p
)

= x+o(x). Therefore log

(∏
p<k2 logn
p prime

p

)
≥

k2 log n. So we conclude that there is a prime p < k2 log n that cannot divide t
and this is the prime we are looking for.

Since primality testing can be done in polynomial time [1] and number of primes
less than x is approximately equal to x

log x
, we get the following corollary

Corollary 23. An (n, k, l)-family of perfect hash functions of size O( k2 logn
log(k logn)

)

can be constructed in time O(poly(k, log n)), where l < k2 log n.

Theorem 24. An (n, k, k2)-family of perfect hash functions of size O( k4 log2 n
log(k logn)

)

can be constructed in time O(n.poly(k, log n)).

Proof. LetH1 be (n, k, k2 log n)-family of perfect hash functions of size O( k2 logn
log(k logn)

)

constructed as mentioned in corollary 23. Let H2 be (k2 log n, k, k2)-family of
perfect hash functions of size O(k2 log n) constructed as mentioned in corollary 20.
Now consider the family of functions H = {g ◦ f |f ∈ H1, g ∈ H2}. we claim
that H is (n, k, k2)-family of perfect hash functions because for any S ∈

(
[n]
k

)
there

exist a function that maps elements of S to distinct values in [k2 log n] and there
exist a function in H2 that maps these distinct values to distinct values in [k2].
It is easy to see that size of H is O( k4 log2 n

log(k logn)
) and it can be constructed in time

O(n.poly(k, log n)).

2.3 Splitters

In this section we describe about the construction of (n, k, k)-family of perfect hash
functions and (n, k)-universal sets using (n, k, l)-splitters. In all three combina-
torial objects- (n, k, k)-family of perfect hash functions, (n, k) -universal sets and
(n, k, l)-splitters, our objective is to find a set of vectors of length n over an alpha-
bet of size b (in case of (n, k, k)-family of perfect hash functions b = k, in case of
(n, k)-universal sets b = 2 and in case of (n, k, l)-splitters b = l) such that for any k
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out of n indices, we will find some “nice” configurations. This generalized problem
is called k-restriction problem. We will describe it formally in section 2.3.1 and
explain how these problems will fall into k-restriction problem. In section 2.3.3
and section 2.3.4 we construct (n, k, k)-family of perfect hash functions and (n, k)-
universal sets respectively using the solution of k-restriction problem developed in
section 2.3.2 and using FKS hashing.

2.3.1 k-restriction problem

k-restriction problem is formally defined as follows

k-restriction problem

Input: Positive integers b, k, n and a list C = C1, C2, ..., Cm where Ci ⊆ [b]k

and with the collection C being invariant under permutation of [k]

Output: Collection of vectors V ⊆ [b]n such that ∀S ⊆ [n] with |S| = k and
∀j : 1 ≤ j ≤ m, ∃v ∈ V such that projection of v on S, v(S) ∈ Cj

An important parameter of k-restriction problem is c = min1≤j≤m |Cj|. We call
c/bk the density of the problem. Now we explain how the combinatorial objects
which we defined in section 2.1, fall into the category of k-restriction problem.

(i) (n, k, l)-splitters. To specify splitters as k-restriction problem, let b = l and
let C consist of one set C1 containing all vectors from [b]k such that each value
in [b] appears exactly k/l times (if l does not divide k, then some values in
[b] appear dk/le times and some appear bk/lc times)

(ii) (n, k, k)-family of perfect hash functions. In this case, b = k and C
consist of only one set C1 containing all permutations of [k]

(iii) (n, k)-universal sets. In this case, b = 2 and C consists of Cx = {x} for all
x ∈ {0, 1}k

2.3.2 Solving k-restriction problem

We introduced k-restriction problem to construct family of perfect hash functions
and universal sets of size as small as possible. So first we find the number of
vectors that suffices to become solution of k-restriction problem using probabilistic
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argument. If a vector v ∈ [b]n is chosen uniformly at random, then for any S ∈
(

[n]
k

)
and Cj the probability that v(S) ∈ Cj is |Cj |

bk
≥ c

bk
, where c = min1≤i≤m|Ci|.

Therefore, if we choose t random vectors, Vt = {v1, v2, ..., vt}, we get via union
bound that

Pr[Vt is not a solution] ≤
∑

S∈([n]
k )

m∑
j=1

Pr[∀v : v ∈ Vt and v(S) /∈ Cj]

≤
(
n

k

) m∑
j=1

(
1− |Ci|

bk

)t
≤

(
n

k

)
m
(

1− c

bk

)t
(2.3.1)

Restricting equation (2.3.1) to be less than 1 implies that

t ≥ d k lnn+ lnm

ln(bk/(bk − c))
e (2.3.2)

Thus for any given k-restriction problem, there exist a solution of at most this size.
We will refer to (2.3.2) as the union bound. Let Hn,k,b be a k-wise independent
probability space with n random variables taking values in [b], such as the one
mentioned in Proposition 4. Note that the union bound (2.3.2) is applicable
even when the vectors are not chosen uniformly at random from [b]n, but chosen
uniformly at random from a k-wise independent space Hn,k,b because probability
calculation only examines k sized sets of [n].

Now we discuss about the construction of a solution of size equaling the union
bound. This construction is computationally expensive, i.e, not in polynomial time
or even in FPT time in parameter k. But we will use this construction for making
a family of perfect hash functions and universal sets after reducing the size of the
universe. Since we are discussing the general k-restriction problem, we assume
that we have a membership oracle: a procedure that, given v ∈ [b]n, S ∈

(
[n]
k

)
and j ∈ [m], says whether or not v(S) ∈ Cj, within some time bound T . For the
examples we are interested in, this oracle computation will be easy, usually taking
just O(k) time.

Theorem 25 ([14]). For any k-restriction problem with b ≤ n, there is a deter-
ministic algorithm that outputs a collection obeying the k-restrictions, with the size
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of the collection equaling the union bound. The time taken to output the collection
is

O

(
bk

c
.

(
n

k

)
.m.T.|Hn,k,b|

)
(2.3.3)

where T is the time complexity of the membership oracle.

Proof. Consider a set-system in which the universe (ground set) is Hn,k,b. The sets
are TS,j, indexed by pairs (S, j) such that S ∈

(
[n]
k

)
and 1 ≤ j ≤ m. TS,j consists of

all h ∈ Hn,k,b such that h(S) ∈ Cj. We do not explicitly list out the sets TS,j: note
that any given h can be tested for membership in TS,j in time T , using the given
membership oracle. Any subset of Hn,k,b that hits (intersects) all subsets TS,j is a
good collection (i.e., is a collection satisfying the k-restriction problem). This is
the well-known hitting set problem.

We can find such a collection by a greedy algorithm via a simple observation,
which follows fairly easily by inspecting (2.3.1) and by using the fact that (2.3.1)
holds even if we pick vectors at random from Hn,k,b; the observation is that there
must be an h ∈ Hn,k,b such that h hits at least fraction c/bk of the sets TS,j. The
obvious idea then is to find such an h using the membership oracle and add it to
our current(partial) hitting set, removing the sets hit by h from the set system,
and repeating. Finding such an h takes time at most O

((
n
k

)
.m.T.|Hn,k,b|

)
; also, the

number of sets in our set-system is effectively “shrunk” to at most m
(
n
k

)
(1− c/bk)

after picking h. Therefore the results of a greedy algorithm will produce a solution
of size d k lnn+lnm

ln(bk/(bk−c))e, same as that of (2.3.2). So, the total time taken is at most

O

((
n

k

)
.m.T.|Hn,k,b|

(
∞∑
i=0

(1− c/bk)i
))

= O

(
bk

c
.

(
n

k

)
.m.T.|Hn,k,b|

)
(2.3.4)

For family of perfect hash functions and universal sets, we explicitly state the
size and time complexity by substituting proper values (Note that |Hn,k,b| ≤ nk as
mentioned in Proposition 4) in theorem 25 and get theorem 26 as follows

Theorem 26 ([14]). (i) An (n, k, k)-family of perfect hash functions of cardinality
O(ek

√
k log n) can be constructed deterministically in time O(kk+1

(
n
k

)
nk/k!). (ii)

An (n, k)-universal set of cardinality O(k2k log n) can be constructed deterministi-
cally in time O(

(
n
k

)
k22knk).
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2.3.3 (n, k, k)-family of perfect hash functions

First we give a brief overview of construction of (n, k, k)-family of perfect hash
functions. Starting with the universe size n, we first reduce our problem to one
with universe size k2 by finding a poly-time computable family A of (n, k, k2)-
family of perfect hash functions (Theorem 24). A construction of (k2, k, k)-family
of perfect hash functions will then be pulled back to (n, k, k)- family of perfect hash
functions at a poly(k). log2 n cost in the size of the family. For that we will find
(k2, k, l)-splitters for l = O(log k). This guarantees us, for each S ∈

(
[k2]
k

)
, there

exists a function which partitions S equally in l blocks. Then for each block we
construct (k2, k/l, k/l)-family of perfect hash functions by applying Theorem 26.
We need splitters with universe size k2.

Lemma 27. For any k ≤ n and for all l ≤ n, there is an explicit family B(n, k, l)

of (n, k, l)-splitters of size
(
n
l−1

)
Proof. For every choice of 1 ≤ i1 < i2 < ... < il−1 ≤ n, define a function h : [n]→
[l] by h(s) = j iff ij−1 < s ≤ ij, for all s ∈ [n] (taking i0=0 and il=n).

Construction. Let l = c log k for some constant c (we will fix c later). Let
A = A(n, k, k2), B = B(k2, k, l) and C = C(k2, k/l, k/l) be respective function
families presented by Theorem 24, Lemma 27 and (i) of Theorem 26. Then our
required perfect hash function family H can be defined as

H = {(a, b, c1, c2, ...cl)|a ∈ A, b ∈ B, ∀i ∈ [l] : ci ∈ C}

where each (a, b, c1, c2, ..., cl) ∈ H is defined by

(a, b, c1, c2, ..., cl)(x) = cb(a(x)) (a(x)) +
k

l
(b (a(x))− 1)

Correctness. It can be easily verified that each h ∈ H maps [n] to [k]. Let
S ∈

(
[n]
k

)
. We need to show that there exist a function in H which is one-to-one

on S. By the property of A there exist a function a ∈ A which is one-to-one on
S. Let S ′ = {i|∃j ∈ S : a(j) = i}. Since a is one-to-one on S, |S ′| = k. By the
property of B, there exist b ∈ B such that b splits S ′ equally into l blocks. Let
S ′i = {j|j ∈ S ′ and b(j) = i} for all i ∈ [l]. Now by the property of C, we have
ci ∈ C for all i such that ci is one-to-one on S ′i
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Size and Time We know that |A| = O
(

k4 log2 n
log(k logn)

)
and A can be constructed

in time O(n.poly(k, log n)). By Lemma 27, |B| =
(
k2

l−1

)
= kO(log k) and B can be

constructed in time kO(log k). By Theorem 26, |C| = O(ek/l
√
k/l log k) and can be

constructed in time kO(k/l), which is equal to 2k for a suitable choice of c. Hence
size of H is,

|H| = |A|.|B|.|C|l

= O

(
k4 log2 n

log(k log n)

)
.kO(log k).(ekkO(log k))

= ekkO(log k) log2 n

Theorem 28. An (n, k, k)-family of perfect hash functions of size ekkO(log k) log2 n

can be constructed in time linear in the output size.

2.3.4 (n, k)-universal sets

The idea for (n, k)-universal sets is similar to that behind Theorem 28, with the
only modification being that we now need the universal sets guaranteed by (ii) of
Theorem 26. Thus we get

Theorem 29. An (n, k)-universal sets of size 2kkO(log k) log2 n can construed in
time linear in the output size
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3
Color Coding

Color Coding is a randomized technique introduced by Alon et al. [3] to handle
constant treewidth subgraph isomorphism problem (whether the given constant
treewidth k-sized graph H exist in the given graph G as a subgraph) in 2O(k)nO(1)

time. The idea behind this technique is to randomly color the vertices of graph G
with k colors such that if the graph H does exists in the graph G as a subgraph,
then with good probability the copy of H in G will become colorful, that is, each of
the vertices in the copy of H gets distinct colors. If it happens that given a colored
graph one can efficiently test whether there exists a colorful subgraph H in it, then
we will get a randomized algorithm for the subgraph isomorphism problem. This
randomized algorithm can be derandomized using family of perfect hash functions.
In this chapter we study Color Coding technique by applying it to k-path

Let G = (V,E) be a directed or undirected graph. Recall that k-path problem
is to test whether a path of length k− 1 exists in G. Choose a random coloring of
the vertices of G with k colors. A path in G is said to be colorful if each vertex on
it is colored with distinct colors. Each simple path of length k−1 becomes colorful
in a random coloring with probability k!/kk > e−k because number of ways we can
color a fixed k-path using k colors is kk and out of which exactly in k! colorings
the path becomes colorful. Next we present an algorithm to check whether there
exists a colorful k-path in a colored graph.

Lemma 30. Let G = (V,E) be a directed or undirected graph and let c : V → [k]

be a coloring of its vertices with k colors. There exists a deterministic algorithm
that counts the number of colorful paths of length k− 1 in G in 2knO(1) worst-case
time.
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Proof. We give an algorithm that exploits the inclusion exclusion principle. For
any S ⊆ [k], let WS be the set of walks of length k − 1 in the induced subgraph
G[V \ c−1(S)] where c−1(S) is the set of vertices in G colored with S. Note that
W∅ is the set of walks of length k − 1 in G and for all S ⊆ [k], WS ⊆ W∅.
Let Wj = W{j} for all j ∈ [k]. It is clear that Wj ⊆ W∅ for all j ∈ [k] and
Wi1 ∩ Wi2 ∩ . . . ∩ Wil = W{i1,i2,...,il}. It is easy to see that any colorful walk of
length k − 1 has to be a colorful k-path. Then by inclusion exclusion principle
(section 1.2.2 of chapter 1), we get

No. of colorful k-paths = |W∅|+
k∑
j=1

(−1)j
∑

i1<i2<...<ij

∣∣Wi1 ∩Wi2 ∩ ... ∩Wij

∣∣
=

∑
S⊆[k]

(−1)|S||WS|

Each |WS| can be computed easily. Let AS be the adjacency matrix of G[V \
c−1(S)]. Then sum of entries in the matrix Ak−1

S is equal to |WS| and it can
be computed using O(log k) matrix multiplication. Hence the number of colorful
k-paths in G can be computed in time O(2kV w log k), where w < 2.376 is the
exponent of matrix multiplication.

Theorem 31. There is a randomized algorithm for k-path in a graph G in
O((2e)kV w log k) time, with no errors for No instances and errors with constant
probability for Yes instances.

Proof. If we randomly color G with k colors, then a fixed k-path becomes colorful
with probability k!/kk > e−k. We know that we can test whether a colorful k-path
exists in a colored graphG in O(2kV w log k) time (Lemma 30). If a random coloring
makes any of the k-path colorful, then algorithm explained in Lemma 30 outputs
a non-zero value. Since the probability that a fixed k-path becomes colorful in
a random coloring is at least e−k, we can repeat this process ek times and get a
constant success probability. So if we repeat the process of randomly coloring G
with k colors and counting colorful k-paths (as mentioned in Lemma 30) ek times,
then with probability (1− e−k)e

k

≤ e−1 (∵ 1−e−k ≤ e−e
−k) a fixed k-path will not

be counted in all ek execution of the algorithm mentioned in Lemma 30. Hence
by this procedure a k-path, if one exists, will not be detected with probability at
most e−1. Running time of this procedure is O((2e)kV w log k).
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We can derandomize this algorithm using (n, k, k)-family of perfect hash func-
tions. If we want to give every simple path of length k − 1 in a graph G = (V,E)

a chance of being discovered, we need a list of k colorings of V such that for
every subset V ′ ⊆ V with |V ′| = k there exists a coloring in the list that gives
each vertex in V ′ a distinct color. In other words we need an (|V |, k, k)-family of
perfect hash functions that maps {1, 2, ..., |V |} to {1, 2, ..., k}. Recall that there
exist an (n, k, k)- family of perfect has functions of size ekkO(log k) log2 n and can
be constructed in time linear in the output size (Theorem 28). We can construct
an (n, k, k)-family of hash functions of size 2O(k)nO(1) using FKS hashing. But the
constant in the exponential function 2O(k) is very large and that makes the deran-
domization using FKS hashing practically infeasible. Hence we derandomize the
above algorithm using (n, k, k)-family of hash functions constructed via spitters
(refer Chapter 2) and we get the following theorem

Theorem 32. k-path can be solved deterministically in O((2e)kkO(log k)V w) time,
where w < 2.376 is the exponent of matrix multiplication.
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4
Divide and Color

Divide and Color is a randomized technique introduced by Kneis et al. [11] and
Chen et al. [5] independently, for solving hard graph problems. It is a combination
of well known divide and conquer paradigm and color coding. The idea behind
this technique is to randomly color all vertices (or edges) of a graph with black
and white, and then solve the problem recursively on the two induced parts. In
this chapter we demonstrate this technique by giving a randomized algorithm for
k-path. Finally we obtain a deterministic algorithm by derandomization using
(n, k)-universal sets.

4.1 Randomized Algorithm for k-path

The basic idea of Divide and Color technique is to use only two colors and solve re-
duced instance of the problem on each of the induced subgraphs recursively. These
two solutions must be combined into the solution of original instance. Unlike the
Color Coding technique, there is no need for solving the problem for the colored in-
stance, which we addressed by principle of inclusion exclusion. This is because the
recursive approach eventually reduces the problem to a simple instance. However
we need to be careful when combining solutions of the reduced instances to get a
solution on the original instance. Towards this we define the problem Extended

k-paths as follows
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Chapter 4. Divide and Color

Extended k-paths

Input: A graph G = (V,E) and a positive integer k
Parameter: k

Output: The set {(u, v) ∈ V × V | u k−→ v}

Consider the problem Extended k-paths. If we randomly color the vertices of
a given graph G with two colors (say 0 and 1), probability that for any fixed k-path
P , the first half of the vertices in P gets color 0 and the second half of the vertices
in P gets color 1 is 1

2k . So in an algorithm that randomly colors with two colors
and recursively solves the two induced parts, the probability that a fixed k-path
will be detected is less than or equal to 2−k. To get an algorithm with constant
success probability we need to repeat this procedure at least exponential in k many
times. Since the procedure explained is recursive we can repeat the process in two
ways. One way is to repeat the entire procedure exponentially many times and
the other is to repeat each recursive call exponentially many times (exponential in
parameter). Here we prefer the latter option because we can easily derandomize
the latter option using universal sets.

Algorithm 1 randomized paths(G, k)

Input: A graph G = (V,E) and a positive integer k
Output: The set {(u, v) ∈ V × V | u k−→ v}

1. If k = 1 then return {(v, v) ∈ V × V | v ∈ V }

2. R := ∅

3. Repeat 3.2k times

(a) Randomly color vertices in V using colors 0 and 1 with uniform proba-
bility. Let V ′ ⊆ V be set the vertices colored with 0

(b) R1 :=randomized paths(G[V ′], dk/2e)
(c) R2 :=randomized paths(G[V \ V ′], bk/2c)
(d) For all u, v, w, x ∈ V (G), if (u, v) ∈ R1 ∧ (v, w) ∈ E ∧ (w, x) ∈ R2,

then add (u, x) to R

5. Return R
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Theorem 33. Algorithm 2 solves Extended k-path with error probability at
most 1/4 in time O∗(4k).

Proof. It is easy to see that if Algorithm 2 returns a pair (u, v), then indeed u k−→ v.
On the other hand, if G contains such a path, Algorithm 2 may not return the
corresponding pair (u, v) with some probability pk.

Assume there is a simple k-path P from u to v in G. The probability that
the first k/2 nodes of P are colored 0 and the other k/2 nodes of P are colored
1 in a random coloring is 2−k. In that case, randomized paths(G[V ′], k/2) and
randomized paths(G[V \V ′], k/2) do not contain pairs that allow the algorithm
to insert (u, v) into R with probability at most 2pk/2. After 3.2k iterations, the
probability that (u, v) /∈ R is at most

(
1− 2−k + 2−k.2.pk/2

)3.2k

,

because with probability 1 − 2−k the initial coloring is bad and with probabil-
ity at most 2−k.2.pk/2 the initial coloring is good, but recursive detection of the
monochromatic subpaths fails. We show by induction that pk ≤ 1

4
for every k:

Obviously p1 = 0, and for k ≥ 2 we get the inequality

pk ≤
(

1− 2−k + 2−k.2.
1

4

)3.2k

(By induction hypothesis)

=

(
1− 2−k

1

2

)3.2k

≤ e−3/2 (∵ 1− x ≤ e−x)

<
1

4

Let T (k) denote the number of recursive calls issued by Algorithm 2. Then we
get the recurrence

T (k) ≤ 3.2k (T (dk/2e) + T (bk/2c)) ≤ 3.2k+1T (dk/2e)

Using the fact that k + dk/2e + dk/2e/2e + ... + 1 ≤ 2k + log k, we get T (k) =

O(4kk23log k). All other operations performed during a call to the algorithm only
take polynomial time. Thus Algorithm 2 finds a path of length k with probability
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at least 3/4, if one exists, in time O∗(4k).

4.2 Derandomization

In this section we discuss about derandomization of the above algorithm. Any
simple k-path, v1, v2, . . . , vk in a graph G = (V,E) will be discovered by the
above algorithm only if in the initial coloring v1, v2, ..., vd k

2
e gets one color and

vb k
2
c, vb k

2
c+1, ..., vk gets another color and this property hold in the recursive steps

as well. So if we have a list of vertex coloring with 2 colors such that for any
k vertices the restriction of colorings on these vertices gives all possible colorings
with 2 colors on these vertices, then for any k-path there exist one good coloring,
i.e, first half of vertices will get one color and the second half of the vertices will
get the other color. In other words we can use (n, k)-universal sets to derandomize
above algorithm. Let Un,k be an (n, k)-universal sets of size 2kkO(log k) log2 n as
described in Theorem 29.

Algorithm 2 paths(G, k)

Input: A graph G = (V,E) and a positive integer k
Output: The set {(u, v) ∈ V × V | u k−→ v}

1. If k = 1 then return {(v, v) ∈ V × V | v ∈ V }

2. R := ∅

3. For all f ∈ U|V (G)|,k

(a) Let V ′ ⊆ V be set the vertices that are mapped to 0 in f

(b) R1 :=paths(G[V ′], dk/2e)
(c) R2 :=paths(G[V \ V ′], bk/2c)
(d) For all u, v, w, x ∈ V (G), if (u, v) ∈ R1 ∧ (v, w) ∈ E ∧ (w, x) ∈ R2,

then add (u, x) to R

5. Return R

Theorem 34. Algorithm 2 solves extended k-path deterministically in time
4kkO(log2 k)nO(1) where n = |V (G)|
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Proof. It is easy to see that if Algorithm 2 returns a pair (u, v), then indeed
u

k−→ v. Let v1, v2, ..., vk be a path P in G. We can show via induction on k, that
Algorithm 2 will output a set that contains (v1, vk). There exists f ∈ U|V (G)|,k such
that f maps the first half of vertices in P to 0 and the second half of vertices in
P to 1. Inductively paths(G1, dk/2e) and paths(G2, bk/2c) will return (v1, vdk/2e)

and (vdk/2e+1, vk) respectively. Hence Algorithm 2 will return an output that will
contain (v1, vk).

Let T (k) be the number of recursive calls of the Algorithm 2.

T (k) ≤ (2kkc log k log2 n) (T (dk/2e) + T (bk/2c)) where c is a constant

≤ (2k+1kc log k log2 n)T (dk/2e)

Using the fact that k+dk/2e+dk/2e/2e+...+1 ≤ 2k+log k, and (log n)log k ≤ klog kn

for n ≥ 6, we get T (k) = 4kkO(log2 k)n. All other operations performed during a
call to the algorithm only take polynomial time. Thus Algorithm 2 finds a path of
length k, if one exists, in time T (k) = 4kkO(log2 k)nO(1).
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5
Cut and Count

Cut and Count is a randomized technique introduced by Cygan et al. [7] to deal
with connectivity-type graph problems in bounded treewidth graphs. For most
problems involving a global constraint like connectivity, this technique gives a
randomized algorithm with runtime ctw|V (G)|O(1) where tw is the treewidth of the
given graphG and c is some constant, and one sided error with constant probability.
In a decision problem our objective is to test whether the solution set is empty or
not. The idea behind this technique is to relax the solution set (usually we relax
the connectivity constraint) and construct a set C in such way that all the elements
from the relaxed solution set which are not in the solution set will contribute even
number of elements to C and elements from the solution set will contribute odd
number of elements to C with good probability. Now if we have an efficient way
to count |C| mod 2, we get a randomized algorithm for the problem. We relax the
solution set and construct a set C in such a way that counting C is a local problem
and can be done efficiently by standard dynamic programming. Randomization in
this technique is used via isolation lemma which we define and prove in section 5.1.
In section 5.2 we describe the general framework of Cut and Count technique and
in section 5.3 we apply this technique to solve the problem of testing whether the
given bounded treewidth graph has a k-cycle or not. In section 5.4 we describe
how to solve k-path using depth first search(DFS) and solution of the problem of
testing whether there exists k-cycle in a bounded treewidth graph.
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5.1 Isolation Lemma

As mentioned in the initial paragraph we need a way to construct C such that
elements in the solution set will contribute odd number of elements to C. This
can be achieved using isolation lemma. In a graph problem solution set is usually
a set of vertices (or edges). According to isolation lemma if we assign positive
integer weights to vertices (or edges) then with a good probability there exists a
unique minimum weight element in the solution set. So with an additional weight
constraint we can convert solution set to another set containing only one element.
We formally define and prove isolation lemma in this section.

Definition 35 ([7]). A function w : U → Z isolates a set family F ⊆ 2U if there
is a unique S ′ ∈ F with w(S ′) = minS∈F w(S) where w(S) =

∑
e∈S w(e).

Lemma 36 (Isolation Lemma,[13]). Let F ⊆ 2U be a set family over a universe
U with |F| > 0. Suppose each element u of the set U is independently assigned a
weight w(u) uniformly from {1, 2, ..., N}, Then

Pr[w isolates F ] ≥ 1− |U |
N

Proof. For any element x ∈ U , define

α(x) = min
S∈F ,x 6∈S

w(S)− min
S∈F ,x∈S

w(S \ {x})

Observe that α(x) depends only on the weights of elements other than x, and
not on w(x) itself. So whatever the value of α(x), as w(x) is chosen uniformly
from {1, 2, ..., N}, the probability that it is equal to α(x) is at most 1

N
. Thus the

probability that w(x) = α(x) for some x is at most |U |
N
. Now if there are two sets

A and B in F with minimum weight, then, taking any x in A \B, we have

α(x) = min
S∈F ,x 6∈S

w(S)− min
S∈F ,x∈S

w(S \ {x})

= w(B)− (w(A)− w(x))

= w(x)

and as we have seen, this event happens with probability at most |U |
N
.
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5.2 General Framework

The Cut and Count technique applies to problems with certain connectivity re-
quirements. Let S ⊆ 2U be a set of solutions; we aim to decide whether it is empty.
Conceptually, Cut and Count can naturally be split in two parts:

• The Cut part: Relax the connectivity requirement by considering the set
R ⊇ S of possibly disconnected candidate solutions. Furthermore, consider
the subset C of set of pairs (X,C) where X ∈ R and C is a consistent cut (to
be defined later) of X such that for any X ∈ R \S there are even number of
consistent cuts and for any X ∈ S there is only one consistent cut.

• The Count part: Compute |C| modulo 2 using a sub-procedure. Non-
connected candidate solutions X ∈ R \ S cancel since they are consistent
with an even number of cuts. Connected candidates X ∈ S remain.

Note that we need the number of solutions to be odd in order to make the
counting part work. For this we use the Isolation Lemma (Lemma 36): We in-
troduce uniformly and independently chosen weights w(v) for every v ∈ U and
compute |CW | modulo 2 for every W , where CW = {(X,C) ∈ C|w(X) = W}. The
general setup can thus be summarized as in Algorithm 3

Algorithm 3 CutandCount(U,T, CountC)
Input: Set U ; tree decomposition T; Procedure CountC

accepting a w : U → {1, 2, ..., N}, W ∈ Z and T
1: for all v ∈ U do
2: Choose w(v) ∈ {1, 2, ..., 2|U |} uniformly at random
3: end for
4: for all 0 ≤ W ≤ 2|U |2 do
5: if CountC(w,W,T) = 1 mod 2 then
6: return yes
7: end if
8: end for
9: return no

The following theorem can be proved from Lemma 36 by setting F = S and
N = 2|U |:

Theorem 37. Let S ⊆ 2U and C ⊆ 2U × (2V ×2V ). Suppose that for every W ∈ Z

31



Chapter 5. Cut and Count

(1) |{(X,C) ∈ C|w(X) = W}| = |{X ∈ S|w(X) = W}| mod 2

(2) CountC(w,W,T) = |{(X,C) ∈ C|w(X) = W}| mod 2

Then Algorithm 3 returns no if S is empty and yes with probability at least 1
2

otherwise.

Proof. Suppose S is empty. Then because of condition (1) of the theorem, |{(X,C) ∈
C|w(X) = W}| = 0 mod 2 for all W ∈ Z and hence because of condition (2) of
the theorem CountC(w,W,T) = 0 mod 2 for all W ∈ Z. So Algorithm 3 will
return no. Suppose S is not empty. Now apply Lemma 36 by setting F = S and
N = 2|U |. There exist a unique minimum weight (say it is W ∗) element X ∈ S
with probability at least 1/2 and so |{X ∈ S|w(X) = W ∗}| = 1 with probability
1/2. Hence Algorithm 3 will return yes with probability at least 1/2 because of
the conditions (1) and (2) of the theorem.

When applying the technique, both the Cut and the Count part are non-trivial:
In the Cut part one has to find the proper relaxation of the solution set, and in
the Count part one has to show that the number of non-solutions is even for each
W and provide an algorithm CountC. In the next section, we illustrate both parts
by applying to the problem of testing whether a given bounded treewidth graph
contains a k-cycle.

5.3 bounded treewidth k-cycle

In this section we explain how Cut and Count technique can be used to solve
k-cycle in bounded treewidth graph. bounded treewidth k-cycle can be
formally defined as follows

bounded treewidth k-cycle

Input: Graph G = (V,E), a nice tree decomposition T of width t
and a positive integer k

Parameter: t

Question: Does there exists a simple cycle of length k in G
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Let set of solutions, S contain pairs (X,M) where X ⊆ E is a k-cycle and M ⊆ X

with |M | = 1. We defined S as set of marked k-cycles instead of k-cycles to make
sure that we can create a set C such that for each element in S, there is only one
consistent cut in C. Note that any k-cycle with different markers are considered to
be different solutions. For this reason we assign two random weights to each edge,
one to represent it as part of a k-cycle and the other to represent it as a marked
edge in a k-cycle. When we relax the requirement that X is a k-cycle to X is a
cycle cover (i.e, X form a set of cycles) with |X| = k, we get candidate solutions.
The Cut part. Since the solution set contains pairs (X,M), we define weight
function w : E × {X,M} → {1, 2, ..., N} where N = 4|E|.

Definition 38. A cut (V1, V2) of an undirected graph G = (V,E) is consistent
if u ∈ V1 and v ∈ V2 implies (u, v) /∈ E where V1 ∪ V2 = V and V1 ∩ V2 = ∅.
A consistently cut subgraph of G is a pair (X, (X1, X2)) such that (X1, X2) is a
consistent cut of G[X] where X is a set of vertices or edges.

Definition 39. For an integer W we define:

1. RW to be the set of candidate solutions, that is RW is the set of all pairs
(X,M), such that X ⊆ E is a cycle cover, i.e., degG[X](u) = 2 for every
vertex u ∈ V (X); |X| = k; M ⊆ X; |M | = 1 and w(X × X ∪M ×M) = W

2. SW to be the set of solutions, that is SW is the set of all pairs (X,M), where
(X,M) ∈ RW and X forms a cycle of length k.

3. CW to be set of all pairs ((X,M), (X1, X2)) such that: (X,M) ∈ RW , (X, (X1, X2))

is a consistent cut subgraph of G[X], and V (M) ⊆ X1

Observe that G contains a k-cycle if and only if there exists a W such that SW
is nonempty.
The Count part. We proceed to the count part by showing that candidate
solutions that contain more than one cycle cancel modulo 2.

Lemma 40. Let G = (V,E) be a graph and (X,M) ∈ RW . The number of
consistently cut subgraphs (X, (X1, X2)) with M ⊆ X1 is equal to 2cc(G[X])−1

Proof. By definition, we know that for every consistently cut subgraph (X, (X1, X2))

and connected component C of G[X], either C ⊆ X1 or C ⊆ X2. For the con-
nected component containing M , the choice is fixed, and for all cc(G[X])−1 other
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connected components we are free to choose a side of a cut, which gives 2cc(G[X])−1

possibilities leading to different consistently cut subgraphs.

The following lemma shows that the first condition of Theorem 37 is indeed
met:

Lemma 41. Let G,w, CW , SW and RW be as defined above. Then for every W ,
|SW | = |CW | mod 2

Proof. By Lemma 40, we know that |CW | =
∑

X∈RW
2cc(G[X])−1. Thus |CW | =

|{X ∈ RW |cc(G[X]) = 1}| mod 2 = |SW | mod 2

Now the only missing ingredient left is the sub-procedure CountC. This sub-
procedure, which counts the cardinality of CW modulo 2, is a standard application
of dynamic programming:

Lemma 42. Given G = (V,E), an integer k, w : E×{X, M} → {1, 2, ..., N} and
a nice tree decomposition T of width t, there exists an algorithm that can determine
|CW | modulo 2 for every 0 ≤ W ≤ (k + 1)N in O∗(4t) time.

Proof. We use dynamic programming, but we first need some preliminary defini-
tions. Recall that for a bag x ∈ T we denoted by Vx the set of vertices of all
descendants of x, while by Gx we denoted the graph composed of vertices Vx and
the edges Ex introduced by the descendants of x. We now define “partial solu-
tions”: For every bag x ∈ T, integers 0 ≤ i ≤ k, 0 ≤ w ≤ (k + 1)N , b ∈ {0, 1} and
s ∈ {0,11,12,2}Bx define

Rx(i, b,w) = {(X,M) |M ⊆ X ⊆ Ex ∧ |X| = i

∧ |M | = b ∧ w(X × X ∪M ×M) = w}

Cx(i, b,w) = {((X,M), (X1, X2)) | (X,M) ∈ Rx(i, b,w) ∧ V (M) ⊆ X1

∧ (X, (X1, X2)) is a consistently cut subgraph of G[X]}

Ax(i, b,w, s) = |{((X,M)(X1, X2)) ∈ Cx(i, b,w) | (s(v) = 0⇒ degreeG[X](v) = 0)

∧ (s(v) = 1j ⇒ (degreeG[X](v) = 1 ∧ v ∈ Xj))

∧ (s(v) = 2⇒ degreeG[X](v) = 2)}|

The intuition behind these definitions is as follows: the set Rx(i, b,w) contains
all sets X ⊆ Ex that could potentially be extended to a candidate solution, subject

34



Chapter 5. Cut and Count

to an additional restriction that the cardinality and weight of the partial solution
are equal to i and w, respectively. Similarly, Cx(i, b,w) contains consistently cut
subgraphs, which could potentially be extended to elements of C, again with the
cardinality and weight restrictions. The number Ax(i, b,w, s) counts those elements
of Cx(i, b,w) which additionally behave on vertices of Bx in a fashion prescribed
by the sequence s. The value of s(v) denotes the degree of v in G[X] and, in case
of degree one, s(v) also stores information about the side of the cut v belongs to.
We note that we do not need to store the side of the cut for v if its degree is 0

and 2, since it is not yet or no more needed. For vertices of degree 0 they are not
part of any connected component in G[X]. For vertices of degree 2 the situation
is more tricky. They are part of cut (that is, each such vertex is on some side of
the cut in each counted object in Cx(i, b,w)), but the information about the side of
the cut will not be needed – we have a guarantee that no new edges will be added
to that vertex (as 2 is the maximum degree). We need to remember the side of
the cut to ensures that when we have a path in the currently constructed solution,
both endpoints of the path are remembered to be on the same side of the cut, even
though we no more needed to remember sides for the internal vertices of the path.
The accumulators i, b and w keep track of the size of X, the size of M and the
weight of (X,M), respectively.

To obtain all values |CW | mod 2 it is enough to compute Ar(k, b,W, ∅) modulo
2 for all values of W , since |CW | = Ar(k, b,W, ∅) where r is the root of nice tree
decomposition T.

We now give the recurrence for Ax(i, b,w, s) that is used by the dynamic pro-
gramming algorithm. In order to simplify notation denote by v the vertex in-
troduced and contained in an introduce bag, by (u, v) the edge introduced in an
introduce edge bag, and by y, z the left and right child of x in T if present.

• Leaf bag:
Ax(0, 0, 0, ∅) = 1

• Introduce vertex bag:

Ax(i, b,w, s[v → 0]) = Ay(i, b,w, s) (5.3.1)

The new vertex has degree zero and we do not impose any other constraints.
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• Introduce edge bag For the sake of simplicity of the recurrence formula
let us define a function subs : Σ→ 2Σ where Σ = {0,11,12,2}

Σ 0 11 12 2

subs ∅ {0} {0} {11,12}

Intuitively, for a given state α ∈ Σ the value subs(α) is the set of possible
states a vertex can have before adding an incident edge.
We can now write the recurrence for the introduce edge bag.

Ax(i, b,w, s) = Ay(i, b,w, s) +
∑

αu∈subs(s(u))

∑
αv∈subs(s(v))

∑
i∈{1,2}

[(αu = 1j ∨ s(u) = 1j) ∧ (αv = 1j ∨ s(v) = 1j)](
Ay

(
i− 1, b,w − w((u, v)× X), s[u→ αu, v → αv]

)
+ [j = 1]

Ay

(
i− 1, b− 1,w − w({(u, v)} × {X,M}), s[u→ αu, v → αv]

))

To work the above recursive formula correctly we set a base caseAx(i,−1,w, s) =

0 for all x, i,w, s. While introducing an edge either we can choose not to use
the introduced edge or we can choose the edge with or without considering
one of it as a marked edge.

• Forget bag:

Ax(i, b,w, s) = Ay(i, b, w, s[v → 2]) + Ay(i, b,w, s[v → 0])

The forgotten vertex must have degree two or zero in G[X].

• Join bag: For colorings s1, s2, s ∈ {0,11,12,2}Bx we say that s1 + s2 = s if
for each v ∈ Bx at least one of the following holds:

s1(v) = 0 ∧ s(v) = s2(v)

s2(v) = 0 ∧ s(v) = s1(v)

s1(v) = s2(v) = 1j ∧ s(v) = 2
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We can now write the recurrence for the join bags.

Ax(i, b,w, s) =
∑

i1+i2=i

∑
b1+b2=b

∑
w1+w2=w

∑
s1+s2=s

Ay(i1, b1,w1, s1)Az(i2, b2,w2, s2)

It is easy to see that the Lemma can now be obtained by combining the above
recurrence with dynamic programming. Note that as we perform all calculations
modulo 2, we take only constant time to perform any arithmetic operation. Since
each vertex in a bag can be colored with any of the four colors from {0,11,12,2}
dynamic programming to calculate |CW | for all 0 ≤ W ≤ (k+1)|E| will take O∗(4t)
time.

Theorem 43. There exists a randomized algorithm that given a graph G = (V,E)

and a nice tree decomposition of width t solves Bounded treewidth k-cycle in
O∗(4t) time. The algorithm cannot give false positives and may give false negatives
with probability at most 1

2
.

Proof. Run Algorithm 3 by setting U = E × {X,M} and CountC to be the algo-
rithm implied by Lemma 42. The correctness follows from Theorem 37 by setting
S =

⋃
W SW and C =

⋃
W CW and Lemma 41. It is easy to see that the time bound

follows from Lemma 42.

5.4 Solving k-path

In this section we show that there exists a randomized algorithm for k-path using
DFS(Depth First Search) and algorithm for bounded treewidth k-cycle that
takes time O∗(4k)

Theorem 44. Given a graph G = (V,E). There exists a polynomial time deter-
ministic algorithm that outputs either a path of length k, or a tree decomposition
of G of width at most k − 1.

Proof. Without loss of generality we assume that G is connected. We first do
a depth-first search and find a DFS tree T . If the depth of the tree is k, then
output a path from root to a leaf of length k. Otherwise depth of the tree T is
at most k − 1. Now we can construct a tree decomposition T as follows. Let
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there are l leaves in the DFS tree T . Let v1, v2, . . . , vl be the leaves in the order
in which it is visited in the depth-first search. Now the tree decomposition T =

({x1, x2, . . . , xl}, {(xi, xi+1) | 1 ≤ i ≤ l − 1}) and Bxi
contains all the vertices in

the path from root of the tree T to the leaf vi. Clearly every bag will contain at
most k vertices and hence the width of the tree decomposition is at most k − 1.
Now we need to show that T is indeed a tree decomposition. It is easy to see that
∪x∈TBx = V . We can classify the edges in E as tree edges which are part of T ,
and non tree edges. For any tree edge, there exists bag that contains both end
points of that edge because any tree edge is part of at least one path from root to
a leaf node. Any non tree edge (u, v) will be from a vertex u to an ancestor v of u.
Hence for any non tree edge there exist a bag that contains both of its end points.
Now we need to show that for any vertex v, if v ∈ Bxi

and v ∈ Bxj
for i < j, then

v ∈ Bk for i < k < j. if v ∈ Bxi
and v ∈ Bxj

then v should be a common ancestor
of vi and vj. So v should be an ancestor of vk for any i < k < j. Hence v ∈ Bk for
any i < k < j.

Theorem 45. There exists a randomized algorithm that given graph G = (V,E)

solves k-path in O∗(4k) time. The algorithm cannot give false positives and may
give false negatives with probability at most 1

2

Proof. We first do the algorithm implied by Theorem 44. If the output is a k-path,
then we are done. Otherwise output of the algorithm is a tree decomposition T of
width at most k−2. We know that any tree decomposition can be transformed into
a nice tree decomposition of same width in polynomial time (refer Section 1.2.4
of Chapter 1). So we can transform tree decomposition T into a nice tree decom-
position T′ of width at most k − 2. Then guess the end points (say s and t) of
k-path in G and then solve bounded treewidth k-cycle with input as graph
G′ = (V (G), E(G) ∪ (s, t)) and T′, as mentioned in Theorem 43. The correctness
is clear from the correctness of Theorem 44 and Theorem 43. Also it is clear that
the running time is equal to O∗(4k).
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6
Algebraic techniques

In this chapter we study two randomized algorithms for k-path – Koutis Williams
approach [12, 20] and Narrow Sieve [4] for k-path. In both cases k-path is re-
duced to algebraic problems. In Koutis Williams approach, k-path is reduced to
the problem of detecting a square free term of degree k in a multivariate poly-
nomial which is given in the form of an arithmetic circuit. In Narrow Sieve for
k-path, walks of length k − 1 are associated with monomials in such a way that
monomials corresponding to non-paths are cancelled out in a characteristic two
field. Ultimately we arrive at the polynomial identity testing problem.

6.1 Koutis Williams approach

A randomized algorithm of running time O∗(2k) for odd multilinear k-term

(detecting a square free term with odd coefficient in a multivariate polynomial)
was developed by Koutis [12]. In paper [12] a reduction from k-path to odd

multilinear 3k/2-term is described. A simple reduction from k-path to odd

multilinear k-term was developed later by Ryan Williams [20]. Combining
these two we get O∗(2k) randomized algorithm for k-path with constant one sided
error.

6.1.1 Detecting square-free terms with odd coefficients

Let X = {x1, ..., xn} and let K[X] be the commutative ring of polynomials with
coefficients from the field K. Any non-zero polynomial in Z2[X] is by definition
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a sum (or equivalently a set) of monomials. A monomial is called square-free or
multilinear if it is linear in all its variables. The total degree of a monomial is the
sum of the degrees of its variables. In general, any polynomial P ∈ Z2[X] can be
represented as an arithmetic circuit which is a directed acyclic graph with addition
and multiplication gates, and terminals corresponding to the variables. The odd

multilinear k-term problem is formally defined as follows

odd multilinear k-term

Input: An arithmetic circuit C that represents a polynomial P ∈ Z2[X]

Parameter: k

Output: Does there exist a multilinear term of degree less than or
equal to k in P?

The main idea of the algorithm for this problem is the evaluation of the given
polynomial over a suitably selected commutative algebra. This enables looking at
the polynomial in two equivalent ways; its circuit representation allows for fast
evaluation, whereas its expanded form as a sum of monomials allows us reason-
ing about its value in terms of the individual evaluations of its monomials. The
intuition is that a commutative algebra may contain elements whose square is 0.
This idea will be exploited to annihilate non-multilinear terms in the evaluation
of P . It turns out that this can be done using commutative group algebras of Zk

2

(refer section 1.2.5 for basic definitions and facts). We now give an algorithm for
the ODD MULTILINEAR k-TERM, that works with the assumption that P
contains only multilinear terms of degree exactly k. We will then see how this
restriction can be easily removed.

It may appear that given the two options for step 2, Algorithm 4 gives two
algorithms. However, in Theorem 49 we will prove that option 2 is equivalent to
option 1 and thus it just provides an alternative implementation; from this we will
derive complexity claims. Soundness of the algorithm will be proved in Theorem 48,
using option 1. If S ⊆ Zk

2 is a set of vectors, we denote by π(S) their product in
Zk

2 and let π(∅) = ~0. Note that π(A)π(B) = ~0 if and only if π(A) = π(B). We
let J denote the element of Z2[Zk

2] which is the sum of all vectors in Zk
2, that is

J =
∑

v∈Zk
2
v. We also say that an element w of Z2[Zk

2] is split if it is the sum of
exactly 2k−1 distinct vectors.
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Algorithm 4 Multilinear(C)
Input: An arithmetic circuit C that represents a polynomial P ∈ Z2[X]
Output: if there exists a multilinear term of degree k in P , output yes

otherwise output no.

1. For each xi ∈ X, independently pick a random vector vi ∈ Zk
2

2. [Option 1:] Let X̄ denote assignment xi ← ~0 + vi for all i where ~0 is the
k-dimensional zero vector and (~0 + vi) ∈ Z2[Zk

2]. Evaluate P (X̄) and if
coefficient of ~0 in P (X̄) is equal to 1, then return yes otherwise return no.

2. [Option 2:] Let b(t) denote the k dimensional vector containing the binary
form of t, Λt denote the assignment xi ← 1+(−1)v

T
i b(t) and Z =

∑2k−1
t=0 P (Λt).

If Z is equal to 2k mod 2k+1 then return yes, otherwise return no.

By construction, each monomial evaluates to an element of the form Π(V ) =

Πv∈V (~0 + v), where V ⊆ Zk
2. Using the fact that for all v ∈ Zk

2 we have ~0v = v, we
can expand Π(V ) into a sum, to get

Π(V ) =
∏
v∈V

(~0 + v) =
∑
S⊆V

π(S) (6.1.1)

Lemma 46 ([12]). If the vectors in V ⊆ Zk
2 are linearly dependent over Z2, Π(V )

evaluates to 0. If the vectors in V are linearly independent, Π(V ) is a sum of 2|V |

distinct vectors (including ~0).

Proof. By definition, when the vectors in V are linearly dependent, there is V ′ ⊆ V

such that π(V ′) = ~0. Then for all S ⊆ V ′ we have π(S)π(V ′\S) = ~0, which implies
that π(S) = π(V ′ \ S). Hence, every term in the sum expansion (equality (6.1.1))
of Π(V ′) is generated an even number of times, which gives us Π(V ′) = 0. This
in turn implies Π(V ) = 0, because Π(V ) = Π(V ′)Π(V \ V ′). This shows the first
part of the Lemma. For the second part of the Lemma we observe that for all
Sa 6= Sb ⊆ V we have π(Sa) 6= π(Sb). To see why, note that if π(Sa) = π(Sb), then
π(Sa)π(Sb) = π(SaSb) = ~0, which implies that the vectors in Sa∪Sb \ (Sa∩Sb) are
linearly dependent, a contradiction. Therefore, since there are 2|V | possible subsets
of V (including ∅), Π(V ) is a sum of 2|V | distinct vectors (including ~0).

Lemma 47 ([12]). Let Pk−1 ∈ Z2[X] be a sum of multilinear monomials of degree
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exactly k − 1. (i) For all assignments X̄ of the form xi ← (~0 + vi), Pk−1(X̄) is
either split, or equal to 0, or equal to J . (ii) In the case Pk−1(X̄) is split, we have
Prv∈Zk

2

[
(~0 + v)Pk−1(X̄) = J

]
= Prv∈Zk

2

[
(~0 + v)Pk−1(X̄) = 0

]
= 1/2

Proof. Let Pk−1 =
∑

jMj where each Mj is a monomial of degree k − 1. We will
derive the Lemma by looking at I = (~0 + v)Pk−1(X̄) for a proper vector v. Note
that Zk

2 contains 2k vectors. Lemma 46 then implies that for all v ∈ Zk
2 and all

Mj, we have (~0 + v)Mj(X̄) = 0 or (~0 + v)Mj(X̄) = J . Therefore, we have I = 0 or
I = J , so the coefficient of any vector in I completely determines the value of I.

Suppose Pk−1(X̄) 6= 0 and Pk−1(X̄) 6= J . Now assume that Pk−1(X̄) is a sum
of t distinct vectors, where 1 ≤ t < 2k. We have

I = (~0 + v)Pk−1(X̄) = Pk−1(X̄) + vPk−1(X̄).

Since vv1 = vv2 implies v1 = v2, it must be that vPk−1(X̄) is a sum of t distinct
vectors in Zk

2. Hence, every vector in the expansion of I is generated 0, 1 or 2

times. If some vector w is generated two times, its coefficient in I will be 0, and
hence I = 0.

Now pick a vector v such that vPk−1(X̄) contains a vector w which is not in
Pk−1(X̄); this is clearly always possible. In that case the coefficient of w in I is 1,
thus I = J . In addition I is a sum of at most 2t vectors, and since J is the sum
of 2k vectors, we must have t ≥ 2k−1. If t > 2k−1, a simple pigeon hole argument
shows that there must be a vector w′ which is generated two times in I, implying
that I = 0. This is a contradiction, so we must have t = 2k−1. The claim (ii)
follows from the fact that t = 2k−1 and the observation that I contains the vector
~0 with probability 1/2, with respect to the choice of v.

Now we prove the soundness of the algorithm.

Theorem 48 ([12]). If P does not contain a multilinear term, the Algorithm 4
returns no. Otherwise it returns yes with probability greater than 1/4.

Proof. For the first claim, note that every monomial M which is not multilinear
can be written as x2

iM
′ for some variable xi and monomial M ′. Now observe that

x̄2
i = (~0 + vi)

2 = 0. Hence x̄2
iM

′ = 0. So, if P does not contain multilinear terms,
all its terms evaluate to 0. Thus, P (X̄) = 0, and the algorithm returns no. We
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will show the other direction using induction on the number of multilinear terms
in P . Recall our assumption that all these terms have degree exactly k.

Base case: Assume P contain only one multilinear monomial of degree k. Let
V = {v1, ..., vk} be k random vectors drawn independently from Zk

2. The proba-
bility that a multilinear monomial of degree k evaluates to J is by construction
equal to Pr[Πk

i=1(~0 + vi) = J ]. By Lemma 46, this is equal to the probability that
the vectors in V are linearly independent. By standard linear algebra facts, given
that {v1, ..., vj−1} are linearly independent, the vectors {v1, ..., vj} are linearly in-
dependent if and only if vj is not in the vector space S generated by {v1, ..., vj−1}.
There are exactly 2j−1 distinct linear combinations of the j − 1 vectors, so there
are 2k − 2j−1 vectors that are not in S. Hence,

Pr

[
j∏
i=1

(~0 + vi) 6= 0

]
=

(
1− 2j−1

2k

)
Pr

[
j−1∏
i=1

(~0 + vi) 6= 0

]
≥

k∏
i=1

(
1− 1

2i

)
>

1

4

Inductive argument: If P is not a single monomial, then there is a variable
x such that P = xPk−1 +P ′ where x does not appear in P ′ 6= 0, and Pk−1 is a sum
of multilinear terms of degree k− 1. Using Lemma 47 we can consider all possible
cases under which P evaluates to J , to get

Pr[P = J ] = Pr[xPk−1 + P ′ = J ]

≥ Pr[P ′ = J ] Pr[Pk−1 is split/P
′ = J ] Pr[xPk−1 = 0/Pk−1 is split]

+ Pr[P ′ = 0] Pr[Pk−1 is split/P
′ = 0] Pr[xPk−1 = J/Pk−1 is split]

≥ 1

2
Pr[Pk−1 is split]

≥ Pr[xPk−1 = J ]

We derived above probability using conditional probability and the fact that
Pr[xPk−1 = J/Pk−1 is split] = Pr[xPk−1 = 0/Pk−1 is split] = 1/2 (Lemma 47).
The probabilities are taken with respect to the random assignment X̄. The polyno-
mial xPk−1 contains less monomials than P , hence the inductive hypothesis applies
and we get Pr[P = J ] ≥ 1/4

Let A be a commutative algebra and Ȳ be an assignment xi ← yi ∈ A, for
i = 1, ..., n. We denote by PA(Ȳ ) the evaluation of P at Ȳ over A.
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Theorem 49 ([12]). Options 1 and 2 for step 2 of Algorithm 4 are equivalent.
Furthermore, if the input circuit C can be evaluated over the integers modulo 2k+1

in time t and space s, option 2 can be performed in O((nk+t)2k) time and O(nk+s)

space.

Proof. Let C be an arithmetic circuit with n variables X and P ∈ Z[X] be the
polynomial represented by C. Also, let X̄ be the assignment xi ← (~0 + vi), as
defined in Algorithm 4. Let ρ be the representation of Z[Zk

2] as mentioned in the
Section 1.2.5 of Chapter 1. Observe that

PZ[Zk
2 ](X̄) =

∑
g∈Zk

2

agg ⇒ PZ2[Zk
2 ](X̄) =

∑
g∈Zk

2

(ag mod 2)g (6.1.2)

Thus, it is enough to consider the parity of the coefficient of ~0 in PZ[Zk
2 ](X̄). Moving

to Z[Zk
2] allows us working with the matrix representation of PZ[Zk

2 ](X̄), which is
given by

ρ
(
PZ[Zk

2 ](X̄)
)

=
∑
g∈Zk

2

agρ(g) (6.1.3)

For each g ∈ Zk
2, ρ(g) is a permutation matrix of dimension 2k with zeros in

the diagonal, with the exception of the identity ~0 of Zk
2, for which ρ(~0) is the

identity matrix. Hence all the diagonal entries of ρ(PZ[Zk
2 ](X̄)) are equal. This, in

combination with equality (6.1.2) implies that

PZ2[Zk
2 ](X̄) = 0 ⇒ trace

(
PZ[Zk

2 ](X̄)
)

= 0 mod 2k+1

PZ2[Zk
2 ](X̄) = J ⇒ trace

(
PZ[Zk

2 ](X̄)
)

= 2k mod 2k+1

Now instead of evaluating P at xi ← (~0 + vi) over Z[Zk
2], we can equivalently

evaluate it at xi ← ρ(~0 + vi) over the isomorphic matrix algebra M = ρ(Z[Zk
2]),

and then compute (modulo 2k+1)

trace
(
PM(X̄)

)
= trace

(
PZ[Zk

2 ](X̄)
)

(6.1.4)

By the representation theory of Zk
2 (Section 1.2.5 of Chapter 1), there is a

matrix U of dimension 2k such that for all v ∈ Zk
2, ρ(v) = UΛvU

−1, where Λv

is a diagonal matrix with the eigenvalues of ρ(v) and ith eigenvalue of ρ(v) (ith
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diagonal entry in Λv) will be (−1)v
T b(i−1) where b(i) is the k-bit binary form of i.

Let Λi denote the diagonal matrix containing the eigenvalues of ρ(~0 + vi) and Λ̄

denote the assignment xi ← Λi. Let Λi,j denote the jth diagonal entry of Λi and
let Λ̄j denote the assignment xi ← Λi,j (note that Λi,j = 1 + (−1)v

T
i b(j−1)). Then

using the fact that matrices in M are simultaneously diagonalizable and simple
facts about the trace of matrices we get

trace
(
PM(ρ(X̄))

)
= trace

(
UPM(Λ̄)U−1

)
= trace

(
PM(Λ̄)

)
=

2k∑
j=1

PZ
2k+1

(Λ̄j)

This completes the proof for the equivalence of options 1 and 2.
We have reduced the original problem to 2k evaluations of P and the summation

of the outputs over Z2k+1. The 2k evaluations can be performed sequentially,
re-using the space, while the output sum is updated. The algorithm needs to
maintain in the memory the assignment X̄ which takes space O(kn). For each j,
the algorithm computes the input Λ̄j in O(nk) time. The evaluation of P (Λ̄j) can
be done in time O(t), and space O(nk + s), by assumption. Hence the total time
is O((nk + t)2k) and the space requirement is O(nk + s).

Remark 50. If the smallest multilinear term in P has degree k−j, we can consider
Pj = (y1 . . . yj)P . By Lemma 46, any term of degree greater than k always evaluates
to 0. Hence we can run Algorithm 4 with Pj for all 1 ≤ j < k with the assumed
restriction (i.e, input contain multilinear terms of degree exactly k, if exists) and
gives output as yes if at least one execution gives yes answer.

6.1.2 Reducing k-path to odd multilinear k-term

A simple reduction from k-path to odd multilinear k-term is described in [20].
Let G = (V,E) be a the n vertex input graph of k-path problem. Let A be the
n× n adjacency matrix of G. Define a matrix B[i, j] = A[i, j]xi. Let ~1 be the row
n-vector of all 1’s, and ~x is the row n-vector defined by ~x[i] = xi. Define the k-walk
polynomial to be P (X) = ~1.Bk−1.~xT . Following proposition is an easy observation.

Proposition 51 ([20]). P (X) =
∑

vi1
,...,vik

is a walk in G

xi1 ...xik
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P (X) can be implemented using a circuit C where the number of multiplica-
tion and addition gates will be exactly equal to the number of multiplication and
addition required to compute the product ~1.Bk−1.~xT . So the number of gates in
C is bounded by O(n2 log k). Since the size of the circuit C is polynomial in n,
the time and space required to evaluate P (X̄) over Z2k+1 for any assignment X̄
will be bounded by polynomial in n. Combining this with Theorem 49 we get the
result that k-path can be solved in O∗(2k) time with no false positives and false
negatives with probability at most 1/4.

6.2 Narrow Sieve for k-path

The idea behind this algorithm is to create a multivariate polynomial from an
instance of k-path such that each monomial corresponds to a k-walk. There
exist a unique monomial for any fixed path of length k − 1 with some probability
(exponentially small in k). Any monomial in the polynomial corresponding to a
k-walk which is not a k-path, will appear even number of times. Then the problem
reduces to polynomial identity testing where polynomial is considered over a field
of characteristic two. In this section we consider the following variant of k-path.

k-path

Input: An undirected graph G = (V,E), a vertex s ∈ V and a positive
integer k

Parameter: k

Output: Does there exists a path of length k − 1 starting at s

For convenience we denote k-path for the above mentioned problem in this section
and it is easy to see that solving k-path starting at a special vertex in time O∗(ck)
leads to the solution of general k-path in time O∗(ck).

6.2.1 Overview

If the input graph G = (V,E) is randomly partitioned into two sets V1 and V2, then
with good probability any path of length k − 1 in G has roughly k/2 vertices in
G[V1] and k/4 edges in G[V2]. We label the vertices in V1 and edges in V2 and each
labeled k-walk will be associated with a monomial. We say a k-walk is bijective if
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each occurrence on the walk of a vertex in G[V1] and of an edge in G[V2] receives
a unique label. Our objective is to detect bijective labeled k-path. We will use an
inclusion exclusion sieve to cancel all walks that are not bijectively labeled. To
cancel bijectively labeled k-walks which are not paths, we associate monomials such
that a monomial corresponding to such a walk will appear even number of times.

6.2.2 Labeled Admissible Walks and Monomials

A k-walk in a graph G can be thought of as a string of length 2k − 1 such that

(a) each odd position contains a vertex of G

(b) each even position contains an edge of G

(c) for every i = 1, 2, ..., k − 1, the edge at position 2i joins in G the vertices at
positions 2i− 1 and 2i+ 1.

For a subset B ⊆ A and a string a1a2...al, introduce the notation

B{a1a2...al} = {(ai, i) | ai ∈ B}

Definition 52 ([4]). Let G = (V,E) be a graph and let s be a fixed vertex of G.
Partition the vertex set into two disjoint sets V = V1 ∪ V2. Denote by E1 and E2

the set of edges of G with both ends in V1 and V2 respectively. Let k, k1, l2 be non
negative integers. we say that a k-walk W in G is admissible if

(a) W starts at s

(b) |V1{W}| = k1

(c) |E2{W}| = l2 and

(d) W is V2EV1EV2-palindromeless (i.e, W does not contain a palindrome sub-
string which is V2EV1EV2-string)

Lemma 53 (Admissibility [4]). Let k1, l2 be non negative integers and let P be a
k-path in G = (V,E). For a partition (V1, V2) selected uniformly at random, we
have

Pr
(
|V1{P}| = k1 and |E2{P}| = l2

)
= 2−k

(
k1 + 1

k − k1 − l2

)(
k − k1 − 1

l2

)
.
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Proof. There are 2k strings of length k over the alphabet {1, 2}. The probability
in question is exactly the fraction of such strings that have exactly k1 1-positions
and exactly l2 22-substrings. There are exactly k1 +1 positions where to interleave
the k1 1s with substrings of 2s. Each such substring of length j contributes exactly
j − 1 22-substrings. The total number of 2s is k− k1, so there must be k− k1 − l2
substrings of 2s. The positions where the substrings interleave the 1s are allocated
by the first binomial coefficient. It remains to allocate the lengths of the strings.
The total length is k − k1, and each of the k − k1 − l2 strings must have length
at least 1. Thus we have to allocate k − k1 2s to k − k1 − l2 distinct bins such
that each bin get at least one. The second binomial coefficient carries out this
allocation.

A fixed k-path starting at s is admissible with positive probability if k1 + l2 ≤
k−1 ≤ 2k1+l2. Let us now derive an asymptotic approximation for the probability
in Lemma 53. According to Stirling’s approximation,

j! ≈
√

2πj

(
j

e

)j
(6.2.1)

Let us abbreviate 〈
a

b

〉
=

(
b

a

)−b(
1− b

a

)−a+b

From Stirling’s formula (6.2.1) it follows that
(
a
b

)
= θ∗(

〈
a
b

〉
). We can thus approx-

imate the probability in Lemma 53

Pr
(
|V1{P}| = k1 and |E2{P}| = l2

)
= θ∗

(
2−k
〈

k1

k − k1 − l2

〉〈
k − k1

l2

〉)
.

Definition 54 (Labeled Admissible walks). Let K1 = {1, 2, ..., k1} be a set of k1

labels and L2 = {1, 2, ..., l2} be a set of l2 labels. Let W be an admissible walk. Let
κ : V1{W} → K1 and λ : E2{W} → L2 be arbitrary functions. The three-tuple
(W,κ, λ) is a labeled admissible walk, i.e, in a labeled walk each position in W that
contains a vertex in V1 gets assigned a label in K1 by κ and each position in W that
contains an edge in E2 gets assigned a label in L2 by λ. We say that the labeling
is bijective if both κ and λ are bijections.

Example. Consider two labelings of the same walk W ,
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The walk is admissible with parameters s = c, k = 6, k1 = 3, and l2 = 2. Both
labelings associate a label with each position of W that contains a symbol from
V1 = {a, b, c} or E2 = {de, ef}. We have V1{W} = {(b, 3), (b, 11), (c, 1)}, that is,
there are three occurrences of symbols from V1 inW ; in particular the symbol b oc-
curs at the 3rd and the 11th position. Similarly, we have E2{W} = {(ef, 6), (de, 8)}.
The labeling on the left is

λ(b, 3) = 2, λ(b, 11) = 1, λ(b, 1) = 3, κ(ef, 6) = 2, κ(de, 8) = 1.

We observe that this labeling is bijective since λ and κ are bijections. The labeling
on the right is

λ(b, 3) = 3, λ(b, 11) = λ(c, 1) = 1, κ(ef, 6) = κ(de, 8) = 2,

and not bijective. In fact, λ avoids the label 2, and κ avoids the label 1.

Fingerprinting and identifiability: We associate with each labeled admissible
walk a monomial (or “fingerprint”) that we use to represent the labeled admissible
walk in sieving. The sieve operates over a multivariate polynomial ring with the
coefficient field F2b (the finite field of order 2b) and the following indeterminate.
Introduce one indeterminate xe for each edge e ∈ E. Introduce one indetermi-
nate yv,i for each pair (v, i) ∈ V1 ×K1. Introduce one indeterminate ze,i for each
pair (e, i) ∈ E2 × L2. Let (W,κ, λ) be a labeled admissible walk. Associate with
(W,κ, λ) the monomial (fingerprint)

m(W,κ, λ) =
∏

(e,j)∈E{W}

xe
∏

(v,i)∈V1{W}

yv,κ(v,i)

∏
(z,i)∈E2{W}

ze,λ(e,i)

The following lemma is immediate.

Lemma 55 (Identifiability [4]). The monomial m(W,κ, λ) of a labeled admissible
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walk (W,κ, λ) uniquely determines the edges and their multiplicities of occurrence
in W . In particular, any path is uniquely identified. Furthermore, if W is a path
and κ, λ are bijections, then m(W,κ, λ) uniquely identifies m(W,κ, λ).

6.2.3 Sieving for bijectively labeled admissible paths

Now our objective is to define a polynomial such that it will contain monomials
corresponding to bijectively labeled admissible walks. Furthermore any bijectively
labeled admissible walk W which is not a path can be paired with another bijec-
tively labeled admissible walk W ′ such that monomials corresponding to W and
W ′ will be same. To get rid of non bijectively labeled k-walks we can use inclusion
exclusion principle. Let L denote the set of all labeled admissible walks and B de-
note the set of all bijectively labeled admissible walks. For I1 ⊆ K1 and J2 ⊆ L2,
denote by L[I1, J2] the set of all labelled admissible walks that avoids the labels in
I1 and J2. By the principle of inclusion exclusion, we have∑

(W,κ,λ)∈B

m(W,κ, λ) =
∑
I1⊆K1

∑
J2⊆L2

(−1)|I1|+|J2|
∑

(W,κ,λ)∈L[I1,J2]

m(W,κ, λ) (6.2.2)

Now we show that monomials corresponding to bijectively labeled non-paths
cancels in a field of characteristic 2. Let partition B into B = P ∪ R, where P
consists of bijectively labeled admissible paths, andR consists of bijectively labeled
admissible non-paths. Accordingly, the left-hand side of (6.2.2) splits into∑

(W,κ,λ)∈B

m(W,κ, λ) =
∑

(W,κ,λ)∈P

m(W,κ, λ) +
∑

(W,κ,λ)∈R

m(W,κ, λ)

We show that the rightmost sum vanishes. To this end, let us first define that
an involution is a permutation that is its own inverse. We claim that it suffices to
construct a fixed-point-free involution φ : R → R withm(W,κ, λ) = m(φ(W,κ, λ))

for all (W,κ, λ) ∈ R. To construct a such a fixed-point-free involution φ, we observe
that every walk W that is not a path contains at least one closed subwalk. In
particular, W contains a first closed subwalk, that is, the closed subwalk C with
the property that C is the unique closed subwalk in the prefix SC of W = SCT .
We denote the first closed subwalk of W by C(W ) and by c(W ) the first (and
hence also the last) vertex of C(W ).
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Let us partition R into two disjoint sets, R1 and R2, where

R1 = {(W,κ, λ) ∈ R | c(W ) ∈ V1}

R2 = {(W,κ, λ) ∈ R | c(W ) ∈ V2}

We proceed to construct the pairing φ on these two sets.

The pairing on R1: Select an arbitrary (W,κ, λ) ∈ R1. Let j and l be the
positions of W that contain the symbol c(W ) and constitute the ends of C(W ).
For brevity, let us write c for c(W ). Because c ∈ V1, we have (c, j), (c, l) ∈ V1{W}.
Define κ′ to be identical to κ except that

κ′((c, j)) = κ((c, l)), κ′((c, l)) = κ((c, j)).

Observe that κ((c, j)) 6= κ((c, l)) because (W,κ, λ) is bijectively labeled. Thus
κ′ 6= κ. Furthermore, we have m(W,κ, λ) = m(W,κ′, λ). Thus, we can set
φ(W,κ, λ) = (W,κ′, λ) to obtain the desired fixed-point-free involution on R1.
Indeed, φ(W,κ, λ) = (W,κ′, λ) 6= (W,κ, λ) and φ2(W,κ, λ) = (W,κ, λ).

The pairing on R2: Select an arbitrary (W,κ, λ) ∈ R2. Let C = C(W )

and let S, T be strings such that

W = SCT. (6.2.3)

Let us define the string W ′ by reversing C in W , that is, W ′ = S
←−
CT . We observe

thatW ′ is an admissible walk in G and c(W ) = c(W ′). Let j and l be the positions
of W that contain the symbol c(W ) and constitute the ends of C(W ). Define the
permutation ρ : {1, 2, ..., k} → {1, 2, ..., k} by

ρ(i) =

{
i if i < j or i > l

l − i+ j if j ≤ i ≤ l

Let denote the symbol at the ith position of W by wi. Observe that w′ρ(i) = wi for
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all i. We now introduce a labeling κ′, λ′ of W ′ using the labeling κ, λ of W .

κ′
((
w′ρ(i), ρ(i)

))
= κ ((wi, i))

κ′
((
w′ρ(i), ρ(i)

))
= κ ((wi, i))

Now set φ(W,κ, λ) = (W ′, κ′, λ′) and observe that φ(W,κ, λ) ∈ R2, φ2(W,κ, λ) =

(W,κ, λ), and m(W,κ, λ) = m(W ′, κ′, λ′).
Now we need to prove that φ(W,κ, λ) 6= (W ′, κ′, λ′). There are two cases to

consider, depending on C. In the first case, C is not a palindrome, that is, C 6=
←−
C .

Thus, W ′ 6= W and hence (W ′, κ′, λ′) 6= (W,κ, λ). In the second case, C is a
palindrome. Since C is a closed walk, the string C has odd length at least 3. In
particular, the length 3 (that is, a palindrome of the form ueu with u ∈ V2 and
e ∈ E) cannot occur because G has no loop edges. For palindromes of length 5, the
only possibility is that C is a V2E2V2E2V2-palindrome. Indeed, C can neither be a
V1EV1EV1-palindrome nor a V1EV2EV1-palindrome because c(W ) ∈ V2. Further-
more, C cannot be a V2EV1EV2-palindrome because such palindromes by definition
do not occur in the admissible walk W . Thus, for length 5 the only possibility is a
V2EV2EV2-palindrome, that is, a V2E2V2E2V2-palindrome. Such a palindrome con-
tains two occurrences of an edge in E2 that are in ρ-corresponding positions. These
occurrences get different labels under λ and λ′. Thus, (W ′, κ′, λ′) 6= (W,κ, λ). Fi-
nally, we observe that C cannot have length more than 5, because a palindrome of
length 7 or more must include a palindrome of length 5, which would contradict
the assumption that C is the first closed subwalk in W .

6.2.4 The Algorithm

Now we are ready to describe the algorithm for k-path. First consider the following
lemma

Lemma 56 (DeMillo-Lipton-Schwartz-Zippel [8, 18]). Let p(x1, x2, ..., xn) be a
nonzero polynomial of total degree at most d over the finite field Fq. Then, for
a1, a2, ..., an ∈ Fq selected independently and uniformly at random,

Pr (p(a1, a2, ..., an) 6= 0) ≥ 1− d

q

52



Chapter 6. Algebraic techniques

Now let us assume that the parameters k, k1, l2 have been fixed so that k1 +l2 ≤
k−1 ≤ 2k1 + l2 (we will fix it later). Consider the randomized algorithm as shown
in Algorithm 5.

Algorithm 5 Sieve(G, s, k, k1, l2)
Input: A graph G = (V,E), s ∈ V , positive integers k, k1, l2
Output: if there exists a path of length k − 1 starting at s, output yes

otherwise output no.

1. Select an ordered partition (V1, V2) of V uniformly at random.

2. Evaluate the polynomial

P (X) =
∑
I1⊆K1

∑
J2⊆L2

(−1)|I1|+|J2|
∑

(W,κ,λ)∈L[I1,J2]

m(W,κ, λ)

at an assignment X̄ selected independently and uniformly at random from
F2log 6k .

3. If P (X̄) 6= 0 output yes, otherwise output no

Now we give dynamic programming to evaluate the sum
∑

(W,κ,λ)∈L[I1,J2] m(W,κ, λ).
For parameters k, k1, l2, s and string T = t1t2t3t4t5 over the alphabet V ∪ E we
compute

M(k, k1, l2, T ) =
∑

(W,κ,λ)∈L[I1,J2]

T is a suffix of W

m(W,κ, λ). (6.2.4)

Now by taking the sum over all T , we obtain the sum
∑

(W,κ,λ)∈L[I1,J2] m(W,κ, λ).
The recursion for (6.2.4) is as follows

M(k, k1, l2, t1t2t3t4t5)

= [t1t2t3t4t5 is a walk and not a V2EV1EV2-palindrome ]

×
∑
e∈E

e=(v,t1)

(
[t5 /∈ V1] + [t5 ∈ V1]

∑
j∈K1\I1

yt5,j

)(
[t4 /∈ E2] + [t4 ∈ E2]

∑
j∈L2\J2

zt4,j

)
×M(k − 1, k1 − [t5 ∈ V1], l2 − [t4 ∈ E2], vet1t2t3).

To set up the base case for recursion, we observe that M(k, k1, l2, T ) can be com-
puted for all 0 ≤ k1, l2 ≤ k = 3 and all T = t1t2t3t4t5 in time polynomial in n.
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Furthermore, M(k, k1, l2, T ) = 0 for all k1 > k or l2 > k, or k1 < 0 or l2 < 0.
Consequently for any given assignment of values for the variables Algorithm 5

can evaluate P (X) in O(2k1+l2k5n4) arithmetic operations over F2log 6k . Now we
can complete the algorithm by optimizing the parameters for running time and
Ω(1) probability of success. Denoting the probability that a k-path P starting at
s is admissible by P (k, k1, l2), we have that in r repetitions of the Algorithm 5 at
least one repetition finds P admissible with probability 1 − (1 − P (k, k1, l2))r ≥
1 − e−P (k,k1,l2)r. Setting r = d1/P (k, k1, l2)e, it follows from Lemma 56 that any
fixed k-path starting at s in G is witnessed with probability at least (1 − e−1)/2

in time O(2k1+l2k5n4/P (k, k1, l2)). Setting k1 = γ1k, l2 = γ2k, and approximate
P (k, k1, l2), we obtain O∗(1.6569k) time for γ1 = 0.5 and γ2 = 0.207107. So we get
the following theorem

Theorem 57. There exists a randomized algorithm that given graph G = (V,E)

solves k-path in O∗(1.6569k) time. The algorithm cannot give false positives and
may give false negatives with constant probability.
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7
Conclusion

We have studied different randomized techniques used in FPT and we have seen
that randomized algorithms have better running time compared with that of de-
terministic ones. The best known algorithm for finding a k-path in a given graph
is a randomized algorithm which we described in the last chapter and it takes
running time O∗(1.6569k). The main open problems in this area are–(i) can we
derandomize isolation lemma and DeMillo-Lipton-Schwartz-Zippel lemma, and (ii)
does there exist a deterministic algorithm for solving k-path with running time
less than 4kkO(log2 k)nO(1).
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