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Abstract—In this paper, we propose a novel information
theoretic approach to obtain compact and discriminative dic-
tionary of visual data. This approach squeezes discriminative
information from dictionary for efficient representation using
information bottleneck. The dictionary is optimized from the
initial sparse dictionary which is learned from action data. In
this, a constraint information optimization problem is formulated
in which mutual information between initial and optimized
dictionary is minimized while maximizing mutual information
between optimized dictionary and class labels. We use an effective
similarity measure, Jensen-Shannon divergence with adaptive
weightages, for class distributions of each dictionary atom.These
adaptive weightages are obtained based on the usage of dictionary
atom among different classes. The resultant dictionary becomes
discriminative and compact, while retaining maximum informa-
tion with fewer atoms. Using simple reconstruction error, we
test computational efficiency of the proposed method without
compromising classification accuracy on popular benchmark
datasets. It is further demonstrated how efficiently discrimi-
native information is retained by comparing the classification
performance of the dictionary before and after the removal of
redundant dictionary atoms.

Index Terms—Dictionary learning, Sparse representation, In-
formation bottleneck, Mutual Information

I. INTRODUCTION

THE evolving field of visual data concerns large volume
and complexity of emerging data in the digital world. The

availability of capturing devices and data storage capability
not only resulted in enormous amount of visual data, but
also escalates continuous growth of the data around us. In
this era of Big Data, how to handle the data and how to get
information from the data being an open conundrum. Finding
discriminative and compact representation from codebook or
dictionary is widely addressed and relevant in this time [1]–
[5]. According to new census, 42.2% of world population is
using Internet. Video data is one of the fast growing data day
by day as many video sharing sites like YouTube, metacafe,
flickr, vimeo, dailymotion etc. contribute large quantity of data
everyday. Also, large amount of videos emanate from social
media sites like facebook, Google+, Twitter etc. These facts
clearly indicate the exponential growth of videos in the digital
world. So, an efficient way of representing video data is vital
now. Our work is to optimize video data with minimum loss
of discriminative information to recognize videos efficiently.
In this paper, we propose two level optimization of action
data. The first level is to learn input data via sparse coding
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based approach for initial dictionary. In the next level, the well
representative dictionary atoms are extracted from the learned
dictionary using information bottleneck approach.

Sparse coding has been widely used in many signal process-
ing applications [6], [7]. It reconstructs the signal using linear
combination of basic building blocks which are called atoms.
These atoms, di, are grouped into dictionary, so it is also called
as dictionary atoms. The dictionary D = {d1, d2 . . . dK}
is over complete dictionary which has infinite number of
solutions. In sparse coding, it always looks for sparse solution.
The dictionary D is composed of K dictionary atoms and y
represents an input signal. We can approximate y as the linear
combination of few atoms in the dictionary D,

y ≈ Dx,

where x ∈ RK is called sparse vector which is to be
found using any of the standard sparse coding algorithm like
basis pursuit, matching pursuit etc. LASSO (Least Absolute
Shrinkage and Selection Operator) is the variant form of basis
pursuit which uses l1 norm whereas orthogonal matching
pursuit (OMP) is variant form of matching pursuit which uses
l0 norm to find sparse vector. Sparse coding gives sparse vector
which provides information regarding most correlated atoms in
D to reconstruct the input signal y. Dictionary learning algo-
rithms such as method of optimal direction (MOD) [8] online
dictionary learning [9] and K-SVD dictionary learning [10],
learn adptively the input data into dictionary D and guarantee
to converge at local optimum [10]. The dictionary learning
alternates between sparse coding and dictionary update. This
dictionary learning is very successful in signal reconstruction.
By learning discriminative dictionary, we can use this powerful
tool efficiently for machine learning purpose.

In fact, the large-sized dictionary leads computational in-
efficiency and more memory requirement in many machine
learning applications. In our work, the first level optimiza-
tion is carried out by learning the input video data Y =
{y1, y2, . . . yN} into a dictionary D which is further opti-
mized in the second level of optimization using information
bottleneck approach. The discriminative dictionary atoms can
be obtained by removing redundant dictionary atoms in the
dictionary. This redundancy removal is often a challenging
task due to degradation of recognition performance by loosing
discriminative information. In order to remove this redundant
dictionary atoms, we use information bottleneck approach [11]
which minimizes the loss of discriminative information while
removing redundancy in the dictionary D. This is a constraint
information optimization problem in which mutual informa-
tion between initial dictionary and optimized dictionary is
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minimized while maximizing mutual information between
optimized dictionary and class labels. To achieve this, we
adopt an efficient approach using Jenson-Shannon divergence
[12] with adaptive weightages to remove redundant dictionary
atoms. This approach removes redundant dictionary atoms
while retaining disriminative dictionary atoms. We evaluate
the performance of our approach in the following aspects: (1)
first, the removal of redundant dictionary atoms does not affect
the classification accuracy; (2) we demonstrate the proposed
optimization approach indeed improves the classification time
when compared to other existing classification approaches; (3)
we compare runtime of the proposed optimization method with
other similar methods; (4) we show the adaptive weights in
JS divergence affects the classification accuracy compared to
fixed weights.

The main contributions of this paper are:
• A novel information theoretic approach for visual data

recognition is proposed.
• We combine dictionary learning and information bottle-

neck to obtain compact and discriminative dictionary of
visual data.

• Adaptive weightages for class distributions of each dictio-
nary atom has been used in the similarity measure Jensen-
Shannon divergence.

• We utilize atom contribution in sparse decomposition to
label and share dictionary atoms to find reconstruction
error.

The organization of the paper is as follows. Section II
discusses related works and section III details proposed ap-
proach for optimization in which initial dictionary learning
and optimization using information bottleneck are described.
Section IV briefs about atom contribution to label and share
dictionary atoms which helps to obtain reconstruction error.
The detailed experimental study is discussed in section V.
Finally, section VI concludes summary of the paper and
presents future directions.

II. RELATED WORK

This work proposes two levels of optimization, namely,
sparsity based optimization and information theoretic opti-
mization. This provides compact and discriminative dictionary
atoms for efficient action recognition. In [5], twenty one binary
descriptors are tested to obtain compact and discrminative
representation of visual data and they showed that gradient
based approaches claim comparatively more discriminative
ability. Chen et al. [13] suggest discriminative visual phrase
selection for mobile land recognition. This reduces disrimi-
native information loss and removes those that are common
across various categories. The sparse based approach is very
powerful and widely applied in many machine learning ap-
plications. In [14], a set of dictionaries are learned separately
from different classes of images and atoms, which contains
common features, are shared among classes. The excessive
coherent atoms among different classes are discarded. Instead
of learning separate dictionaries, sparse based discriminative
dictionaries [15] [16] [17] are learned for image classification
in which each dictionary atom to be labeled. We use the

amount of class information contained in each dictionary atom
to label it.

Wright et al. [18] used sparse coding for face recognition
and reconstruction error for classification which yielded better
result. Yang et al. [19] introduce Fisher discrimination crite-
rion to get discriminative dictionary atoms. The extension of
[19] presents a support vector based discriminative dictionary
learning model [20]. In [21], Fisher discriminative dictionary
learning is exploited to map data from various modalities
to common subspace in which inherent relationship between
different modalities can be more evident. In [22], Mairal et
al. add discriminative term to the dictionary learning which
optimize the dictionary. The dictionary learning is tuned to
specific task like semi-supervised learning [23] by adding
more discriminative terms. This exploits unlabelled data by
sparse representation and solves specific task like classifica-
tion. Pham and Venkatesh [24] learned linear classifier from
dictionary and then update the dictionary from the learned
classifier. This process will alternate until convergence to get
discriminative sparse representation for face recognition. In
[25], discriminative comapct vocabulary of context informa-
tion are obtained for mobile landmark recognition. In [26],
reconstruction error and projection of test vector on to the
dictionary are used as classification measure. Nguyen et al.
[27] applies kernel trick to improve discriminative information,
but this needs high computational power and storage which is
addressed by linearized kernel dictionary learning [28].

The mutual information has been used as a similarity
measure in many machine learning applications [3], [29].
Similar to our approach, Qiu et.al. [3] learnt input data by K-
SVD dictionary learning and then select atoms by maximizing
mutual information between selected and unselected atoms.
They also maximize mutual information between classes to
ensure enough representation of all classes in the optimized
dictionary. But they have used Gaussian Process (GP) model
for sparse representation, so the inverse calculation of matrix
claims more computational time. In [30] [31], Krause et al.
maximize mutual information for optimal placement of sensors
based on Gaussian process (GP) which ultimately helps to
reduce communication cost. For the selection of compact and
discriminative dictionary atoms, Chellapa et.al. [2] maximize
mutual information between selected and unselected atoms,
between sparse codes and class labels, between input signals
and selected atoms and then update dictionary using gradient
ascent algorithm.

To learn human actions, Jingen Liu and Mubarak Shah [32]
extract 3D interest points called video words and optimize
these video words by maximizing mutual information. Lee et
al. [29] use mutual information to measure similaity between
two activity vectors which are obtained from different cameras.
In [33], for image classification and segmentation, codebooks
are learned by minimizing the loss of information. Information
theoretic approach is an effective tool to determine how
much information retains after learning data. In [34], Tishby
et.al. systematically analyze information loss while learning
through each layer in the deep neural network. Lobel et al.
[1] encode mid level representation from different regions of
an image using dictionary of linear classifiers. These classifiers
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are applied to feature descriptor and max pooling strategy
makes total energy of an image as linear combination of max
functions to obtain compact and discriminative visual words.
Liu et al. [4] developed probabilistic framework for merging
criteria to produce well representative codebook.

In this work, we propose information bottleneck method to
remove redundancy in the learned dictionary. The information
bottleneck method was introduced in late 90’s by Tishby et.al
[35] [11]. It was an attempt to semantic application of in-
formation theoretic approach apart from information theoretic
application in the field of communication which was proposed
in the midst of 20th century. In our work, we use adaptive
weightages in Jensen-Shannon divergence [12] to find similar
dictionary atoms . This similarity measure is computationally
effective and easy to implement when compared to other
existing dictionary optimization approaches [2] [3] [30] [31]
in which the matrix inverse is involved which claims more
computational complexity. The next section details entire
optimization procedure.

III. TWO LEVEL OPTIMIZATION FOR COMPACT
DISCRIMINATIVE DICTIONARY

Our goal is to extract well representative information from
the input data. In this two level optimization of action data,
initially the data is learned or optimized by dictionary learning
and further the learned dictionary is optimized by using
information bottleneck. The details are discussed below.

A. Learning initial dictionary from action data

This optimization problem can be posed in two ways: spar-
sity based and error based. For sparsity based minimization,
the optimization is given by,

argmin
D,X

‖Y −DX‖2F subject to ∀i ‖xi‖p ≤ T, (1)

and for error based minimization,

argmin
D,X

∑
i

‖xi‖p subject to ‖Y −DX‖2F ≤ ε, (2)

where X = {x1, x2, . . . xN} ∈ RK×N is sparse matrix, each
sparse vector xi corresponds to input sample yi. The notation
‖.‖F and ‖.‖p denote frobenius norm and lp norm, respectively
and the lp norm can be l0 or l1. In this work, we deal with
dictionary learning with sparsity based minimization as in (1).
The K-SVD dictionary learning is used for initial optimization
which will give dictionary of K dictionary atoms. Generally,
dictionary learning alternates between two steps, sparse coding
and dictionary update, to learn initial data Y ∈ Rm×N into
dictionary D ∈ RK×N as follows:

argmin
D,X

‖Y −DX‖2F subject to ∀i ‖xi‖0 ≤ T, (3)

where ‖.‖0 denotes l0 norm and number of non zeros values
in sparse vector xi restricted to constraint T . Orthogonal
matching pursuit is used to obtain sparse vector in K-SVD
dictionary learning. This Sparse coding finds sparse matrix X
that minimizes squared error ‖Y −DX‖2F with fixed D.

To update the dictionary D, every column of D to be
updated and X is fixed during updation. Each dictionary atom
dk to be updated seperately, so the updation procedure has to
run K times. For updation, reconstruction error function can
be rewritten as,

‖Y −DX‖2F = ‖Ek − dkxk‖ (4)

Ek = Y −
∑
j 6=k

djx
j .

The matrix Ek denotes error matrix which is the error for all N
samples when dictionary atom dk is removed. The row vector
xj is jth row of X , which indicates the usage of dictionary
atom dj by input samples. After removing zeros from xk and
corresponding columns from Ek, SVD is applied to update
dk and xk. This learned dictionary D is not an optimal
one in machine learning perspective, so we can optimize
dictionary further by removing redundant dictionary atoms.
This dictionary D becomes the input dictionary to the next
level of optimization, which is discussed below.

B. Information bottleneck for optimization

In this phase, our goal is to remove the redundancy in the
dictionary obtained by k-svd dictionary learning discussed in
section III-A. More clearly, we want to optimize the signal
d ∈ D which provides information about another signal c ∈ C.
The Notations D and C denote dictionary and class labels
respectively. Here our aim is to compress D into D̃ while
retaining maximum information about C. In other words,
prediction of C from D̃ should be as close as possible the
prediction of C from D, so D → D̃ and D̃ → C are the rules
to be optimized. Let D, D̃, and C be random variable notation
for D, D̃, and C, respectively. We denote probability mass
function by p(d) rather than pD(d) for ease of use.

In this optimization problem, we try to minimize mutual
information between D and D̃ with constraint of mutual
information between D̃ and C. The Shannon’s entropy H(D)
of discrete random variable D on alphabet D is defined by,

H(D) = −
∑
d∈D

p(d) log p(d), (5)

and the conditional entropy H(D|D̃) is defined by,

H(D|D̃) = −
∑
d

∑
d̃

p(d, d̃) log p(d|d̃). (6)

Mutual information is the amount of information contains in
one random variable about another. In other words, it is the
reduction in uncertainty of one random variable by knowing
another one. I(D; D̃) denotes the mutual information between
D and D̃, which is defined as,

I(D; D̃) = H(D)−H(D|D̃)

= −
∑
d

∑
d̃

p(d, d̃) log
p(d, d̃)

p(d)p(d̃)

= −
∑
d

∑
d̃

p(d)p(d̃|d) log p(d̃|d)
p(d̃)

(7)
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The redundancy among the dictionary atoms can be ef-
fectively removed by information bottleneck approach which
squeezes the information that D contains about C through
bottleneck formed by well representative dictionary atoms in
D̃. This problem is analogous to rate distortion function, R(D),
[36] which provides trade-off between rate and distortion. Here
the distortion D means compression which also depends on
relevant features for better representation, i.e., rate R. Then the
important question arises, what is the affordable distortion for
achievable rate. This is a constrained information optimization
problem which is addressed in [11].

We need to compress variable D into D̃ which retains
maximum information about C. This yields Markov chain
D̃ → D → C and based on data processing inequality [36],
amount of information in D̃ about C is given by,

I(D̃;C) ≤ I(D;C). (8)

Optimization will be carried in such a way that it minimizes
the mutual information I(D̃;D) while maximizing the con-
straint I(D̃;C) as high as possible. This optimization can be
achieved by minimizing the following function:

argmin
p(d̃),p(d̃|d)

I(D̃;D)− βI(D̃;C), (9)

where β is the Lagrange multiplier. The self consistent equa-
tions p(d̃) and p(d̃|d) can be obtained by minimizing (9).
There is a well known iterative procedure called Blahut-
Arimoto Algorithm [37] to solve this problem. We can find
p(d̃) and p(d̃|d) which minimize mutual information subject
to distortion dist(d, d̃). These iterative steps, (t+1)th update,
are given by,

{
pt+1(d̃) =

∑
d p(d)pt(d̃|d)

pt+1(d̃|d) = pt(d̃)exp(−β dist(d,d̃))∑
d̃ pt(d̃)exp(−β dist(d,d̃))

.
(10)

These iterations converge to a unique minimum in the convex
set of two distributions [36] [37].

The optimal assignment, which minimizes (9), satisfies the
following equation,

p(d̃|d) = pt(d̃)

N (d, β)
exp

[
− β

∑
c

p(c|d)logp(c|d)
p(c|d̃)

]
, (11)

where N (d, β) is normalization function. The detailed proof
is given in [35]. The distribution p(c|d̃) is given by Baye’s
rule and Markov chain D̃→ D→ C,

p(c|d̃)=
∑
d

p(c|d)p(d|d̃)

=
1

p(d̃)

∑
d

p(c|d)p(d̃|d)p(d) (12)

and,

p(d̃) =
∑
d

p(d̃|d)p(d). (13)

The relative entropy or Kullback-Leibler divergence [38] is
the well known distance measure between two probability

distributions. The relative entropy between two probability
mass functions p(x) and q(x) is defined as,

D(p||q) =
∑
x

p(x)log
p(x)

q(x)
. (14)

Then, the equation (11) becomes,

p(d̃|d) = pt(d̃)

N (d, β)
exp

[
− β D

(
p(c|d)||p(c|d̃)

)]
. (15)

The Kullback-Leibler divergence becomes distortion mea-
sure in (10). This makes sense, because it is a natural distortion
measure to find distance between distributions p(c|d) and
p(c|d̃). Here, we use Jensen-Shannon divergence instead of
Kullback-Leibler divergence because in the Jensen-Shannon
divergence, we can weigh the distribution of class given
dictionary atom for better comparison and the information loss,
δIc, can be computed in an efficient way which are explained
in the next section.

1) JS divergence using adaptive weightages: Jensen-
Shannon divergence is based on Jensen’s inequality and
Shannon’s entropy. In this, we can assign weights (prior
probabilities) to different probability distributions which helps
decision problems and it provides both lower and upper bound
for the Bayes’ probability of misclassification error [12]. For I
directed divergence [38] and it’s symmetric measure J diver-
gence, both distributions should be absolutely continuous with
respect to each other. This is not an issue in Jensen-Shannon
divergence. Unlike other divergence measures, this can be
generalized for more than two distributions. Let p1, p2 . . . , pn
be n probability distributions with weightages π1, π2, . . . , πn,
respectively, and

∑
i πi = 1. The generalized Jensen-Shannon

is defined by,

JSπ(p1, p2, . . . , pn) = H
(∑

i

πipi
)
−
∑
i

πiH(pi). (16)

These properties of Jensen-Shannon divergence are very help-
ful in our context. In this work, we efficiently merge similar
dictionary atoms using Jenson-Shannon divergence and these
merging steps are explained in section III-B2. The best pos-
sible merge is determined by the loss of mutual information,
δIc, i.e.,

δIc = I(Zm;C)− I(Zm−1;C) (17)

the loss of information is evaluated for every possible pair in
Zm (Zm be the current m-partition and Zm−1 be the partition
after merging a pair). This is a greedy approach ie., for every
pair, it looks for best possible merge. For each pair, O(m.|C|)
operations are needed. Using Jensen-Shannon divergence, loss
of mutual information due to merge can be calculated in
O(|C|) operations. The loss of mutual information, δIc, can
be defined [11] as,

δIc =
(
p(zi) + p(zj)

)
JSπ
(
p(c|zi), p(c|zj)

)
, (18)

where π = [πi, πj ]. In this, we have given adaptive weightages
to both distributions of p(c|zi) and p(c|zj) based on the
presence of dictionary atom among different classes. Here
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Fig. 1: Loss of information while removing dictionary
atoms in KTH dataset.

we give more priority to distributions which included more
dictionary atoms. These weights πi and πj are assigned as,

πi =
p(zi)

p(zi) + p(zj)

πj =
p(zj)

p(zi) + p(zj)
(19)

In this way, closest dictionary atoms can be determined while
computing distance between distributions p(c|zi) and p(c|zj)
by effectively using Jensen-Shannon divergence. The figure
1 shows loss of mutual information, δIc, while removing
dictionary atoms. It can be seen that the loss of information
increases rapidly after a particular point where we can stop
the removal of redundant dictionary atoms. From the figure 1,
we can approximate the optimal number of dictionary atoms
to be retained.

2) Removal of redundant dictionary atoms: We merge
similar dictionary atoms using Jensen-Shannon divergence to
remove redundant dictionary atoms. This section explains, how
the merging process carried out to remove redundancy. To
avoid confusion, we use one more variable Z and Z̃. Initially,
Z is equal to D and the relation between Z and Z̃ is just one
step away in the merging process, i.e., after merging dictionary
atoms in Z, we will get new compressed dictionary Z̃. For
merging, first we need to initialize the following:

Z = D, zi = di (20)
p(c|zi) = p(c|di) for every c ∈ C, (21)

p(zi|dj) =
{

1 if j=i
0 otherwise (22)

and compute distance for every i, j ∈ {1, . . . , N}, i < j

Si,j =
(
p(zi) + p(zj)

)
JSπ
[
p(c|zi), p(c|zj)

]
(23)

The distance matrix S is a lower triangular matrix with zeros in
diagonal and it is used to find most similar atoms for merging
process. After each merge, the probability of dictionary atoms,
which are included in merging, to be updated. Here, we merge

two similar atoms at a time instead of merging more than two.
In this way, we can understand loss of information at every
merge and take decision about optimal merge which gives
minimum information loss between D and C. By merging
process, we remove redundant atoms with minimum loss
of discriminative information. The atoms which are having
minimum distance can be computed from S,

< u, v >= argmin
i,j

(Si,j). (24)

Then merge (zu, zv) → z̃. So, the probabilities of dictionary
atoms, which are currently merged, to be updated after merg-
ing as shown below:

p(z̃) = p(zu) + p(zv) (25)

p(c|z̃) = 1

p(z̃)

(
p(zu, c) + p(zv, c)

)
(26)

p(z̃|dj) =
{

1 if dj ∈ z̃
0 otherwise

Z =
{
Z − {zu, zv}

}
∪
{
z̃
}

(27)

Finally, the distance between z̃ and all other zi are updated
in the distance matrix S. This method merges similar dic-
tionary atoms and the merging process will be stopped at the
point where the information loss, δIc, is minimum. In this way,
we can approximate the optimal number of dictionary atoms to
be retained without loosing discriminative information. From
each merged group, one representative dictionary atom is
selected as the mean of similar dictionary atoms in the group.
Next we use simple reconstruction error to see how good this
optimized dictionary is.

IV. ATOM CONTRIBUTION AND SHARING

In this section, we discuss effective utilization of the distri-
bution of dictionary atoms to test the input data. The optimized
dictionary D̃ is obtained after the removal of redundant atoms
in the second phase of optimization. In this work, we use sim-
ple reconstruction error, yi−Dxi, to evaluate the performance
of the optimized dictionary D̃. Prior to this, each dictionary
atom is to be labelled to find reconstruction error of test data.
The label of the dictionary atom d̃k is determined from sparsity
coefficients in the sparse matrix X i.e. the contribution of
dictionary d̃k to the particular class of input vectors while
learning the dictionary. So, the label is assigned based on the
maximum contribution of d̃k among different classes in C,
i.e.,

argmax
c

Ct∑
i=1

|xk,i| , ∀c ∈ C (28)

where xk,i denotes kth element of sparse vector xi and Ct
is number of input vectors in class t. In other way, we can
say maximum amount of class information contained in the
dictionary atom determines the label of the dictionary atom.
This is a maximum a posterior probability of p(c|d̃k). These
dictionary atoms can be shared among different classes if it
contributes equally to more than one class which ultimately
helps overall recognition task.
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These labeled dictionary atoms can be used to find recon-
struction error for test vector yi. The sparse vector xi can be
obtained in two ways by Batch OMP [39]: one way is to use
all dictionary atoms while the second way uses only atoms
belong to particular class c, ie.,

xi = OMP(yi, D, T1) (29)
xci = OMP(yi, Dc, T2) (30)

where Dc and xci represent dictionary atoms and sparse
coefficients corresponds to class c, respectively. T1 and T2
are sparsity constraints and T1 is always larger than T2. Then
we find the reconstruction error of yi based on each class and
the class of minimum error will be assigned to test vector yi
as,

min
c

(‖yi −Dcxci‖2 + ‖yi −Dcxc
′

i ‖2), (31)

xc
′

i denotes coefficients belong to classs c in sparse vector xi
in equation (29). Each class has it’s own sparse decomposition
which eventually helps to determine class of the test input.

V. EXPERIMENTAL RESULTS

The performance of the proposed optimization approach
is evaluated using different benchmark datasets. For the ex-
periment, we have used USPS digit database [40], AR face
database [41] and three action datasets, namely, UCF sports
[42], KTH [43] and HMDB51 [44]. Action datasets are rep-
resented by action bank features which are used by Sadanand
and Corso in their work [45]. The action bank features
comprise of many individual action detectors which constitute
mid-level representation of action data and carry rich semantic
information. For all databases, feature vectors are stacked as
matrix. Moreover, each feature vector is mean extracted and
normalized to unit l2 norm. Initially, the input data matrix
is learned by K-SVD dictionary learning. In this experiment,
we have performed 20 dictionary learning iterations and the
sparsity constraint T is determined empirically.

The learned dictionary is further optimized by information
bottleneck approach as described in section III-B and this
optimized dictionary is used in the experimental evaluation.
In [3], the learned dictionary is optimized by comparing
sparse decompositions in terms of mutual information using
Guassian process. In this, inverse of covariance of sparse
matrix is to be determined which is computationally expensive.
In our method, instead of computing inverse of the matrix, we
used computationally efficient Jensen-Shannon divergence to
compare distributions as explained earlier. The recognition ac-
curacies are determined based on the minimum reconstruction
error as discussed in the section IV. We also compare our
approach with traditional classifiers such as KNN (K nearest
neighbor), SVM (support vector machine) etc. All experiments
are conducted on the same machine and execution time of
classification and dictionary optimization are determined to
compare with other similar approaches.

A. Evaluation on the USPS digit dataset

The USPS database consists of handwritten digits of 0-
9 which constitute 10 classes. There are 7291 training and

Fig. 2: USPS digit dataset: dictionary atoms obtained after
applying K-SVD dictionary learning

Fig. 3: USPS digit dataset: dictionary atoms obtained after
applying proposed approach

TABLE I: Comparison of time (measured in seconds)
taken to optimize dictionary from initial dictionary with

other approaches viz. MMI, MMI-2.
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Our
meth

od

UCF 100 50 0.74 0.70 0.67
KTH 200 100 5.85 6.64 1.90
KTH 300 150 14.43 15.95 4.32
USPS 400 300 15.21 16.27 4.15

TABLE II: Performance comparison of UCF sports
action classification with existing methods.

Method Average performance (%)
Proposed method 95.6
Sadanand et.al [45] 95.0
Yao et al. [46] 86.6
Qiu et al. [3] 83.6
Rodriguez et al. [47] 69.2
Yeffet Wolf [48] 79.2
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TABLE III: Comparing recognition accuracy (%) and
testing time (measured in seconds) of our proposed

approach with KNN and linear-SVM classifier.

KNN SVM Proposed Method
Acc. Time Acc. Time Acc. Time

USPS 91.00 1.212 95.00 1.961 97.60 0.512
AR Face 85.00 0.204 91.00 0.295 94.60 0.193
UCF10 88.00 0.312 95.00 0.486 95.60 0.203
KTH 78.95 1.950 97.15 3.121 97.60 1.942

HMDB 51 26.59 190.12 26.91 450.61 35.32 188.190

2007 test images of digits of size 16 × 16 which become
feature vector of dimension 256. The figures 2 and 3 compare
dictionary atoms obtained directly and proposed approach. The
figure 2 gives visualization of dictionary atoms obtained using
the direct application of K-SVD dictionary learning on USPS
data. Whereas figure 3 visualizes dictionary atoms obtained
after removing dictionary atoms using proposed approach
from the initial dictionary of size 100. It can be observed
that atoms in figure 3 are more discriminative than figure 2
which shows our optimization method tries to retain maximum
discriminative atoms than direct approach.

First, we evaluate the removal of dictionary atoms does not
affect classification accuracy. For the experiment 40, 30 and 10
dictionary atoms are learned from each class which constitute
dictionary of size 400, 300, 100 respectively. The sparsity con-
straint T is taken as 5. Table IV shows classification accuracy
and time of the initial dictionary and optimized ditionary in
which it preserves the accuracy even after removing redundant
dictionary atoms. The maximum performance we achieved is
97.2% which is comparable to other approaches [28]. Table
III compares the classification accuracy and time with other
traditional approaches. Our approach shows good computa-
tional efficiency in classification when compared to SVM and
KNN. Another impact of our approach is the time taken for
the optimization process. We compare our method with other
similar methods MMI, MMI-1 in [3], Table I shows proposed
approach clearly outperforms other methods in computational
aspects. Table V indicates adaptive weightages help to merge
similar dictionary atoms compared to equal weghtages (at a
time only two distributions are compared, so weights are 0.5
and 0.5) and this adaptive weights improve overall accuracy.

B. Evaluation on the AR face dataset

The original AR Face database contains 4000 color images
of faces from 126 people, namely, 70 men and 56 women. The
frontal view face images are taken based on different facial
expressions, illumination conditions, occlusions etc. Following
the experiment in [16], 2600 images were chosen from first
50 classes of males and first 50 classes of females, so total
100 classes for the experiment. Each class has 26 images in
which 20 for training and remaining for testing. Table III gives
performance comparison of the proposed method with KNN
and SVM. It can be observed that the proposed dictionary
learning method perform better than KNN and SVM in terms
of both classification accuracy and time. As you can see in
Table IV, dictionary is learned 1500 atoms because the number

(a) |D| = 60, T = 15

(b) |D| = 80, T = 10

(c) |D| = 100, T = 2

Fig. 4: UCF action data: Performance comparison of the
proposed method (for different dictionary sizes) with

other approaches, viz., random removal of atoms, MMI
and MMI-2.
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TABLE IV: Comparing recognition accuracy and time (%) of initial dictionary and optimized dictionary.

Initial accuracy time Optimized accuracy time

USPS
|D| = 400 97.20 0.124 |D| = 300 96.80 0.118
|D| = 300 95.50 0.119 |D| = 200 95.20 0.094
|D| = 100 92.20 0.086 |D| = 90 92.60 0.069

AR
|D| = 1500 94.60 1.526 |D| = 1400 93.00 1.420
|D| = 1000 92.10 1.350 |D| = 900 90.50 1.263
|D| = 800 89.00 1.116 |D| = 700 82.83 1.031

UCF10
|D| = 100 95.60 0.194 |D| = 70 95.00 0.130
|D| = 80 87.20 0.166 |D| = 70 88.00 0.120
|D| = 60 84.00 0.154 |D| = 50 84.20 0.117

KTH
|D| = 300 96.30 0.708 |D| = 200 97.60 0.542
|D| = 200 94.51 0.555 |D| = 100 94.53 0.344
|D| = 100 94.41 0.343 |D| = 50 94.26 0.269

HMDB 51 |D| = 900 36.70 195.068 |D| = 600 32.30 87.550
|D| = 650 33.32 90.253 |D| = 590 32.57 85.931

TABLE V: Comparing recognition accuracy (%) when we
use equal weightage and adaptive weigtage.

Equal wts. Adaptive wts.
USPS 96.30 97.20

AR Face 92.10 94.55
UCF10 94.10 95.60

of classes are high and we got 94.6% accuracy which is
comparable to [16] [28]. The atom removal from dictionary of
size 800 causes much performance degradation due to loss of
more discriminative information. As shown in Table V, the
adaptive weightages improve the classification performance
significantly.

C. Evaluation on the UCF sports action data

UCF sports action dataset has 10 different classes of sports
viz. diving, golfing, kicking, weight lifting, horse riding,
running. skate boarding, swinging bench, swinging side angle
and walking. Experiments have been done with five fold cross
validation, ie., four folds were used for training and remaining
one for testing. We experiment different initial dictionaries of
size 100,80, 60 with sparsity of 3, 10, 15, respectively. The dic-
tionary of size 60 learned with sparsity T = 15, this includes
more dictionary atoms while learning and improves overall
recognition performance. The atoms are removed in each
iteration and our results are compared with random removal,
MMI, MMI-2 shown in Figure 4. Whenever it reaches smaller
and smaller dictionary size, our method clearly outperforms
other methods. After removing 50% of atoms from the initial
dictionary, proposed method still maintain good performance.
The computational efficiency of our approach is also better
than MMI and MMI-2 as shown Table I. The performance
of our proposed approach with other state of art approach is
shown in Table II and we achieved comparable result with
[45], but dominate performances in other methods [48] [47]
[46] [3]. In addition, this optimization tremendously reduces
classification time compared to other traditional approaches
such as SVM, KNN as shown in Table III. Our approach
shows better performance in both recognition accuracy and
testing time compared to SVM and KNN classifier.

The figure 6(a) shows mutual information between opti-
mized dictionary Z̃ and class C, ie.,I(Z̃;C). It can be observed

that, our optimization problem tries to maximize I(Z̃;C). In
contrast to I(Z̃;C), the mutual information between optimized
dictionary Z̃ and initial dictionary D, I(Z̃;D), to be minimized
which can be seen in figure 6(b). The recognition accuracies of
initial dictionary and optimized dictionary are shown in Table
IV which indicate our method could remove the redundant
dictionary atoms without degrading recognition performance.
This resulted in better classification time. The dictionaries of
size 80 and 60 slightly improve the recognition accuracy after
removing the redundancy.

D. Evaluation on the KTH action dataset
In this dataset, 25 different subjects performing 6 different

actions, which are walking, jogging, running, boxing, hand
waving and hand clapping. We partitioned data into 3 folds
and 2 folds used as training data, remaining one as testing
data. Here, three different initial dictionaries of sizes 300, 200,
100 are learned with sparsity 3, 7, 3, respectively. As shown in
Table I, computational time of our optimization is better than
other approaches which suffer computational burden of inverse
calculation of the matrix. We achieved recognition accuracy of
97.60% which is comparable to 98.20% in [45]. In table III,
testing time is comparable to KNN but recognition accuracy
is far better when compared to KNN classifier but in case of
SVM, we got better testing time. Figure 5 shows comparison
of our result with random removal, MMI and MMI-2. In this
dataset, performance of all methods differs slightly, because
this is comparatively easy dataset and feature vectors are well
represented. Still the clear difference is evident at smaller
dictionary sizes as seen in Figure 5. The table IV compares
recognition accuracies of initial and optimized dictionaries
on different dictionary sizes. Consider the dictionary of size
200, after removing half of the dictionary still it shows good
accuracy. Two confusion matrices of dictionary of size 100
and it’s optimized dictionary of size 50 using our method
are shown in the Table VI and VII, respectively. It can be
observed that there is a minute variation in the recognition
performance which clearly indicates that this proposed method
retains maximum discriminative information while optimizing.

E. Evaluation on the HMDB action data
Here we conducted experiment with very challenging

dataset discussed in previous sections. There are 51 actions
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TABLE VI: Confusion matrix of KTH dataset using initial dictionary of size 100

boxing clapping handwaving jogging running walking
boxing 1.0 0 0 0 0 0
clapping 0 0.92 0.08 0 0 0
handwaving 0 0.03 0.97 0 0 0
jogging 0 0 0 1.0 0 0
running 0 0 0 0 1.0 0
walking 0 0 0 0 0 1.0

TABLE VII: Confusion matrix of KTH dataset using optimized dictionary of size 50.

boxing clapping handwaving jogging running walking
boxing 1.0 0 0 0 0 0
clapping 0 0.92 0.06 0.02 0 0
handwaving 0 0.06 0.94 0 0 0
jogging 0 0 0 1.0 0 0
running 0 0 0 0 1.0 0
walking 0 0 0 0 0 1.0

categories in this dataset. In this experiment, the dataset is
divided into 10 folds in which 9 folds are used for training and
remaining one for testing. We achieved recognition accuracy
of 36.70% compared to 26.9% [45] which is benchmark
result using action bank features. The Table III compares the
proposed method with KNN and SVM in which the time taken
for SVM classifier is more than double of testing time of our
method because of the large input data. In case of KNN,
it got only 26.59% compared to our accuracy of 35.32%.
Recognition accuracy and computational time of initial and
optimized dictionaries are shown in Table IV. We have learned
dictionaries of size 900 and 650 with sparsity T=10. The
dictionary of size 650 is optimized into 590 dictionary by
removing 60 atoms, but recognition accuracy only vary from
35.32% to 35.17%. There are 300 atoms removed from the dic-
tionary of size 900 and it can be seen that recognition accuracy
reduced 4.4% in the optimized dictionary, but computational
time reduced drastically. There is more information loss in this
compared to previous dataset because of the high variability
and large number of classes in the dataset, but still it gives
comparable performance.

VI. CONCLUSION

In this paper, we proposed well discriminative and compu-
tationally efficient dictionary optimization method. Dictionary
learning is the fastest way to get initial dictionary rather than
clustering approach used in previous approaches [4] [32]. In
this work, we formulated constraint information optimization
problem where we minimized mutual information between
optimized dictionary and initial dictionary while maximizing
mutual information between optimized dictionary and class
labels. The discriminative dictionary is obtained by removing
redundant atoms using Jensen-Shannon divergence which is
simple and computationally effective way to find similar distri-
bution in atoms among classes. Hence, this proposed approach
can be applied to large amount of data. Experiments on three
benchmark datasets proved that the proposed approach not
only retain discriminative information, but computationally
efficient when compared to other similar kind dictionary
optimization. In the future work, we concentrate on updating

representative dictionary atom of similar group with respect to
removal of atoms in order to minimize loosing discriminative
information.
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