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Abstract—Representation of spatio-temporal properties of hu-
man body silhouette and human-to-ground relationship, signif-
icantly contribute to the fall detection process. So, we propose
an approach to efficiently model the spatio-temporal features
using fall motion vector. First, we construct a Gaussian mixture
model (GMM) called fall motion mixture model (FMMM) us-
ing histogram of optical flow and motion boundary histogram
features to implicitly capture motion attributes in both the fall
and non-fall videos. The FMMM contains both fall and non-
fall attributes resulting in a high-dimensional representation. In
order to extract only the relevant attributes for a particular fall
or non-fall videos, we perform factor analysis on FMMM to get
a low dimensional representation known as fall motion vector.
Using fall motion vector, we are able to efficiently identify fall
events in varieties of scenarios, such as the narrow angle camera
(Le2i dataset), wide angle camera (URFall dataset), and multiple
cameras (Montreal dataset). In all these scenarios, we show that
the proposed fall motion vector achieves better performance than
the existing methods.

Keywords - Human fall detection, surveillance videos, Gaus-
sian mixture model, fall motion vector, and factor analysis.

I. INTRODUCTION

Human fall is an abnormal activity that occurs due to an
abrupt loss of balance by being startled that causes slipping.
These falls may cause long term disabilities, and even death
due to absence or delay of assistance. As the world population
by the year 2050 would consist of 20% of the elderly (over 65
yrs age) people [1], an automatic human fall detection system
is required for effective monitoring. The detection systems
for human fall is mainly categorized into two types, namely,
wearable sensor-based systems and computer vision-based
systems. Also, various sensor [2-4] and vision-based methods
for human activity recognition are presented in [5]. Wearable
sensor-based systems employ different multiple-sensors like
the heartbeat [6, 7], gyroscope [8], a comprehensive data
acquisition system [9], etc., connected to the body of each
person, who is prone to fall. The measurements used in the
wearable sensor-based systems are computationally intensive,
e.g., frontal area calculation and skeletal joint expectation, to
determine an abnormal human activity. Also, these sensor-
based systems impose an individual person to wear the sen-
sors. Usually, people may forget or sometimes do not feel
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comfortable wearing such sensors. In such scenarios, video
surveillance systems can be used to continuously monitor
persons passively. When an abnormal activity (like the fall
event) occurs, computer-vision based systems send an alarm
to the concerned care taker for an immediate assistance that
helps in advancing the well being of the person. Surveillance
videos have become a prominent medium, which avoids the
constraint of wearable devices, in monitoring the activities of
the people, who are prone to fall.

Surveillance video cameras provide vital information useful
for observing the behavior of people during the fall event.
These videos are recorded using either single or multiple
cameras. Single cameras do not capture all the directions of
human fall, such as anterior, posterior, left, and right falls. The
view-point changes in camera requires a new training approach
[10] to help in searching the candidate regions. Using multiple
cameras, the direction of fall can be captured with different
fields of view. These videos provide an insight into the
changes in human body silhouette, head pose, and the human-
to-ground relationship compared to wearable sensors. Visual
cues from these video sequences are useful in establishing a
human fall detection system. Typically, a human fall includes
a sequence of events, such as movement history, abnormal for-
ward, backward, or side-way movements, and the human-to-
ground relationship. However, multiple perspectives, shadows,
and non-uniform illumination in the surveillance videos pose
various challenges in determining the co-occurrences of the
events in spatio-temporal domain. Also, deceptive events such
as unexpected sitting, picking up an object, by bending down
make the detection process further complex.

In literature, fall detection methods in the surveillance
videos focus on the extraction of shape and geometry of the
person to recognize their irregular movements. However, the
performance of these methods are influenced by the shadow of
a person and view-point. Deep learning methods using convo-
lutional neural networks (CNN) and long-short time memory
(LSTM) networks learn spatio-temporal features automatically
from the large amount of data. However, it is difficult to obtain
the annotated videos of the fall events, as these are rare events.
To circumvent these problems, a 3D-CNN based human fall
detection [11] is proposed where kinematic data in the training
process is employed to extract the features automatically. Ad-
ditionally, spatio-temporal information is incorporated using
LSTM. In [12], a human fall detection approach is explored
that uses information from multiple ultra-wideband (UWB)
radars without the need for identification of the person.

In this paper, we propose an approach for fall motion vector
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modelling to detect human fall in surveillance videos. We
employ both histogram of optical flow (HOF) and motion
boundary histogram (MBH) to describe the spatio-temporal
characteristics, termed fall motion attributes, in the surveil-
lance videos. These spatio-temporal features are used in the
training of a single Gaussian mixture model (GMM) to ob-
tain a fall motion mixture model (FMMM). This FMMM
encompasses a large number of mixtures for modelling the fall
motion attributes, which are captured implicitly by estimating
probability density function (pdf) that generates a particular
fall event. We obtain a high-dimensional vector by concate-
nating the mean adaptation of the mixtures of FMMM, which
contains the redundant attributes from all the videos. Hence,
we perform factor analysis on this high-dimensional vector
to obtain a low-dimensional fall motion vector (FMV), which
retains only the important attributes relevant for the detection
of the fall event. The main contributions of the proposed work
are summarized as: (i) A fall motion mixture model (FMMM)
is constructed to learn the fall motion attributes implicitly
from the surveillance videos. (ii) An efficient low-dimensional
representation called fall motion vector is obtained for fall
and non-fall activities. (iii)) The efficacy of the proposed
method is demonstrated on the surveillance videos consisting
of the narrow angle camera (Le2i dataset), wide angle camera
(URFall dataset), and multiple cameras (Montreal dataset).
The rest of this paper is organized as follows. Section 2
presents the literature of fall detection methods in videos. The
proposed approach for the detection of human fall events is
described in Section 3. In Section 4, we discuss experimental
results of the proposed method. Finally, conclusion and future
directions are presented in Section 5.

II. RELATED WORK

This section presents the existing computer-vision based
methods for fall event detection in the surveillance videos. The
human fall detection process becomes difficult in surveillance
videos, mainly due to the deceptive events, such as picking
up an object from the ground, sitting due to tiredness, tying
shoes, etc. The existing methods for fall detection primarily
focus on separating the foreground from its background in
each frame of the video to obtain cues. These cues help the
detection process in determining the type of an event. A set of
algorithms for background-subtraction are analyzed in [13], to
obtain spatio-temporal information in determining a fall event
from a video sequence. This analysis is helpful in finding the
background-subtractor algorithm and optimized their parame-
ters using genetic algorithm. This improves the performance
in detecting the human falls, especially in the night-time
environment. Motion history image (MHI) is used in [14] to
assess the fall behaviours by separating the foreground from
background. Further, the fall activity is determined with the
help of acceleration and angular acceleration fall features.

In addition to foreground and background separation, the
perception of a quick change in the posture of a human is also
examined in distinguishing the fall events from other events. A
Gaussian mixture model (GMM) based adaptive background
subtraction method is used for object detection. And, a set of

features such as aspect ratio, horizontal and vertical gradient
values of an object, and fall angle are used to describe a
fall model. A two-state finite state machine (FSM) was im-
plemented to continuously monitor human activity. However,
this method detects the fall activity of a single person. The
fall detection method in [15] computes the measurements such
as distance and the angle between the lines joining three key
points, in representing the human posture. Subsequently, a fall
event is classified by the change of posture state. Stone and
Skubic proposed a two-stage system [16] for fall detection.
In the first stage, the vertical state of a segmented object is
characterized and their time-series data is used to identify on-
ground events. The second stage determines the confidence
of a fall event by combining the decision trees and features
extracted from the on-ground event.

The shape features used in the action detection methods
have also been extended for fall event detection. The features
describing the shape variation and motion history of a person
are explored in [17, 18] for video based fall detection. In
[17], the shape variation is quantified as timed motion history
image (tMHI) by approximating the person with an ellipse
using moments and orientation of the ellipse. Eventually, the
standard deviation of difference between maximum values of
histograms of the horizontal and vertical projection are used
to identify the fall activity. In [18], the integrated spatio-
temporal energy (ISTE) map is used to measure the intensity
of human motion. The causality of the post and pre-events
of the slip-only and fall events are modelled using Bayesian
Belief Network (BBN).

Some methods for fall detection also explored the fea-
tures derived from neural networks and machine learning
approaches. In [19], feature learning methods are applied
over the training samples constructed using ViBe [20], which
extracts humans in a specific resolution. A feature vector for
human fall detection is described in [21], which combines
histograms of oriented gradients (HOG), local binary pattern
(LBP) and deep features of the video frames. A classifier based
on K-Nearest Neighbor is used in [22], over the features such
as orientation angle, ratio of fitted ellipse, motion coefficient,
and silhouette threshold to detect falls. In [23], the method uses
Gaussian mixture model and principle component analysis
(PCA) to identify the fall events. Also, they mentioned the
sensitivity of the technique, which cause false detection due
to the change in aspect ratio and angle of major axis in every
frame. Thus, a consecutive-frame voting is introduced in [24]
to improve the fall detection accuracy.

In the fall detection process, the perception of a quick
change in the posture of a human in timely manner helps in
the detection of the fall event accurately. A monitoring scheme
using a multivariate exponentially weighted moving average
(MEWMA) [25] captures even small changes, which is used
to detect falls effectively. Further, SVM based classification
is applied over detected sequences to differentiate gestures
that resembles fall activity. This methodology was validated
on the University of Rzeszow fall detection dataset (URFD)
and the fall detection dataset (FDD). A stereo-vision based
method [26] for human fall detection estimates the human
pose in 2D based on deep learning approach. In addition,
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both human key points and ground plane in 3D are achieved
using depth information. These measures are used to outline
the reasons for concluding a human fallen activity. In [27], the
method provides a human readable summarization of activity
& the detection of human unusual inactivity. A maximum a
posteriori estimation of Gaussian mixture model is used to
capture inactivity zones and entry zones with their spatial
context. The unusual inactivity detection helped as cue to
demonstrate the fall detection.

The ability of 3D-CNNSs is exploited in [28] to obtain an
effective representation from the videos by modelling both the
appearance and motion simultaneously. A deep auto encoder
network [29] with the combination of 3D-CNN and Convo-
lution Gated Recurrent Units (GRU) is employed to learn
both local and global spatial features in the spatio-temporal
dimension. Recently, a fall detection method based on LSTM
[30] has been proposed and evaluated on publicly available
fall detection datasets and a complex-scene fall event dataset,
introduced in [30]. This method initially uses YOLO v3 model
to detect objects and Deep-Sort tracking algorithm to track the
detected multi-objects, especially during occlusion. Next, an
attention guided LSTM model is employed to obtain spatio-
temporal features, which helps to distinguish three disturbing
events from three kinds of falls, namely, forward, backward,
and sideways directions.

However, the existing methods for fall detection in surveil-
lance videos involve combination of various tasks such as
foreground and background separation, object detection, and
tracking. In contrast, our proposed method models fall events
by training a fall motion mixture model (FMMM) using his-
togram of optical flow (HOF) & motion boundary histogram
(MBH) features, to capture the fall motion attributes implic-
itly from all videos. These attributes include spatio-temporal
properties of the human body silhouette, abnormal forward &
backward, and side-way movements. A low-dimensional fall
motion vector is obtained to provide efficient representation
of fall and non-fall events.

III. PROPOSED WORK

Figure 1 presents the block diagram of the proposed fall de-
tection method with various stages, such as feature extraction,
fall motion mixture model construction, and fall motion vector
extraction. These stages are carried out in sequence to obtain
an efficient representation for fall event detection, which are
explained in detail in the following subsections.

A. Feature extraction

A fall event is composed of a sequence of spatio-temporal
properties corresponding to the human body silhouette. We
employ both histogram of optical flow (HOF) & motion
boundary histogram (MBH) descriptors from surveillance
videos. The feature points that are densely sampled at multiple
spatial scales are tracked across consecutive frames by using
dense optical flow. These feature points of consecutive frames
are concatenated to form a trajectory. Usually, trajectories drift
away from its initial locations while tracking, so the length of
the trajectory is set to L, = 15 frames [31-33].
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Fig. 1: The block diagram of fall motion vector modeling.

In order to extract motion information of the fall event,
local descriptors like histogram of optical flow (HOF) &
motion boundary histogram (MBH) are computed around the
trajectory within a spatio-temporal volume (of size N x N
pixels and L, frames). The volume is subdivided into grids
of size np X n, X ng where np, n,, and n; are height,
width, and temporal segment lengths (typically ny = n,, = 2,
and n; = 3), respectively, to attain the structure information.
The orientations of HOF descriptor are quantized into 9 bins
resulting in a dimension of 108 (2 x 2 x 3 x 9). Further, MBH
helps to remove the background camera motion induced by
the optical flow with the computation of its spatial derivatives
across X & y directions. The orientation of obtained derivatives
is quantized into a histogram of 8 bins i.e., MBHx of 96
(2x2x3x8) & MBHy of 96 (2 x 2 x 3 x 8) dimension.
Parameters considered for the space-time volume size i.e.,
2 x 2 x 3 are found to be optimal after cross-validating
on the training set of our datasets. And it is observed that
further increase in the number of cells beyond 2 x 2 x 3 does
not improve the performance similar to [32]. The obtained
HOF and MBH descriptors are used in the fall motion vector
modelling to analyze the dynamics of fall and non-fall events.

B. Fall motion mixture Model (FMMM)

Each video is considered as a random process, assumed
to be a Gaussian probability distribution function (pdf). To
compute the pdf of these random processes, the parameters are
estimated by training a Gaussian mixture model (GMM) [33]
for fall and non-fall videos, where the number of mixtures 32,
64, 128, 256, and 512 are chosen empirically for construction
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of fall motion mixture model (FMMM). This FMMM is a
GMM which captures the fall motion attributes represented as

K
D= weN (x|, ok), (1)

k=1

where welghts of the mixture wj satisfy the constraint
Zk 1w = 1. The mean and covariance for the mixture
k of the FMMM are given by p; and oy, respectively. A
feature x; is the component of a video x expressed as a set
of feature representations {x1,Xs, - ,Xz,}. Then, we train a
separate FMMM for HOF, MBH, and concatenated features of
both HOF & MBH descriptors using expectation maximization
(EM) algorithm. In order to estimate the pdf of a clip, a
maximum a posteriori (MAP) adaptation is performed using
the features of the fall and non-fall video clips [33] to improve
the contribution of the features existing in that video clip.

C. Fall motion vector (FMV)

The posterior probability p(k|x;) of the mixture k and the
feature vector x; (of size d x 1) for a video clip x is given by

wip(x)k)
Zszl wkp(xl |k) ’

where p(x;|k) is the likelihood of x; coming from a mixture
k. Using the posterior p(k|x;), the Baum-Welch statistics of
each video clip x are computed by

p(klxi) = 2)

L
nk(x) =Y plklx), (3a)
=1

and

&~

H; (

(3b)
=1

We adapt the weights and means of every mixture in the fall
motion mixture Model (FMMM) for a particular video clip x
as

Wy = ang(x)/L+ (1 — 0)w (4a)

and

o, = oHg(x) + (1 — a)p, (4b)

respectively. We concatenate the adapted means of K mixtures
to form a feature vector of dimension Kd x 1. The attained
feature vector is called a fall motion vector (FMV) represented
by f(x) = [ft1fty - - - frg]?. This fall motion vector is of high-
dimension and contains redundant features that do not con-
tribute to particular event. So, we obtain the low-dimensional
representation of FMV using factor analysis on the high-
dimensional fall motion vector f, which is decomposed as

f=v+Tq, &)

where v represents the mean of the fall motion mixture model
(FMMM), T represents a rectangular variability matrix of
Kd x r dimension, & q is a vector of r-dimension, assuming

4

the Gaussian distribution A (0,I) [33]. Here, fall motion vec-
tor (FMV) is determined by posterior probability P(q|x) after

noticing the video x indicated as P(q|x) o< P(x|q)N(0,1)
_ 1
X exp (tht 1j"(x) qut (x)="'Tq - thq) ,

= exp (thE_lf(X) - ;th(X)Q> )

= exp (—;(q — N(x))'M(x)(q — N(x))) X constant.
(6)

where 3 represents the diagonal covariance of Kd X Kd
dimension. Also, the matrix N(x) = M~ (x)T'S~'f(x).
Here, f(x) is centered fall motion vector due to the posterior
probability of q conditioned on the statistics of Baum-Welch
algorithm of the video and centered over means of FMMM.
The first order statistics of Baum-Welch algorithm of FMMM
can be computed using Hy(x) = ZZL 1 plk|x) (%1 — ).
Here, f (x)_is given by concatenating the obtained first order
statistics f(x) = [Hy(x)Hy(x)---Hg(x)]". The matrix
(M(x)) can be written as M(x) = I + T*3X~'D(x)T. Here,
D(x) is Kd x Kd diagonal matrix with diagonal blocks of
nk(x)L, for k = 1,..., K & Iis dxd identity matrix. Following
are the mean & covariance matrix of the posterior probability:

Elq(x)] = M~ 1{(x)T'S (%) (7a)

Cov(q(x),q(x)) = M~} (x).

In Expectation Maximization algorithm, the E step estimates
the posterior mean & covariance iteratively and in M step,
T & X are updated using the same statistics. The mean and
covariance of fall motion mixture model (FMMM) are defined
as v and 3. The initial matrix is computed by taking the matrix
T and a suitable rank r. Then Equations 7a & 7b are used
to compute E[q(x)] and Cov(q(x), q(x)). The matrix T is
computed in M-step as the solution of

S DETEx)G (%) =Y F&)EQ )], ©)

resulting in 7 linear equations. Here f (x) accounts for the
total number of features in the video. Since T is same for
all the videos, the left hand side is weighed by D(x) which
accounts for the number of features in the video.

For every mixture £k = 1,2, --- , K, the covariance matrix
3 is estimated as

1 -
e = o o (2); Jr(x) — Mk> : 9)

where Mk represents the k*" diagonal blockt of the Kd x Kd
matrix £ 3" f(x)Elq!(x)| T+ TE[q(x x)]f (x). The second-

order Baum Welch statistics of the video Jj(x) is computed
as

(7b)

L
Ji(x) = diag (ZP(MXZ)(XI — ) (x1 — uk)t> - (10)

=1
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The fall motion vector (FMV) for each fall and non-fall
video is estimated after the last iteration of M-step using

ax) = I+ TE'DE)T) T f(x).  (11)

This process of decomposing the high-dimensional fall mo-
tion vector to low-dimensional is called factor analysis. The T-
matrix consists of the eigen vectors of the largest r eigenvalues
of the covariance matrix. It is hypothesized that these large
eigenvalues come from the Gaussian mixtures, that model
the motion profile in the video. Now, the fall motion vector
(FMV) can be projected onto a r-dimensional motion profile
vector using T. Subsequently, a polynomial support vector
machine is employed over fall motion vectors to categorize
the fall/non-fall videos. The computational complexity of the
MAP estimation [34] for fall motion vector (q) given in Eq.
7ais O(Kdr + Kr? +r®), where K is the number of GMM
mixtures in FMMM, d & r represent the dimension of feature
vector and fall vector, respectively.

IV. EXPERIMENTAL RESULTS

In this section, we analyze the performance of the proposed
method on the three varieties of benchmark fall detection
datasets, namely, Le2i [35], URFall [36], and Montreal [37].

A. Datasets used

The video datasets are composed of several simulated
normal daily activities and fall events involving one or more
persons recorded from single & multiple cameras. Normal
daily activities in these videos include human walk in various
directions, housekeeping activities, crouching down, sitting
down, standing up, etc. Whereas, videos of simulated falls
consist of forward, backward, left, and right directions along
with unexpected sitting, loss in balance, etc.

Le2i dataset- Le2i [35] is a standard RGB based fall
detection dataset consisting of 130 fall and non-fall scenes
recorded at 25 frames per second by 17 actors using a single
camera. The average duration of all videos is about 1 minute,
where the person either falls or continues performing a daily
activity. The videos are recorded in different locations such as
“Home”, “Coffee room”, “Office”, and “Lecture room” with
high variance between fall and non-fall events. This helps in
accurately simulating realistic video sequences that can be
found in home environments.

URFall dataset- URFall [36] is another conventional fall
detection dataset containing 100 RGB videos, which consists
of 60 fall events and 40 daily living activities. These fall videos
are recorded with two Kinect cameras and its accelerometric
data. Activities of daily life videos are recorded with only one
camera and an accelerometer.

Montreal dataset- Montreal dataset [38] contains 24 sce-
narios recorded with 8 video cameras. The first 22 scenarios
contain both fall and non-fall events. The last 2 scenarios
contain only non-fall events.

In all the above three datasets, videos are recorded at 25
frames per second with the resolution of 320 X 240 pixels on
an average. Few sample frames of these datasets are shown
in Figures 2, 3, and 4. Both the normal daily activities and

TABLE I: Classification performance (in %) of the proposed
method on Le2i, URFall, and Montreal datasets.

Le2i URFall Montreal
3D-CNN | HOF+MBH | 3D-CNN | HOF+MBH | 3D-CNN | HOF+MBH
32 69.57 78.50 71.00 32.00 98.21 99.13
64 68.14 63.84 70.00 47.00 99.30 99.82
128 62.59 47.69 74.00 78.00 98.64 98.70
256 58.23 53.84 71.00 80.00 96.85 97.19

the simulated falls in these three datasets are segregated into
non-fall and fall events, respectively. We split each dataset into
70%-30% training and testing ratio in the experimental setup.

B. Analysis of fall motion vector on three datasets

We have trained 6 fall motion mixture models, 2 each on
Le2i, URFall, and Montreal datasets using histogram of optical
flow (HOF) with motion boundary histogram (MBH) features
and 3D convolutional neural networks (3D-CNN) features
separately. In our experiments, we use the features of conv5
layer from the pre-trained ResNet-101 backbone with 3D-
CNN architecture. We have considered 3D-CNN and HOF
+ MBH features separately to train the fall motion mixture
model (FMMM) due to their state-of-the-art performance in
action recognition tasks [33, 39]. The obtained fall motion
vector is passed to polynomial support vector machine (SVM)
[40] for the classification of fall and non-fall videos.

Le2i dataset: Table I presents the classification performance
of fall and non-fall videos using the proposed fall motion
vector modeling on Le2i dataset. It can be noted that the
proposed method gives better performance using histogram of
optical flow (HOF) with motion boundary histogram (MBH)
features compared to 3D-CNN features. The fall motion vector
of dimension 200 with 32 mixture components is able to
capture the fall motion attributes effectively. The visualization
of fall motion attributes of fall and non-fall videos is shown in
Figure 5. It can be observed from the figure that the proposed
method clearly distinguishes between fall and non-fall videos.
Also, there are some misclassification of fall events because
the narrow angle view creates confusion between fall and non-
fall events.

URFall dataset: The classification performance of the pro-
posed method on URFall dataset is presented in Table I.
It can be observed that the proposed method gives better
performance using histogram of optical flow (HOF) with
motion boundary histogram (MBH) features compared to 3D-
CNN features. The fall motion vector of dimension 200 with
256 mixture components is able to capture the attributes of
fall/non-fall videos. Figure 6 depicts the visualization of fall
motion attributes on URFall dataset in the t-SNE plot. As can
be seen from the figure that there is a overlap of fall motion
attributes causing confusion between fall and non-fall events.

Montreal dataset: The classification performance of the
proposed method on Montreal dataset is given in Table I.
Videos in this dataset include redundant scene information
from multiple cameras. It is to be noted that the proposed
method with HOF and MBH features exhibits slightly better
classification performance compared with 3D-CNN features.
The fall motion vector (FMV) of size 200 with 64 mixture
components using HOF and MBH features is able to retain
only the significant attributes of fall/non-fall videos. The
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Fig. 5: 3D t-SNE plot for Le2i dataset.
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Fig. 6: 3D t-SNE plot for URFall dataset.
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Fig. 7: 3D t-SNE plot for Montreal dataset.

visualization of fall motion attributes on the Montreal dataset
is shown in Figure 7. It can be observed that there is a
confusion between some fall and non-fall events resulting into
misclassification. The reason for these misclassifications may
be due to multiple camera views that will cause confusion of
human fall attributes.

Since our objective is to get best possible classification per-
formance, we chose the fall motion mixture model (FMMM)
trained on HOF+MBH even though it has more mixture com-
ponents than the 32 mixture FMMM using 3D-CNN features.

C. Performance Comparison with Existing Approaches

In this section, we present the performance comparison of
our proposed approach for human fall detection with existing
methods using metrics such as recall, precision, specificity,
and Fl-score. The number of correctly predicted fall events
are quantified in terms of precision. Recall is the ability to
classify the correct fall as a fall, and the specificity is the

Fig. 3: URFall dataset

a

Fig. 4: Montreal dataset

ability to classify the non-fall correctly as non-fall. The trade-
off between precision and recall is determined using F1-score.

Le2i dataset - Existing computer vision-based methods
explored various properties of human movements in Le2i
dataset in order to determine the human fall events. Charfi
et al. considered a set of properties of the human bounding
box for classifying the fall and non-fall videos using support
vector machine (SVM). These properties include height, width,
orientation, the trajectory of the bounding box in order to
track the human body silhouette. Chamle et al. employed
gradient boosting classifier [41] to determine the fall event
based on the features, such as fall angle, aspect ratio, and
silhouette height. Poonsri et al. [24] determined the events
by extracting the aspect ratio, orientation, and area ratio from
the human silhouette using the principal component analysis
(PCA). Due to the single camera recording, the axis aligned
human movements in Le2i dataset are not captured properly
using existing methods. Whereas, our method learns the fall
motion attributes implicitly in order to capture the changes in
human body silhouette. Our proposed method achieves better
performance on Le2i dataset as compared to the existing three
vision-based approaches given in Table II.

TABLE II: Comparison of the proposed method with the
existing methods on Le2i dataset.

Method Average Average | F1
Precision | Recall score
Charfi et al. [37] 0.990 0.980 0.985
Chamle et al. [41] 0.794 0.843 0.818
Poonsri et al. [24] 0.891 0.931 0911
Ours (3D-CNN) 0.815 0.930 0.868
Qurs (HOF+MBH) | 0.995 0.989 0.991

URFall dataset - Smriti et al. [42] used optical flow and
Harris corner detector to obtain the interest points from the fall
and non-fall videos of URFall dataset. These interest points are
passed to SVM in order to classify the fall/non-fall videos.
Feng et al. [30] used the combination of spatial and temporal
features in order to detect the human and also used the Deep-
Sort algorithm for subsequent tracking during occlusions. Due
to wide-angle camera, the vignetting effect would influence
the spatio-temporal features in the video. Table III shows
the performance comparison of the proposed method of two
vision-based approaches [30, 42] on URFall dataset.

Montreal dataset - Shengke et al. [19] extracts the his-
togram of oriented gradients (HOG) features from each video
of Montreal dataset. The quantized HOG features based on
PCA-Net are used to classify the events into fall or non-
fall with support vector machine (SVM). Kun et al. [21]
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TABLE III: Comparison of the proposed method with the
existing methods on URFall dataset.

Method Average Average | F1
Precision | Recall score
Smriti et al. [43] 0.935 0.966 0.950
Feng et al. [30] 0.948 0914 0.931
Nabil et al. [44] - - 0.960
Ours (3D-CNN) 0.884 0.766 0.821
Ours (HOF+MBH) | 0.969 0.975 0.971

uses a combination of HOG and local binary pattern (LBP)
features in addition to deep features for the classification of
fall/non-fall videos. Feng et al. uses attention guided LSTM to
capture spatio (attention module) and temporal (LSTM mod-
ule) information. Table IV gives the performance comparision
of the proposed method with two existing computer vision-
based approaches [30, 42] on Montreal dataset. The proposed
fall motion vector model (FMV) is able to discriminate well
the human fall events from non-fall events on three different
human fall detection datasets.

TABLE IV: Comparison of the proposed method with the
existing methods on Montreal dataset.

Method Sensitivity | Specificity
Shengke et al. [19] 0.889 0.989
Kun et al. [21] 0.937 0.920
Feng et al. [30] 0.935 0.916
Ours (3D-CNN) 0.991 0.948
Qurs (HOF+MBH) | 0.993 1.000

In [11], the classification performance of 3D-CNN is eval-
vated on Montreal dataset by considering different frame
intervals. This method exhibits an average classification per-
formance of 99.73% on Montreal dataset with an interval of
one frame. Also, it can be seen that the increase of frame
intervals decreases the true positive rate (TPR) due to the
absence of frames relevant to fall events. It is also mentioned
that sampling of frame intervals help in reducing the com-
putation time, but does not improve the activity recognition
performance. This is evident from the experimental results of
the proposed method as given in Table 1.

V. CONCLUSION

In this paper, we presented an approach for human fall
detection in surveillance videos using a fall motion mixture
model (FMMM) representing fall and non-fall events. To
retain relevant attributes of a particular fall or non-fall videos
from fall motion mixture model, factor analysis is employed
on fall motion mixture model to get a low dimensional
representation known as fall motion vector. The efficacy of
the proposed method is demonstrated on varieties of surveil-
lance video datasets consisting of narrow angle camera, wide
angle camera, and multiple camera views. Also, the proposed
method exhibits improvement in the human fall detection in
surveillance videos over exiting methods. Some non-fall events
are classified as fall events because of the presence of similar
visual cues. So, the proposed method is unable to deal with
subtle variations of some fall and non-fall events. In future,
we would like to explore methods to handle variable-length
patterns of human fall videos.
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