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a b s t r a c t 

Fine-grained action recognition involves comparison of similar actions of variable-length size consisting of 

subtle interactions between human and specific objects. Hence, we propose a dynamic kernel-based ap- 

proach to handle the variable-length patterns for effective recognition of fine-grained actions. Initially, we 

extract local spatio-temporal features for each video to capture appearance and motion information ef- 

fectively. An action-independent Gaussian mixture model (AIGMM) is trained on the extracted features of 

all fine-grained actions to analyze spatio-temporal information and preserve the local similarities among 

fine-grained actions. Then, the statistics of AIGMM, namely, mean, covariance, and posteriors are used to 

build the kernels for finding the similarity between any two fine-grained actions by mapping statistics to 

kernel feature space. We demonstrate the effectiveness of proposed approach using three dynamic ker- 

nels i.e., GMM mean interval kernel, supervector kernel, intermediate matching kernel on four varieties 

of fine-grained action datasets, namely, MERL, JIGSAWS, KSCGR, and MPII cooking2 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The task of action recognition is to classify an action present 

n a video from a set of known actions. The actions can be 

roadly categorized into two types, namely, coarse-grained ac- 

ions and fine-grained actions. The coarse-grained actions involve 

ull-body activities, especially jumping, diving, cooking , etc., which 

re differentiated effortlessly due to high intra-class similarity. 

hereas, the fine-grained actions such as take plate, put in cup- 

oard, wash objects , etc., involving subtle interactions between hu- 

an and objects are difficult to distinguish because of the pres- 

nce of diverse objects, high inter-class, and low intra-class similar- 

ties. Fine-grained action recognition is used in many applications 

ike human-computer interaction, robotics, surveillance [1,2] , video 

escription [3] , and autonomous vehicles because of its ability to 

iscriminate the visually similar actions as shown in Fig. 1 . Fine- 

rained action recognition is a challenging task due to occlusion of 

bjects or actions, different duration in performing the same ac- 

ion, view-point variations, etc. 

Fine-grained action recognition requires extracting efficient 

patio-temporal features that provides both spatial and temporal 

ues. Traditional hand-crafted approaches, namely, spatio-temporal 

nterest points (STIP) [5] , 3D SIFT [6] , and improved dense tra- 

ectories (IDT) [7] extracts the spatio-temporal features to pro- 
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ide a video-based representation for action recognition. However, 

he number of feature vectors varies from one video clip to an- 

ther due to (i) variable number of interest points or sampled 

eature points obtained during the extraction of STIP or IDT fea- 

ures, and (ii) the variation in duration of a fine-grained action 

rom one actor to the other. For example, the duration of a fine- 

rained action ‘ reach to shelf ’ is 68 frames in Fig. 2 a, whereas the

ame fine-grained action takes 87 frames in Fig. 2 b. Convention- 

lly, Gaussian mixture models (GMMs) or hidden markov mod- 

ls (HMMs) are employed to aggregate these variable-length fea- 

ures by estimating the parameters of GMM or HMM to classify 

he fine-grained actions [8] . Later, deep learning approaches such 

s multi-stream networks [9] , 3D-convolutional neural networks 

3D-CNNs) [10] are explored to obtain the spatio-temporal repre- 

entation. These networks handle the variable-length features by 

ombining the feature vectors either by pooling or employing long 

hort term memory (LSTM) or Bi-directional long short term mem- 

ry (BiLSTMs) [11] . However, these networks require computation 

f large number of parameters, and are hard to train from end-to- 

nd [12] . 

To overcome the above challenges, we propose an approach 

or fine-grained action recognition using dynamic kernels. Initially, 

e extract spatio-temporal features, namely, histogram of optical 

ow (HOF) and motion boundary histogram (MBH) for each video 

lip. A large GMM, known as action independent GMM (AIGMM) 

s built on the extracted features of all classes to model the subtle 

ariations among fine-grained actions. Here, AIGMM aims to cap- 

ure the attributes representing fine-grained actions. Attributes are 

he basic units that collectively form a fine-grained action. For ex- 
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Fig. 1. Illustration of fine-grained actions in cooking activity from MPII cooking2 dataset [4] . An example of two visually similar actions (a) cut and (b) peel . 

Fig. 2. Duration of ‘ reach to shelf ’ fine-grained action from MERL dataset [13] . 
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mple, a cut action consists of attributes such as right-hand retract, 

eft-wrist rotate etc. The parameters of AIGMM such as mean, co- 

ariance, and posteriors are used to find the similarity among fine- 

rained actions by adopting various kernel methods. The kernel 

ethods calculate the distance between the local feature vectors & 

he parameters of AIGMM and transform the calculated distances 

o high-dimensional feature space for better discriminability [14] . 

he performance of kernel methods depends on the choice of 

ernel function. The kernel functions that focuses on handling the 

arying length feature vectors are referred as dynamic kernels. 

ynamic kernels handle the variable-length features by either 

apping to patterns of fixed length (probability based kernels) or 

electing the best feature vectors (matching based kernels). The 

robability based dynamic kernel utilizes the first-order (mean) & 

econd-order (covariance) statistics for calculating the distances. 

hereas, the matching based kernels select the local feature vec- 

ors that are close to AIGMM statistics for constructing the kernel. 

e explore various dynamic kernels to classify the fine-grained 

ctions which are of varying length. The effectiveness of our ap- 

roach is demonstrated on 4 varieties of challenging fine-grained 
2 
ction datasets, namely, MERL, JIGSAWS, KSCGR, and MPII cook- 

ng2. The main contributions of this paper can be summarized as: 

• We construct an action-independent GMM (AIGMM) using the 

local spatio-temporal features to preserve the local similarity 

among the fine-grained actions. 
• We propose an approach to handle the variable-length patterns 

of fine-grained actions by mapping the statistics of trained 

AIGMM onto kernel feature space. 
• Explored various dynamic kernels on 4 varieties of challenging 

fine-grained action datasets, namely, MERL, JIGSAWS, KSCGR, 

and MPII cooking2. The fine-grained actions in these datasets 

exhibits the issues like high intra-class variability, low inter- 

class variability, and occlusion. 

. Related work 

In this section, we discuss various existing approaches in the 

iterature for both coarse-grained and fine-grained action recogni- 

ion tasks. We also discuss different dynamic kernels used in vari- 

us domains to encode the variable-length patterns in this section. 
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.1. Coarse-grained action recognition 

Traditional methods represent the actions in a video by using 

everal features, namely, spatio-temporal interest points (STIP) [5] , 

DT [7] , etc. The STIP utilizes the Harris 3D corner detector to ob- 

ain the interest points that are tracked throughout the video. In 

rder to capture both spatial and temporal information, histogram 

f oriented gradients (HOG) and histogram of optical flow (HOF) 

eatures are extracted around these detected points. Similarly, the 

ensely sampled feature points are tracked in IDT across several 

rames to obtain the trajectory information. The HOG, HOF, and 

otion boundary histogram (MBH) features extracted around these 

eature points can effectively represent the spatio-temporal cues of 

n action. To encode the above-mentioned features, several aggre- 

ation frameworks such as BoW [15] , VLAD [16] , Fisher vector [17] ,

tc. are analyzed by clustering these features using either k-means 

lgorithm or Gaussian mixture models (GMMs). These frameworks 

xploit the multiple statistics of the clusters for better discrimina- 

ion of actions. 

Li et al. [18] extended the VLAD [16] by encoding the deep fea- 

ures for efficient action representation. To overcome the absence 

f temporal information in conventional CNNs, Tu et al. [9] pro- 

osed a multi-stream CNN to recognize the human actions by con- 

idering the most discriminative regions that are obtained using a 

otion saliency measure. It consists of two independent streams 

o capture the appearance and motion information of the regions 

f interest. Moreover, the multi-stream networks train the tempo- 

al and spatial streams independently. Wangli et al. [19] explored 

arious strategies to incorporate interaction between the temporal 

nd spatial streams. It is claimed that the dense connections be- 

ween these two networks integrate the spatial and temporal in- 

ormation at the feature representation level and knowledge distil- 

ation at higher-level layers. However, the multi-stream networks 

20,21] do not effectively model long-term temporal information 

ue to the limited temporal window size i.e., single frame for spa- 

ial stream and a stack of few frames for temporal stream. Hence, 

ang et al. [22] introduced a temporal segment networks (TSN) to 

odel long-term temporal structure by adopting a novel temporal 

ampling strategy to obtain the video-level representation for each 

ction. 

Later, 3D-CNNs [10,23] are introduced to capture the spatio- 

emporal information effectively by introducing 3D convolution 

nd mixed convolution filters, respectively. In order to address the 

ssue of computational overhead [12] of these models, Yang et al. 

24] proposed an asymmetric 3D convolutional network which 

elps in the reducing the number of parameters and hence the 

ower computational complexity. However, the fixed structure of 

he 3D convolution filter in both spatial and temporal dimensions 

estrict the learning capacity of action representation. Jun et al. 

25] addressed this problem by introducing the deformable atten- 

ive spatio-temporal 3D convnets to capture the appearance and ir- 

egular motions of action efficiently. Similarly, temporal shift mod- 

le (TSM) [26] is incorporated into 2D CNNs to model temporal 

nformation without additional computational cost. Although these 

pproaches can effectively classify coarse-grained actions such as 

ifting, diving , and running , etc., they fail to model subtle interac- 

ions between the human and objects, which are crucial for fine- 

rained action recognition. 

.2. Fine-grained action recognition 

The fundamental challenge in fine-grained action recognition 

s to recognise the actions that are visually similar to each other 

nd have subtle variations in motion. The global pooling of low- 

evel features restricts the local interaction motion information, 

hus attenuating the prominent discriminative information for 
3 
ne-grained action recognition [27] . Zhou et al. [27] presented a 

id-level approach by constructing the sub-graphs for recognising 

hese subtle variations. Initially, a spatio-temporal graph is con- 

tructed in which nodes are connected based on the appearance 

imilarity and trajectory strength. Here, nodes are the interaction 

egions generated by BING [28] . This graph is divided into sub- 

raphs using a graph segmentation algorithm. These sub-graphs 

re known to contain the information of interactions between hu- 

an and objects. Similarly, a graph is built with nodes as the 

bject proposals that capture the discriminative features of fine- 

rained actions [29] . Here, the object proposals are obtained by 

erging the interaction regions extracted in conjunction of the 

aliency map representing the histogram of motion. 

Later, Miao et al. [30] proposed a six-stream region-based CNN 

o address the problems of coarse-grained and fine-grained ac- 

ion recognition.The framework consists of 6 independent streams 

hose input images contain both appearance and motion cues by 

ropping them at different scales. The frames are cropped to hu- 

an region and interaction region to obtain the global and lo- 

al information of a fine-grained action. The feature descriptors 

rom 6 streams are concatenated to form an efficient represen- 

ation for better discrimination of fine-grained actions. However, 

his approach considers the spatial regions to contain prominent 

nformation of fine-grained actions neglecting the motion infor- 

ation during interactions. To capture the spatio-temporal infor- 

ation, additional blocks are incorporated to attend to clues cru- 

ial for fine-grained action recognition [31,32] . Recently, Han et al. 

32] utilized the triplet loss for training the convolutional neural 

etwork [33] to reduce the intra-class variance and increase the 

nter-class distance. 

.3. Dynamic kernels 

Dynamic kernel based approaches are explored in literature to 

andle the varying length data such as speech [34,35] , image [36] . 

ne of the dynamic kernels i.e., GMM supervector kernel based 

VM [37] is constructed by training a standard GMM using the 

aximum a posterior (MAP) adaptation to improve the classifi- 

ation performance. The adapted means of GMM are stacked to 

orm a mean supervector in order to deal with the view-point 

nd actor variations. Chang et al. [38] introduced the mean inter- 

al kernel (MIK) by extending the Bhattacharyya based SVM ker- 

el for better discrimination. The MIK exploits the first order and 

econd-order statistics of GMM to capture the underlying useful 

nformation. 

Boughorbel et al. [36] introduced a computationally efficient 

ynamic kernel i.e., intermediate matching kernel (IMK) for object 

ecognition. An IMK matches the set of local features by construct- 

ng a set of virtual features. These virtual features play the role of 

eature selectors by choosing the closest local features based on 

MM mixtures. As the number of virtual features is less than the 

ocal features, the computation time for IMK is low. 

Several methods have been explored to obtain the discrimi- 

ative representation for coarse-grained and fine-grained actions. 

owever, the major limitations of these approaches are: (i) inabil- 

ty to generalize well on the smaller datasets as they require a 

arge amount of labelled data for training, (ii) they are computa- 

ionally expensive, (iii) these networks obtain a representation by 

mploying the reduced version of the original frame. This might 

ause a loss of contextual information which limits the networks 

o achieve better discrimination, and (iv) most of the approaches 

pt for sampling strategies to obtain the fixed input size. In con- 

rast, our approach does not involve any kind of sampling strategy 

nd hence it preserves the subtle interactions among fine-grained 

ctions effectively. 
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Fig. 3. Block diagram of the proposed approach for fine-grained action recognition (best viewed in colour). 
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. Proposed approach 

To overcome the above challenges, we propose a framework to 

btain the efficient representation of fine-grained actions using dy- 

amic kernels. The block diagram of the proposed approach is pre- 

ented in the Fig. 3 . Initially, spatio-temporal features, namely, his- 

ogram of optical flow (HOF) & motion boundary histogram (MBH) 

re extracted around the sampled feature points to capture the 

ppearance and motion information, respectively. A large GMM, 

nown as action independent GMM (AIGMM) is built on the fea- 

ures extracted from all the training video clips to model the cor- 

elations of subtle interactions among fine-grained actions. The 

tatistics of learnt AIGMM are mapped onto dynamic kernel fea- 

ure space to classify the fine-grained actions efficiently. 

.1. Feature extraction 

Given an input video, the typical process of the recognition task 

s to extract spatio-temporal information for representing an ac- 

ion. We extract the spatio-temporal features around the densely 

ampled feature points to capture the crucial local motion infor- 

ation for modelling the subtle interactions in fine-grained ac- 

ions. Feature points are densely sampled for various scales and 

re tracked across several consecutive frames to obtain the dense 

ptical flow. This optical flow is considered to model the subtle 

nteractions between the human and objects by capturing the ab- 

olute motion information among the sampled feature points. A 

rajectory is obtained by concatenating the points from consecu- 

ive frames. Descriptors, namely, HOG, HOF, & MBH features are 

xtracted within the volume around the trajectory to capture the 

otion and appearance information. However, optical flow consists 

f background and camera motion that may bias the decision dur- 

ng action classification. Hence, we consider motion boundary his- 

ogram (MBH) features as it encodes the relative motion among 

ixels by computing spatial derivatives of optical flow leading to 

emoval of the constant camera motion. Also, these features are ro- 
4 
ust to irregular motions and can capture the motion information 

fficiently [7] . An independent GMM is trained for each of the ob- 

ained descriptors separately to model the subtle variations among 

he fine-grained actions. 

.2. Action-independent Gaussian mixture model (AIGMM) 

Conventionally, GMMs are used to encode the obtained spatio- 

emporal feature vectors by estimating the parameters of GMM 

sing maximum likelihood estimation. Hence, we construct a sin- 

le GMM using the training data of all actions known as Action- 

ndependent Gaussian mixture model (AIGMM) to model the at- 

ributes of different fine-grained actions. The AIGMM is repre- 

ented as 

p( x k | (w q , μq , �q )) = 

Q ∑ 

q =1 

w q N ( x k | μq , �q ) , (1) 

here w q are the mixture weights, satisfying the constraints, 0 ≤
 q ≤ 1 , and 

Q ∑ 

q =1 

w q = 1 . The μq represents the mean and �q de-

otes the covariance of the mixture q . The x k denotes either a HOF 

r MBH descriptor. We train a separate AIGMM for each feature de- 

criptor using Expectation maximization (EM) estimation. The EM 

lgorithm estimates the parameters by maximizing the likelihood 

unction given by Eq. (1) . After training of AIGMM, each mixture of 

MM is expected to capture an attribute of fine-grained actions. In 

rder to increase the contribution of the attributes present in the 

ideo clip, the parameters of AIGMM are adpated using maximum 

posterior (MAP) adaptation after observing each clip. The poste- 

ior probability of a AIGMM mixture, given the feature vector x k is 

ritten as 

p(q | x k ) = 

w q p( x k | q ) ∑ Q 
q =1 w q p( x k | q ) 

, (2) 

here w q is the prior probability of the particular mixture q . The 

ikelihood of the feature x coming from mixture q is represented 
k 
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s p( x k | q ) . The posterior probability p(q | x k ) and x k are used to

nd the weight, mean, and covariance parameters [8] by 

 q ( x ) = 

K ∑ 

k =1 

p(q | x k ) , (3) 

 q ( x ) = 

1 

n q ( x ) 

K ∑ 

k =1 

p(q | x k ) x k , (4) 

nd 

 q ( x ) = 

1 

n q ( x ) 

K ∑ 

k =1 

p(q | x k ) x 

2 
k . (5) 

espectively. The adapted weights, means, and covariance of each 

ixture q based on the posterior probability is given by 

ˆ 
 q = αn q ( x ) /K + (1 − α) w q , (6) 

ˆ q ( x ) = αF q ( x ) + (1 − α) μq , (7) 

nd 

ˆ 
q ( x ) = αS q ( x ) + (1 − α)(�q + μ2 

q ) − ˆ μ2 
q . (8) 

ere, α is the adaptating coefficient that maintains the balance be- 

ween the old and new estimates. 

.3. Dynamic kernels 

Kernel based approaches are proven to give better generaliza- 

ion performance for classification. Kernel methods construct an 

ptimal linear solution by non-linearly transforming the input fea- 

ure space to higher dimensional feature space. The performance 

f kernel methods depends on the choice of kernel function. The 

ernel functions i.e., dynamic kernels handle the varying length 

eature vectors by either mapping to fixed length patterns (prob- 

bility based kernels) or selecting the best feature vectors (match- 

ng based kernels) to represent an action. Although recent methods 

xploit neural networks for classification, SVM is dominant when 

he training samples for each class are few in number and can be 

rained efficiently [39] . For a multi-class classification problem, the 

VM based on the one-against-the-rest approach is used to dis- 

riminate the video clips of that class from video clips of all other 

lasses. The SVM is a supervised learning model, which minimizes 

he objective function 

 = 

1 

2 

n ∑ 

i =1 

n ∑ 

j=1 

αi α j y i y j K( x 

T 
i , x j ) −

n ∑ 

i =1 

αi , (9) 

here αi are lagrange’s multipliers and n is the number of video 

lips. K( x T 
i 
, x j ) is the dynamic kernel function to obtain similarity 

etween two vectors. We construct various dynamic kernel func- 

ions in the following sub-sections to achieve better discrimination. 

uring the testing process, the decision function for the test exam- 

le x t is given by 

f ( x t ) = sign 

(
m ∑ 

i =1 

αi y i K( x i , x t ) + b 

)
. (10) 

he sign value of f ( x t ) is used to determine the class of x t . 

.3.1. GMM supervector kernel (GMMSVK) 

To determine the similarity between two fine-grained actions, 

e use the adapted means ˆ μq ( x ) of each clip obtained from 

q. (7) of AIGMM for constructing the GMMSVK kernel. The GMM 
5 
upervector �s v ( x ) is constructed by concatenating the GMM vec- 

ors ϕ q (x ) = 

[ √ 

w q �
− 1 

2 
q ˆ μq (x ) 

] T 
of every mixture of AIGMM as 

s v ( x ) = [ ϕ 1 ( x ) T , ϕ 2 ( x ) T , ϕ 3 ( x ) T , . . . . ϕ Q ( x ) T ] T . (11) 

ince, the dimension of GMM vector is of K for each of Q AIGMM 

ixtures, the dimension of GMM supervector leads to Q × K. Fi- 

ally, a GMMSVK for x m 

& x n examples is given by 

 s v ( x m 

, x n ) = �s v ( x m 

) T �s v ( x n ) . (12) 

he calculation of GMMSVK involves computations of (i) Q × (L m 

+ 

 n ) for mean adaptation, (ii) Q × (K 

2 
l 

+ 1) for supervector, and 

iii) K 

2 
s for GMMSVK. Here, Q denotes the number of mixtures in 

IGMM, L m 

& L n are the number of feature vectors for examples x m 

 x n , respectively. K l represents dimension of feature vector and K s 

s dimension of supervector. Therefore, the total computation com- 

lexity of GMMSVK is O (QL + QK 

2 
l 

+ K 

2 
s ) . 

.3.2. GMM mean interval kernel (GMMMIK) 

Besides the adapted means, second-order statistics (covari- 

nces) provide the additional information about the distribution of 

ne-grained actions. Hence, the MIK exploits the first & second- 

rder statistics of GMM by constructing the mean and covariance 

tatistical vectors to capture the underlying useful information. The 

dapted means and covariances obtained from Eqs. (7) and (8) are 

tilized to build the GMMMIK kernel. 

The GMM mean vector ϕ q ( x ) for a video clip x is given by 

 q ( x ) = 

(
ˆ �q ( x ) + �q 

2 

)
− 1 

2 ( ̂  μq ( x ) − μq ) . (13) 

he first term of Eq. (13) represents the degree of consistency of 

ovariance matrices and second term gives the measure of devia- 

ion of means from the adapted means of AIGMM. The GMM mean 

ectors are concatenated to form a GMM mean supervector of di- 

ension Q × K as 

m v (x ) = [ ϕ 1 (x ) T , ϕ 2 (x ) T , ϕ 3 (x ) T , . . . ϕ Q (x ) T ] T . (14)

inally, GMMMIK for examples x m 

& x n is given by 

 m v ( x m 

, x n ) = �m v ( x m 

) T �m v ( x n ) . (15) 

The computation of GMMMIK involves computing mean adap- 

ation, covariance adaptation, supervector computation, and GMM- 

IK computation. Hence, the total computation complexity of GM- 

MIK is given by O (QL + Q(K 

2 
l 

+ K l ) + K 

2 
s ) . Due to the estimation

f first & second-order statistics, the computational complexity of 

IK is high. 

.3.3. Intermediate matching kernel (IMK) 

Intermediate matching kernel (IMK) is one of the match- 

ng based dynamic kernels that computes the similarity between 

wo fine-grained actions by finding the closest feature vectors. 

n IMK uses the set of virtual feature vectors denoted by V = 

 v 1 , v 2 , . . . . v Q } to match the set of local feature vectors. Now, IMK

s constructed as 

 imk ( x m 

, x n ) = �Q 
q =1 

k ( x 

∗
mq , x 

∗
nq ) . (16) 

ere, the feature vectors from examples x m 

and x n closest to q th 

irtual feature vector v q is given by 

 

∗
mq = argmin x ∈ x m D ( x , v q ) , (17) 

nd 

 

∗
nq = argmin x ∈ x n D ( x , v q ) , (18) 

here D (., . ) is the distance from virtual feature vector in V to 

 local feature vector in x m 

or x n . The virtual feature vectors are 
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Table 1 

Classification accuracy (%) of different dynamic kernels on 

various number of mixtures for MERL dataset. 

GMMSVK GMMMIK IMK 

HOF MBH HOF MBH HOF MBH 

32 77.9 79.7 89.2 93.6 54.4 59.6 

64 81.0 83.6 90.9 94.0 65.2 77.9 

128 84.3 85.5 94.2 96.5 91.3 92.1 

256 80.7 82.4 93.4 96.3 78.1 84.1 

512 79.1 81.0 92.1 94.2 67.9 65.6 
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epresented effectively by incorporating the mixtures of AIGMM 

p(q | x k ) as additional information using Eq. (2) . The use of local

eature vectors with mixtures of AIGMM induces information about 

ean vectors, covariance matrices, and mixture coefficients. The 

ocal feature vectors selected using the posterior probability for 

ixture q are given by 

 

∗
mq = argmax x ∈ x m p(q | x k ) , (19) 

nd 

 

∗
nq = argmax x ∈ x n p(q | x k ) . (20) 

The computation of IMK involves measuring of Q(L m 

+ L n ) dis- 

ances resulting in total computational complexity of O (QL ) . The 

otal computations are less than the probabilistic based dynamic 

ernels when the number of mixtures Q is smaller than L m 

& L n . 

. Experiments 

In the proposed approach, we calculate motion information 

y extracting descriptors such as HOF & MBH within the spatio- 

emporal volume of size (2 × 2 × 3) . The orientations of the de- 

criptors are quantized into 9 bins resulting in a dimension of 108 

2 × 2 × 3 × 9) for HOF descriptor. In order to eliminate the back- 

round noise information captured during the extraction of opti- 

al flow, we compute spatial derivatives of the optical flow along 

he x and y directions. The orientation of these spatial derivatives 

re quantized into a 8 bin histogram for MBHx, MBHy separately 

esulting in the descriptor size of 96 (2 × 2 × 3 × 8) each. A sin-

le GMM is trained on the HOF and MBH descriptors separately 

or various mixtures ranging from 32, 64, 128, 256, and 512. The 

arameters of every GMM mixture are adapted using its poste- 

ior probability given the video clip. We consider top 20 posteri- 

rs to compute the adapted means and covariance matrices using 

qs. (7) and (8) for constructing the dynamic kernels because the 

osterior probabilities of AIGMM mixtures are mostly zero beyond 

he first 20 mixtures. 

.1. Datasets 

The performance of the proposed approach is evaluated on 4 

arieties of challenging fine-grained action datasets that are chosen 

rom 3 different applications, namely, ‘ shopping ’, ‘ medical surgeries ’, 

nd ‘ cooking ’. The shopping dataset consists of individual(s) per- 

orming shopping activity in grocery stores. The medical surgery 

ataset contains videos of a robotic arm performing surgeries. Fi- 

ally, the cooking dataset comprises of individual(s) doing cook- 

ng activities. The videos of shopping and cooking datasets are col- 

ected from a single view-point with different illumination condi- 

ions. In contrast, medical surgery dataset is collected from two 

ifferent cameras with subtle view-point variations. These datasets 

re challenging because of high intra-class variance, significant 

ariability in the execution of tasks, and the subtle differences 

mong fine-grained actions. The four challenging datasets are ex- 

lained in detail in the following subsections. 

.1.1. Mitsubishi electric research laboratories (MERL) shopping 

MERL dataset consists of shopping videos, recorded by a 

urveillance camera placed overhead [13] . The dataset contains 

ideos of 32 different subjects performing shopping activity from 

rocery shelves. Each subject performs 5 different fine-grained ac- 

ions, namely, ‘ reach from shelf (RFS) ’, ‘ reach to shelf (RTS) ’, ‘ hand in

helf (HS) ’, ‘ inspect product (IP) ’, and ‘ inspect shelf (IS) ’. The dataset

ontains 79 training videos and 27 testing videos. 
6 
.2. JHU-ISI gesture and skill assessment working set (JIGSAWS) 

The dataset contains the kinematic and video data of robotic 

rm surgeries performed by 8 surgeons of varying surgical experi- 

nce [40] . Each surgeon repeats 3 surgical tasks, namely, ‘ knot tying 

KT) ’, ‘ suturing (SUT) ’, and ‘ needle passing (NP) ’ five times resulting

n variation in performing the same task. The videos are recorded 

rom endoscopic cameras placed at the left and right side of the 

obotic arm to handle view-point variations. The dataset consists 

f 78, 56, and 72 videos of suturing, needle passing, and knot tying 

ne-grained actions, respectively. The dataset is split into training, 

esting based on the leave one user out (LOUO) setting, where the 

ata of one subject out of 8 are considered for the test set and 

ata of the remaining subjects for training [40] . 

.3. Kitchen scene context-based gesture recognition (KSCGR) 

Atsushi et al. [41] proposed the ‘Actions for cooking eggs’ (ACE) 

ataset and demonstrated its results in KSCGR. The dataset con- 

ains videos of 5 subjects cooking a meal with eggs in the kitchen. 

ach subject performs 8 fine-grained actions, namely, ‘ break ’, ‘ mix ’, 

 bake ’, ‘ turn ’, ‘ cut ’,‘ boil ’, ‘ season ’, and ‘ peel ’. It has 25 videos for train-

ng and 10 for testing each of 5 to 10 min duration. The challenges

uch as occlusion, large variation in performing the same task, low 

nter-class variance, etc., makes the dataset complex in recognising 

ne-grained actions. 

.4. Max Planck institute for informatics (MPII cooking2) 

The dataset consists of an individual performing cooking activi- 

ies in a constrained environment. Rohrbach et al. [4] introduced 

PII cooking2 dataset to address the issues like low inter-class 

ariability (e.g.: mix vs. stir), high intra-class variance (e.g.: cut 

omato vs. cut pineapple), occlusion of objects while performing 

he action (e.g.: wash objects), low illumination, and presence of 

iverse objects (e.g.: knife, spiceholder, cutting board etc.). It con- 

ains 273 videos recorded by 30 individuals while performing 62 

ne-grained actions, namely, ‘ cut dice ’, ‘ cut stripes ’, ‘ cut apart ’, ‘ take

id ’, ‘ put lid ’, etc. The dataset is split into train and test based on

ubjects. Train set contains videos of 20 subjects, while the re- 

aining 10 subjects are for testing. 

.5. Analysis of different dynamic kernels 

The classification performance of various dynamic kernels, 

amely, GMM mean interval kernel (GMMMIK), GMM supervector 

ernel (GMMSVK), and intermediate matching kernel (IMK) are 

resented in Tables 1–4 on MERL, JIGSAWS, KSCGR, and MPII cook- 

ng2 datasets. The MIK-SVM built on 128 mixture GMM achieves 

he best performance for MERL, JIGSAWS, and KSCGR datasets due 

o the incorporation of first order and second order statistics of the 

IGMM. Similarly, for MPII cooking2 dataset, 256 mixture GMM 

erforms better than 128 mixtures. This is due to the fact that 

he AIGMM requires more mixtures to model all 62 fine-grained 
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Fig. 4. Confusion matrices of best performance model (kernel - GMMMIK, 128 mixture GMM) for MERL, JIGSAWS, and KSCGR datasets. 

Table 2 

Classification accuracy (%) of different dynamic kernels on 

various number of mixtures for JIGSAWS dataset. 

GMMSVK GMMMIK IMK 

HOF MBH HOF MBH HOF MBH 

32 93.8 94.5 94.7 94.7 92 94.3 

64 94.2 95.6 95.1 99.5 93.3 95.7 

128 95.4 96.1 98.5 99.6 94.2 96.0 

256 92.3 94.1 97.5 97.6 93.1 96.4 

512 91.0 93.4 95.3 96.4 92.4 94.5 

Table 3 

Classification accuracy (%) of different dynamic kernels on 

various number of mixtures for KSCGR dataset. 

GMMSVK GMMMIK IMK 

HOF MBH HOF MBH HOF MBH 

32 26.6 31.4 66.7 79.8 40.5 60.0 

64 33.6 33.4 66.7 80.0 63.9 67.9 

128 42.7 44.6 75.4 82.5 80.2 81.3 

256 39.4 40.4 75.4 79.4 79.3 71.0 

512 35.1 36.9 74.2 77.4 74.6 62.7 

Table 4 

Classification accuracy (%) of different dynamic kernels on 

various number of mixtures for MPII cooking2 dataset. 

GMMSVK GMMMIK IMK 

HOF MBH HOF MBH HOF MBH 

32 31.4 36.9 41.7 60.2 28.0 40.8 

64 26.6 39.4 42.5 68.1 29.3 50.0 

128 33.6 40.4 45.5 72.0 36.9 51.2 

256 35.1 44.6 54.0 75.6 38.5 58.1 

512 33.4 42.7 50.8 62.0 29.1 57.0 
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Table 5 

Performance comparison of proposed 

method with the state-of-the-art meth- 

ods on MERL dataset. 

Method Accuracy (%) 

MSB-RNN [13] 76.3 

C3D [10] 90.8 

Proposed GMMSVK 85.5 

Proposed IMK 92.1 

Proposed GMMMIK 96.5 

Table 6 

Performance comparison of proposed method 

with the state-of-the-art methods on JIG- 

SAWS dataset. 

Method Accuracy (%) 

Vector space model [49] 82.36 

convnet [46] 93.06 

CNN [45] 97.30 

3D Conv Net [48] 98.30 

Proposed GMMSVK 96.10 

Proposed IMK 96.00 

Proposed GMMMIK 99.60 
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e
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t
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p

t

m

e

ctions. Also, as the number of mixtures increased beyond 256, 

he classification performance is reduced. This may be due to the 

ack of adequate local information to capture the attributes of 

ne-grained actions. The small correlations of subtle interactions 

etween the human and objects can be determined accurately 

ecause of large number of mixtures of AIGMM. This is essential 

n solving the high intra-class variability. Additionally, an AIGMM 

rained on the MBH descriptors performs better than the HOF due 

o its ability to capture the temporal information efficiently even 

n presence of irregular motions. The confusion matrices of the 

est performance model are presented in Figs. 4 and 5 for the 
7 
ERL, JIGSAWS, KSCGR, and MPII cooking2 datasets, respectively. 

e also observe that the classification performance of each class 

s close to the overall classification performance, as the proposed 

odel is able to capture the subtle interactions across the classes 

qually well. The scalability of the proposed approach is depen- 

ent on multiple factors like the number of AIGMM components, 

he number of local feature vectors for two clips to be compared, 

he dimension of the local feature vectors, the dimension of the 

upervector, and the number of training samples in a dataset. 

.6. Comparison with state-of-the-art methods 

Tables 5 –8 compare the performance of the proposed approach 

ith state-of-the-art methods on MERL, JIGSAWS, KSCGR, and MPII 

ooking2 datasets, respectively. Existing approaches, namely, SIFT 

43] , trajectories [4] , and IDT [4,44] encoded with Fisher vectors to 

odel the fine-grained actions. Rohrbach et al [4] investigated the 

ose based approach to estimate the pose and track the body joints 

hrough the multiple frames. But this approach gives lower perfor- 

ance than the low-level features as it is based on the trajectories 

xtracted from the joints, which are noisy. Fawaz et al. [45] and 
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Fig. 5. Confusion matrix of best performance model (kernel - GMMMIK, 256 mixture GMM) for MPII cooking2 dataset. The indices of the classes are considered as in 

Rohrbach et al. [42] . 

Table 7 

Performance comparison of proposed method with the 

state-of-the-art methods on KSCGR dataset. 

Method F -score 

IDT-IFV-SVM [44] 0.76 

RGB + OF + CNN + SVM [47] 0.70 

RGB + OF + CNN + NN [47] 0.72 

Proposed GMMSVK 0.41 

Proposed IMK 0.82 

Proposed GMMMIK 0.85 

W

p
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t

e

g
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t

t

Table 8 

Performance (%) comparison of proposed method with the 

state-of-the-art methods on MPII cooking2 dataset. 

Method mAP (%) 

Pose-based approach [4] 24.1 

Hand-cSIFT + Hand-Trajectories [4] 43.5 

Dense trajectories [4] 44.5 

Region-sequence CNN [30] 70.3 

Proposed GMMSVK 45.0 

Proposed IMK 58.0 

Proposed GMMMIK 75.0 

a

l

d

a

b

fi

e

r

ang et al. [46] exploited the CNNs to extract the discriminative 

atterns of fine-grained actions. However, the conventional CNNs 

apture only spatial information while ignoring the prominent mo- 

ion cues. To overcome this, multi-stream networks [13,30,47] are 

mployed to capture the spatio-temporal information of fine- 

rained actions efficiently. Yet, these networks are trained indepen- 

ently on RGB frames and optical flow to learn the appearance and 

otion information, respectively, ignoring the need for interactions 

mong the multiple streams. In order to capture the spatial and 

emporal cues laterally, 3D-CNNs [10,48] are investigated to classify 

he video snippets extracted from untrimmed videos. However, the 
8 
bove mentioned approaches are computationally complex, require 

arge amount of training data, and do not generalize on the smaller 

atasets. It can be observed from the Tables 5–8 that the proposed 

pproach exhibits better performance than the existing methods 

y capturing the local and global context of motion dynamics in 

ne-grained actions efficiently. We compare our approach with the 

xisting methods using accuracy, mAP and F-score evaluation met- 

ics. 
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[  
. Conclusion 

In this paper, we propose a novel approach for an efficient 

nd compact representation of fine-grained actions which are of 

arying length by exploring various dynamic kernels. An action 

ndependent GMM (AIGMM) is trained on the extracted spatio- 

emporal features to capture the local similarities among the fine- 

rained actions. A dynamic kernel representation that incorporated 

he first & second-order statistics of the trained GMM is shown 

o recognise the fine-grained actions efficiently. This is because of 

he fact that these statistics effectively model the global informa- 

ion by handling the actor, view-point, and illumination variations. 

e demonstrate the generalization of the proposed approach by 

valuating on 4 wide varieties of datasets, namely, MERL, JIGSAWS, 

SCGR, and MPII cooking2. The proposed approach shows that the 

ynamic kernels are suitable choice for fine-grained action recog- 

ition. 

Although intermediate matching kernel (IMK) demonstrates low 

omputational complexity, its classification performance is limited 

hen compared to probabilistic based dynamic kernels. It is due to 

he fact that the selected local feature vectors based on the GMM 

ixtures are common for all classes. In future, this work can be 

xtended by constructing the feature vectors that are specific to re- 

pective classes for efficient representation of fine-grained actions. 
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