
ACLNet: An Attention and Clustering-based Cloud Segmentation

Network

Dhruv Makwana1 and Subhrajit Nag2 and Onkar Susladkar3 and Gayatri
Deshmukh3 and Sai Chandra Teja R1 and Sparsh Mittal4 and C Krishna Mohan1,2

1CKM VIGIL Pvt Ltd, Hyderabad, India; 2CSE Department, IIT Hyderabad, India; 3CSE
Department, Vishwakarma Institute of Information Technology, Pune, India; 4Mehta Family
School of Data Science and Artificial Intelligence, IIT Roorkee, India

ARTICLE HISTORY

Compiled June 27, 2022

ABSTRACT

We propose a novel deep learning model named ACLNet, for cloud segmenta-
tion from ground images. ACLNet uses both deep neural network and machine
learning (ML) algorithm to extract complementary features. Specifically, it uses
EfficientNet-B0 as the backbone, “à trous spatial pyramid pooling” (ASPP) to learn
at multiple receptive fields, and “global attention module” (GAM) to extract fine-
grained details from the image. ACLNet also uses k -means clustering to extract
cloud boundaries more precisely. ACLNet is effective for both daytime and night-
time images. It provides lower error rate, higher recall and higher F1-score than
state-of-art cloud segmentation models. The source-code of ACLNet is available
here: https://github.com/ckmvigil/ACLNet.

KEYWORDS
Cloud segmentation; attention; k -means clustering; day and night images

1. Introduction

Cloud segmentation has several applications such as weather prediction, climate hazard
prediction, and solar energy forecasting. A study of clouds can provide crucial clues
about the hydrological scorecard of the atmosphere and impending climate hazards.
Further, clouds hamper satellite cameras’ views and affect solar energy generation
plants. Driven by these factors, the detection of clouds has gained a lot of traction in
recent years. However, an accurate segmentation of clouds has remained a challenge
due to factors such as the non-rigid shape of clouds and variable lighting especially of
nighttime images.

Previous works have performed cloud segmentation on images taken from satellites
(Xie et al. 2017), and those taken from the ground (Dev, Lee, and Winkler 2016; Shi
et al. 2020; Xie et al. 2020). We review those works that analyze cloud images taken
from ground. Previous works use color information to distinguish cloud (blue) from

CONTACT C Krishna Mohan. Email: ckm@cse.iith.ac.in. Dhruv and Subhrajit are co-first authors. This
work was supported by WNI WxBunka Foundation, Japan. The computing systems used in this research were

provided by Indian Institute of Technology, Roorkee, India under grant FIG-100874.

the sky (white). For example, in the technique of Long, Shelhamer, and Darrell (2015),
the cloud area is detected by setting a threshold value for the ratio of the pixel values
of red and blue. However, this method assumes that the colors of the sky and clouds
in the daytime can be clearly seen. But this is not effective for images with a small
difference in color between the sky and clouds, such as images at night, dawn, or dusk.

Shi et al. (2019) propose a VGG16-based fully-convolutional network. They incor-
porate “histogram equalization” and “skip connections” to achieve effective segmenta-
tion. Xie et al. (2020) use an encoder-decoder architecture. They modify the VGG16
network by replacing the fully connected layers with the decoder network. “CloudU-
Net” (Shi et al. 2020) is inspired from U-Net and it uses “dilated convolutions” and
“fully connected conditional random field (CRF)”. It also uses a lookahead optimizer
for faster model convergence. “CloudSegNet” (Dev et al. 2019) is an encoder-decoder
architecture and has been evaluated on both daytime and nighttime images. Table 1
shows the key characteristics of a few related works.

Table 1. Key characteristics of methods used in recent studies (SLIC = simple linear iterative clustering,

TCDD = TJNU Cloud Detection Database, TLCDD = TJNU Large-scale Cloud Detection Database)

Architecture and highlights Dataset

CloudSegNet (Dev

et al. 2019)
Encoder-decoder CNN with Conv and DeConv layers

SWIMSEG,

SWINSEG

Dev, Lee, and Winkler
(2014)

Fuzzy c-means clustering HYTA

Dev et al. (2017) SLIC for superpixel generation and k -means clustering SWINSEG

Xie et al. (2017)
SLIC for superpixel generation and CNN for classifying

superpixels into thick/thin-cloud and sky. CNN has 2
branches to extract features at two scales

Quickbird
satellite,

Google map,

internet images

CloudU-Net (Shi et al.
2020)

Encoder-decoder CNN based on U-Net. Fully-connected
CRF layers, dilated Conv

GDNCI

MACNN (Zhang et al.

2021)

Encoder-decoder CNN with attention. Dilated Conv with

different dilation values to capture multiscale information
TCDD

CloudRaednet (Shi,

Zhou, and Qiu 2022)

Residual attention-based encoder–decoder CNN. ResNet50

as encoder; residual modules in decoder; Ranger optimizer
GDNCI

DPNet (Zhang et al.

2022)

Encoder-decoder CNN. Spatial pyramid pooling and then

fusing the features by attention weights
TLCDD

Further, several previous works such as “CRF as recurrent neural networks” (CRF-
RNN) have large computation and model-size overheads.

In this paper, we propose a DNN for segmenting clouds from both daytime and
nighttime sky images. ACLNet utilizes EfficientNet-B0 (Tan and Le 2019) as the back-
bone. This allows ACLNet to learn better feature maps since EfficientNet-B0 is a highly
regularized model. Also, we use the “à trous spatial pyramid pooling” (ASPP) module
(Chen et al. 2018) to learn at multiple receptive fields. This helps in detecting clouds
of different sizes. Further, ACLNet uses two key novelties. First, we propose a “global
attention module” (GAM) to focus on regions of interest, strengthen the learning of
channels, and improve training efficiency. Second, we propose using k -means clustering
for detecting cloud boundaries. This helps in learning features that complement those
learnt by the DNN. We combine this information with the DNN-extracted features for
generating the final segmentation mask.

ACLNet has lower error rate, higher recall and higher F1-score than the state-of-art
models, for daytime, nighttime, and day+night time images (corresponding to SWIM-
SEG, SWINSEG and SWINySEG datasets, respectively). The main contributions of
the paper are: (1) An interpretable and accurate framework targeted for cloud segmen-
tation from both daytime and nighttime images. (2) We introduce an ML algorithm

2

in our DNN to bring their best together and more effectively segment the clouds.

2. ACLNet: Proposed network

ACLNet is a novel network that outputs a cloud segmentation binary mask. Figure 1
depicts the proposed ACLNet architecture. Here, a Conv block consists of a convolution
layer followed by a batchnorm and ReLU activation. ACLNet uses EfficientNet-B0
(Tan and Le 2019) as the backbone network. EfficientNet-B0 is a highly regularised
model. It has been obtained by performing a neural architecture search and jointly
optimizing FLOPS, and accuracy. We now describe other components of ACLNet.

Input Image

Clustered
Image

k-means clustering

EfficientNet-B0 ASPP GAM Upsample Concatenate

Conv block
(k = 1)

Conv block
(k = 3)

Conv block
(k = 3)Upsample

Conv block
(k = 1) 1x1 convolution Sigmoid

C
lu

st
er

ed
im

ag
e

In
pu

t
im

ag
e

C
F

A

D

E

Output
mask

TextTextText

Softmax1x1 convolutionInput
image

Feature
map from

ASPP

GAM
module

B
(Fi)

(Fe)

Resize spatial
dimension

(i)

(ii)

Figure 1. (i) ACLNet architecture (k denotes the kernel size) (ii) GAM module

2.1. ASPP Module

Clouds vary widely in their size. To effectively detect clouds of various sizes, we seek to
resample the features of a single scale. For this purpose, we use ASPP block (Chen et al.
2018). The input to ASPP is the downsampled feature map derived from the final layer
of the backbone. ASPP uses parallel à trous convolution layers with different sampling
rates, processes these features in different branches, and fuses them. Specifically, ASPP
has an average pooling layer with global information features, a Conv block with kernel
size of 1×1 for extracting original scale features, and three Conv blocks having kernel
size of 3 × 3 with dilation rates of 6, 12, and 18, respectively. Thus, it uses multiple
receptive fields. Finally, ASPP concatenates the feature maps and uses a Conv block
with 1× 1 kernel size to reduce the number of channels.

While extracting multi-scale features, ASPP substantially reduces the information
loss caused by numerous downsampling operations. It assesses convolutional features
at several scales by applying à trous convolution with different dilation rates to image-
level features. It reduces the number of parameters due to the use of three dilated
convolutions. Furthermore, to maintain more location information, the sizes of distinct
feature maps at different scales are kept the same.

2.2. Global Attention Module (GAM)

Motivation: We need an attention mechanism for two reasons. (1) The output from
ASPP has little semantic information, but the input image provides rich semantic

3

information that may be utilized to aid a low-level output from the ASPP feature in
capturing semantic dependencies. Therefore, improving the contextual information of
the low-level output from the ASPP feature makes it easier to ensure effectual fusion.

(2) The input image contains rich contextual information. However, the contextual
information provided by the ASPP output is inadequate for pixel-wise recognition. To
compensate for this loss of contextual information, one can concatenate the original
input image with the ASPP output. However, concatenating two incompatible features
negatively impacts the semantic gaps between the ASPP output and the corresponding
input image. We need to include additional semantic information into the ASPP output
to fuse them effectively.

We introduce GAM to achieve above two objectives. GAM adaptively boosts loca-
tion and semantic information by giving pixel-level and channel-level attention to the
image. The design of GAM is shown in Figure 1(ii).

Working of GAM: Let ASPP output be Fe ∈ RH1×W1×C1 , where H1 and W1 are
height and width of the feature map and C1 is the number of channels. Similarly, let
input image be Fi ∈ RH2×W2×C2 . In GAM, we proceed as follows:

(1) Spatially resize the image (refer A in Figure 1) to match the spatial dimension of
ASPP output. The image-dimension becomes H1×W1×C2. (2) Use 1×1 convolution
to capture channel dependencies for creating squeeze channel attention map of size
H1×W1×C1. (3) Apply a softmax activation on the channel attention map to obtain
the pixel-wise attention weights. This generates the attention map A ∈ RH1×W1×C1 .
(4) To create the final refined features, multiply the above attention map with ASPP
output feature map Fe. This produces the output shown as B in Figure 1.

The output of GAM is up-sampled to refine the features. We concatenate this up-
sampled feature map with the matching low-level feature map from the network back-
bone, which has the same spatial resolution. Before this concatenation, we pass the
low-level feature map obtained from the backbone network (refer C in Figure 1)
through a Conv block with kernel size of 1× 1 to reduce the number of channels. This
is because the low-level features typically contain a large number of channels, which
can outweigh the importance of the output from ASPP features.

2.3. Using clustered image

Recent cloud-segmentation techniques exclusively use DNN. However, as we show in
Section 4, the use of a DNN alone does not provide high predictive performance because
a DNN learns by considering features that are independent of each other. Conventional
ML algorithms can identify how different types of data are interrelated and create new
segments based on those relationships. To bring the best of both worlds together, we
use clustering along with feature maps learned by DNN. This helps in finding the
relationship between the features that can be segmented.

To efficiently generate binary masks, we need information about cloud boundaries.
To obtain cloud boundaries, we apply k -means clustering on the RGB pixel values
of the input image (refer F in Figure 1). This clusters similar pixels together while
creating a border between sky and cloud. We use a centroid value of two to create
two clusters, viz., a cloud region, and a non-cloud region. We want to learn different
features from cloud and sky from daytime and nighttime images. Hence, we have used
k -means and not edge detection algorithms like Sobel edge detector.

Following concatenation, the resultant feature map is processed through two Conv
blocks having kernel size 3 × 3 to enhance the features (refer D in Figure 1). Then,

4

bilinear upsampling is performed. The clustered input image is passed through Conv
block with kernel size 1 (refer E in Figure 1) and then added with the upsampled
feature map obtained above. Finally, this feature map is passed through a 1× 1 con-
volution layer, reducing the number of channels to two. This output is passed through
sigmoid activation to generate the output mask.

Overall network design: Starting from B in Fig. 1, we first up-sample the refined
features. We concatenate this upsampled feature map with the matching low-level
feature map from the network backbone, which has the same spatial resolution. Before
this concatenation, we pass the low-level feature map obtained from the backbone
network (refer C in Figure 1) through a Conv block with kernal size of 1×1 to reduce
the number of channels. This is because the low-level features typically contain a large
number of channels, which can outweigh the importance of the output from ASPP
features.

Following concatenation, the resultant feature map is processed through two Conv
blocks having kernal size 3 × 3 to enhance the features (refer D in Figure 1). Then,
bilinear upsampling is performed. The clustered input image is passed through Conv
block with a kernal size of 1 × 1 (refer E in Figure 1) and then added with the
upsampled feature map obtained above. Finally, this feature map is passed through a
1×1 convolution layer, reducing the number of channels to two. This output is passed
through sigmoid activation to generate the output mask.

3. Experimental Platform

Dataset: We have used SWINySEG (Dev et al. 2019) dataset for training our model,
which has images of size 300 × 300 pixels. SWINySEG is a composite dataset con-
sisting of augmentations applied to the SWIMSEG (Dev, Lee, and Winkler 2016) and
SWINSEG (Dev et al. 2017) dataset to create a balance between daytime and night-
time images. We use random sampling to divide the training and testing sets in an
80:20 ratio on this composite dataset. The SWINySEG dataset has images consisting
of a combination of images taken both during daytime and nighttime. The SWIMSEG
dataset has 1013 images taken during the daytime, while on the other hand, SWINSEG
has 115 images taken during the nighttime. The SWIMSEG dataset has 1013 images
taken during the daytime, while on the other hand, SWINSEG has 115 images taken
during the nighttime. During the inference phase, we resize the image to 300 × 300
pixels and then use a random crop.

Training settings: We use TensorFlow 2.6. We use the Adam optimizer with an initial
learning rate of 0.0001. Whenever there is no convergence for 20 epochs continuously,
the learning rate is dynamically varied for fine-tuning. We use a batch size of 8 to train
the model. We perform end-to-end training of ACLNet to minimize segmentation loss.
For segmentation, we use BinaryCrossEntropy-DICE (BCE-DICE) loss. BCE-DICE
loss is a combination of the distribution-based loss function (BCE) and region-based
loss function (DICE loss). BCE loss considers each pixel as an independent prediction
and optimizes loss in under-segmented regions. DICE optimizes loss in over-segmented
regions. The training is done for 300 epochs. The dice score saturates after 270 epochs.
Because loss is always convergent towards global minima, the network’s training is
consistent overall. We observe that use of k -means clustering has little impact on the
training and testing time of the network.

Evaluation metrics: We use (1) precision, (2) recall, (3) F1-score, and (4) error rate
defined as FP+FN

TP+FP+TN+FN . Here, FP means false positive, TP means true positive, FN

5

means false negative and TN means true negative. (5) mean intersection over union
(MIoU), defined as MIoU = 1

|C|
∑

c∈C Jc(y
∗, ỹ) where y? and ỹ contain the ground truth

and predicted labels of all pixels in the testing dataset. C denotes all the classes and
c denotes individual classes from C. Jc is the Jaccard index of class c. (6) “Matthews
correlation coefficient” (MCC), defined as MCC = TP×TN - FP×FN√

(TP + FP)(TP+FN)(TN+FP)(TN+FN)
.

(7) We show the ROC (receiver operating characteristic) curve, which depicts classi-
fier performance at all classification thresholds. We have performed three trials of
experiments with ACLNet and observed that the standard deviation of results across
different trials is negligibly small.

4. Results

Visualization: Figure 2 (i)-(v) shows five sample images (three daytime and two night-
time images) from the SWINySEG dataset. It also compares the ground truth masks
(b) with the output masks produced by ACLNet (c), U-Net (d) and DeepLabv3+ (e).
We can see that the output density map generated by ACLNet is quite similar to the
ground-truth density estimation map. ACLNet preserves the cloud boundaries, and
by virtue of using the clustering, it preserves the pixel information for generating a
binary mask. For all these images, ACLNet leads to more accurate pixel-count than
U-Net and DeepLabv3+. In (v), none of the models give good predicted pixel count,
still ACLNet performs much better than the other models.

Quantitative results: We compare ACLNet with five other baseline networks, viz.,
FCN, CloudU-Net, DeepLabv3+, U-Net and CloudSegNet. Note that we have our-
selves trained these networks and performed experiments to obtain the results. Table
2 shows the experimental results. Evidently, ACLNet provides the best value of metrics
for all cases, except for precision metric on nighttime images.

Table 2. Results on daytime, nighttime and day+night time images (Best values are shown in bold font)

Method Precision Recall F1-Score Error Rate MIoU MCC

Daytime (SWIMSEG)

FCN 0.532 0.466 0.456 0.502 0.651 0.724

CloudU-Net 0.951 0.971 0.952 0.042 0.963 0.853

DeepLabv3+ 0.889 0.913 0.888 0.082 0.971 0.93

U-Net 0.771 0.772 0.754 0.191 0.870 0.812

CloudSegNet 0.921 0.897 0.892 0.078 0.944 0.826

CloudSegNet (with clustering) 0.941 0.914 0.912 0.061 0.955 0.885

ACLNet (proposed) 0.964 0.979 0.971 0.022 0.992 0.956

Nighttime (SWINSEG)

FCN 0.423 0.492 0.431 0.567 0.591 0.681

CloudU-Net 0.943 0.951 0.941 0.049 0.931 0.816

DeepLabv3+ 0.864 0.962 0.891 0.084 0.961 0.901

U-Net 0.693 0.673 0.701 0.240 0.842 0.782

CloudSegNet 0.891 0.924 0.881 0.083 0.915 0.824

CloudSegNet (with clustering) 0.932 0.934 0.901 0.075 0.931 0.861

ACLNet (proposed) 0.917 0.982 0.947 0.037 0.985 0.930

Day + Night Time (SWINySEG)

FCN 0.500 0.511 0.441 0.555 0.591 0.713

CloudU-Net 0.956 0.967 0.952 0.044 0.941 0.945

DeepLabv3+ 0.861 0.906 0.852 0.084 0.973 0.93

U-Net 0.714 0.764 0.741 0.216 0.855 0.8

CloudSegNet 0.930 0.883 0.891 0.079 0.926 0.812

CloudSegNet (with clustering) 0.931 0.943 0.922 0.071 0.932 0.873

ACLNet (proposed) 0.959 0.979 0.968 0.024 0.993 0.960

6

(a) Original Image (b) Original Mask (c) ACLNet
Predicted Mask

(d) U-Net
Predicted Mask

(e) DeepLabv3+
Predicted Mask

(i)

39878 39736 (-142) 37089 (-2789) 41634 (+1756)

(ii)

44654 44663 (+9) 46109 (+1455) 43899 (-755)

(iii)

28704 28208 (-496) 35124 (+6420) 31702 (+2988)

(iv)

28805 29309 (+504) 32921 (+4116) 33703 (+4898)

(v)

17424 22427 (+5003) 24674 (+7250) 28286 (+10862)

Figure 2. Segmentation results for three daytime (i), (ii),(v) and two nighttime (iii)-(iv) images. The number

of pixels in the cloud mask is shown below each figure. The red-color text in parenthesis shows the difference
in pixel-count between the ground-truth and the prediction made by a model (ACLNet/U-Net/DeepLabV3+).

The error rate quantifies the rate of pixel-wise misclassification between ground
truth and predicted output over the whole set of instances. Error rate measures the
inaccuracy of predicted output values for target values. ACLNet achieves the lowest
error-rate for all three categories. These results confirm the superiority of our model.

Based on the histogram peak of daytime and nighttime images, the difference be-
tween the color of sky and cloud regions is better in daytime images than in nighttime
images. Hence, ACLNet performs well on daytime images but produces slightly inferior
results on nighttime images. Although ACLNet’s precision on the nighttime images is
slightly less, the cloud features are efficiently segmented.

In this paper, our key idea is that since machine-learning (ML) and deep-learning
(DL) networks extract complementary features, combining them can provide higher
performance. Our ACLNet network validates this idea and for further validation,
we evaluate combining k -means clustering with CloudSegNet network. On compar-
ing “CloudSegNet” results with “CloudSegNet (with clustering)” in Table 2, it is clear
that k -means clustering helps in improving the predictive performance of CloudSegNet
also. This confirms our design-choice and the importance of our innovation.

ROC curve: Figure 3 compares the ROC curves of ACLNet with the other baseline
networks shown in Table 2. The area under the curve (AUC) of ROC for CloudU-Net

7

is the least while the AUC-ROC curve for ACLNet is the highest. The higher the true
positive rate and lower the false positive rate, the higher is the AUC. This shows that
ACLNet has the highest true positive rate while having the lowest false positive rate.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ACLNet (AUC = 0.97)
U-Net (AUC = 0.92)
DeepLabv3+ (AUC = 0.94)
FCN (AUC = 0.89)
CloudU-Net (AUC = 0.86)
CloudSegNet (AUC = 0.89)

Figure 3. ROC curve comparison of different segmentation models.

Model size and throughput: From Table 3, we can see that the model size of ACLNet
is lower than all techniques, except CloudSegNet. While CloudSegNet has a small
model size, but its predictive performance is much inferior compared to ACLNet.
CloudU-Net has a very high model size (138MB). Overall, ACLNet achieves the
best balance of model size and performance. Also, ACLNet requires only 7.57 mil-
lion FLOPs. ACLNet has a throughput of 5.7 and 13.1 frames-per-second on 2080Ti
GPU and P100 GPU, respectively.

Table 3. Model size (MB) of different cloud segmentation models

Model Size Model Size

CloudU-Net 138.6 CloudSegNet 0.11

DeepLabv3+ 61.3 ACLNet with EfficientNet-B1 backbone 36.7

U-Net 94.3 ACLNet with EfficientNet-B2 backbone 43.1

FCN (Long, Shelhamer, and Darrell 2015) 53.6 ACLNet with ViT backbone 325

ACLNet with ResNet50 backbone 47.1 ACLNet 30.79

Ablation studies:
1. Impact of removing GAM and k -means: We now evaluate the contribution of

GAM and k -means by removing them individually and together. Table 4 shows the
results. In Figure 1, on removing GAM, the path shown with A - B is removed. On
removing k -means clustering, the path shown with F - E in Figure 1 is removed.
On removing the k -means clustering, all metrics become worse. Clearly, the features
extracted by DNN are not sufficient for achieving high predictive performance for cloud
segmentation. On removing the GAM, all metrics, especially the precision for nighttime
images, become worse. ACLNet without k -means gives inferior results as compared to
ACLNet without GAM in precision and F1-Score for nighttime images, whereas the
results are almost equal for the daytime and day+night images. On removing both
k -means and GAM, the results become even worse (results omitted for brevity). Thus,
both k -means and attention modules are important for achieving high performance.

2. Impact of changing the backbone: Table 5 shows the results of replacing the back-
bone in ACLNet to four other networks: EfficientNet-B1 and B2, ViT and ResNet50.
We observe that for all these four backbones, the predictive performance does not in-
crease much compared to that with EfficientNet-B0. Further, on using ViT, the model

8

Table 4. Results of ablation studies on GAM and k -means clustering (P=precision, R=recall, ER=error-rate)

ACLNet without GAM ACLNet without k -means
P R F1 ER MIoU MCC P R F1 ER MIoU MCC

Day 0.94 0.93 0.94 0.05 0.97 0.91 0.92 0.95 0.94 0.073 0.96 0.918
Night 0.82 0.97 0.88 0.078 0.95 0.87 0.91 0.92 0.93 0.078 0.95 0.895

Day + night 0.94 0.92 0.94 0.05 0.98 0.9 0.93 0.94 0.93 0.074 0.96 0.913

size increases to 325 MB. This is much larger than the model size with EfficientNet-B0
backbone. On 2080Ti GPU and P100 GPU, ACLNet (with EfficientNet-B0 backbone)
have throughput of 5.7 and 13.1 frames-per-second, respectively. For ACLNet (with
ViT backbone), these numbers are 1.8 and 5.0, respectively. Thus, use of EfficientNet-
B0 leads to higher throughput than use of ViT. Considering predictive performance,
model size and throughput, we prefer EfficientNet-B0 as the backbone.

Table 5. Results of ablation studies on ACLNet with different backbones (P=precision, R=recall, ER=error-

rate)

ACLNet with EfficientNet-B1 backbone ACLNet with EfficientNet-B2 backbone

P R F1 ER MIoU MCC P R F1 ER MIoU MCC

Day 0.96 0.98 0.97 0.022 0.98 0.95 0.98 0.98 0.98 0.022 0.98 0.95

Night 0.91 0.98 0.95 0.033 0.98 0.94 0.92 0.98 0.96 0.033 0.97 0.94

Day + night 0.96 0.98 0.97 0.023 0.97 0.95 0.96 0.98 0.98 0.022 0.99 0.95

ACLNet with ViT backbone ACLNet with ResNet50 backbone

Day 0.98 0.98 0.98 0.022 0.99 0.95 0.96 0.98 0.96 0.025 0.98 0.95

Night 0.94 0.97 0.95 0.031 0.98 0.94 0.92 0.98 0.95 0.037 0.96 0.93

Day + night 0.97 0.98 0.97 0.022 0.99 0.95 0.96 0.98 0.97 0.026 0.98 0.95

3. Use of k -means++ clustering: k -means++ (Arthur and Vassilvitskii 2006) acts
as an intelligent initialization procedure for k -means. k -means++ algorithm mini-
mizes the likelihood of a wrong initialization but has higher computational overhead.
However, we observe that k -means++ algorithm provides no improvement over the
k -means algorithm. This is because of the use of a smaller K value (two), such that
random or intelligent initialization has a negligible impact.

5. Conclusion and Future Work

We present a novel model, ACLNet, that can accurately segment clouds from both noc-
turnal and daytime images. ACLNet achieves high predictive performance by virtue of
combining the benefits of “à trous spatial pyramid pooling”, attention and clustering.
ACLNet is lightweight and has the highest recall and F1-score for all types of images.

ACLNet is trained to work on the predetermined classes - namely cloud and sky.
However, a real-world image may also have other objects such as birds or plane.
ACLNet may not work well with such unseen classes. To achieve better performance
on those unseen classes, we would need to retrain or fine-tune our model. In near
future, we plan to train ACLNet using unsupervised learning to further improve its
segmentation performance. Vision transformer models provide state-of-art results on
several computer vision tasks such as classification (Liu et al. 2021) and segmentation
(Strudel et al. 2021; Xie et al. 2021; Zheng et al. 2021). Our future work will focus on
comprehensively evaluating transformer-based models for cloud segmentation.

9

References

Arthur, David, and Sergei Vassilvitskii. 2006. K-means++: The advantages of careful seeding.
Technical Report. Stanford.

Chen, Liang-Chieh, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. 2018.
“Encoder-decoder with atrous separable convolution for semantic image segmentation.” In
European Conference on Computer Vision (ECCV), 801–818.

Dev, Soumyabrata, Yee Hui Lee, and Stefan Winkler. 2014. “Systematic study of color spaces
and components for the segmentation of sky/cloud images.” In 2014 IEEE International
Conference on Image Processing (ICIP), 5102–5106. IEEE.

Dev, Soumyabrata, Yee Hui Lee, and Stefan Winkler. 2016. “Color-based segmentation of
sky/cloud images from ground-based cameras.” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing (J-STARS) 10 (1): 231–242.

Dev, Soumyabrata, Atul Nautiyal, Yee Hui Lee, and Stefan Winkler. 2019. “Cloudsegnet: A
deep network for nychthemeron cloud image segmentation.” IEEE Geoscience and Remote
Sensing Letters 16 (12): 1814–1818.

Dev, Soumyabrata, Florian M Savoy, Yee Hui Lee, and Stefan Winkler. 2017. “Nighttime
sky/cloud image segmentation.” In IEEE International Conference on Image Processing
(ICIP), 345–349. IEEE.

Liu, Ze, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. 2021. “Swin transformer: Hierarchical vision transformer using shifted windows.” In
International Conference on Computer Vision, 10012–10022.

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. 2015. “Fully convolutional networks for
semantic segmentation.” In Proceedings of the IEEE CVPR, 3431–3440.

Shi, Chaojun, Yatong Zhou, and Bo Qiu. 2022. “CloudRaednet: residual attention-based en-
coder–decoder network for ground-based cloud images segmentation in nychthemeron.” In-
ternational Journal of Remote Sensing 43 (6): 2059–2075.

Shi, Chaojun, Yatong Zhou, Bo Qiu, Dongjiao Guo, and Mengci Li. 2020. “CloudU-Net: A
Deep Convolutional Neural Network Architecture for Daytime and Nighttime Cloud Images’
Segmentation.” IEEE Geoscience and Remote Sensing Letters 18 (10): 1688–1692.

Shi, Chaojun, Yatong Zhou, Bo Qiu, Jingfei He, Mu Ding, and Shiya Wei. 2019. “Diurnal
and nocturnal cloud segmentation of all-sky imager (ASI) images using enhancement fully
convolutional networks.” Atmospheric Measurement Techniques 12 (9): 4713–4724.

Strudel, Robin, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. 2021. “Segmenter: Trans-
former for semantic segmentation.” In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 7262–7272.

Tan, Mingxing, and Quoc Le. 2019. “Efficientnet: Rethinking model scaling for convolutional
neural networks.” In International conference on machine learning, 6105–6114.

Xie, Enze, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo.
2021. “SegFormer: Simple and efficient design for semantic segmentation with transformers.”
Advances in Neural Information Processing Systems 34: 12077–12090.

Xie, Fengying, Mengyun Shi, Zhenwei Shi, Jihao Yin, and Danpei Zhao. 2017. “Multilevel
cloud detection in remote sensing images based on deep learning.” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 10 (8): 3631–3640.

Xie, Wanyi, Dong Liu, Ming Yang, Shaoqing Chen, Benge Wang, Zhenzhu Wang, Yingwei
Xia, Yong Liu, Yiren Wang, and Chaofang Zhang. 2020. “SegCloud: a novel cloud image
segmentation model using a deep convolutional neural network for ground-based all-sky-view
camera observation.” Atmospheric Measurement Techniques 13 (4): 1953–1961.

Zhang, Zhong, Shuzhen Yang, Shuang Liu, Xiaozhong Cao, and Tariq S Durrani. 2022.
“Ground-based Remote Sensing Cloud Detection using Dual Pyramid Network and Encoder-
Decoder Constraint.” IEEE Transactions on Geoscience and Remote Sensing 60.

Zhang, Zhong, Shuzhen Yang, Shuang Liu, Baihua Xiao, and Xiaozhong Cao. 2021. “Ground-
Based Cloud Detection Using Multiscale Attention Convolutional Neural Network.” IEEE
Geoscience and Remote Sensing Letters 19: 1–5.

10

Zheng, Sixiao, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, et al. 2021. “Rethinking semantic segmentation from a sequence-to-sequence perspective
with transformers.” In IEEE/CVF conference on computer vision and pattern recognition,
6881–6890.

11

