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Reviewer #1 

Comment: The idea of temporal atrous convolution is not new, which can be regarded as 

a variant of 3D convolution; so using both atrous convolution and optical flow seems 

redundant 

Response: As mentioned in Section 4.2, similar to [14, 32], we first pre-process each 

video at 2FPS and then extract optical flow features using “global pool layer” of 

BNInception [10] which is further pre-trained on ActivityNet [3][27]. Usually, these 

features learn the pattern of apparent motion of various objects between neighbourhood 

frames. On the other hand, the temporal atrous convolutions convolve such features 

temporally based on given temporal window. For instance, if we have optical flow 

features of1, of2, of3, …, of9, the temporal atrous convolution performs temporal 

convolution among of1, of5, and of9 when filter is 3*1 and atorus rate is 4. From this, we 

can infer that the optical flow features help to learn relative motion of objects, whereas, 

the temporal atorus convolutions facilitate the temporal dynamics of the visual scene. In 

our work, we assume the usage of both atrous convolution and optical flow are not 

redundant. Moreover, we believe that the atorus convolutions on optical flow features 

learn differentiations among subtle interactions like walking, jogging, and running, e.t.c., 

 

Comment: The motivation of using temporal correlation attention on long-range and 

short-range temporal features is not clear. It would be nice to provide more details. 

Response:  In order to generate fine-grained captions, we need to learn both short-range 

and long-range temporal features. For example, to generate a caption “young man holds a 

violin”, the short-range information may be sufficient. but, we need to learn long-range 

information to generate a caption “the man then begins playing the instrument while 

moving his hands up and down,” 

Comment: The performance improvements seem marginal on ActivityNet Captions 

dataset (Table 1). 

Response:  yes, we achieved a marginal improvement on ActivityNet Captions dataset 

(Table 1). However, this trend can also be observed from the previous state-of-the-art 

approaches. And, it is hard to achieve a high performance gain in captioning task due to 

the complexity of the task (no two persons describe the visual content in the same word-

to-word manner). 

Reviewer #2 

Comment: From decoder perspective, I feel MIT and MART are almost the same. It is not 

very clear for how the MIT improves the MART in decoder part. 1. Give more detailed 

explanation about difference between the MIT and decoder in MART. 

Response:   The fundamental difference between MART [14] and the proposed MIT lies 

in the construction of memory block. MART[14] constructs a two slot memory block 

using MultiHeadAt (input), tanh (slot 1), and sigmoid (slot 2). On the other hand, we 
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update the memory block by combining multiple slots effectively (Eq 3) to model 

complex relations at higher capacity. 

Comment: Miss some explanations of the models in table 1. For example, MIT uses the 

same encoder as MART? 

Response:   MART uses the simple appearance and flow information as encoder for 

captioning. Our results in Table 1 with method name MIT demonstrate the results of the 

same appearance and flow information with MIT decoder. 

Comment: In table 3, my observation is that the AAP-MIT is more sensitive to hyper-

parameter changes 

Response:   Yes the performance of the proposed approach varies with the change of 

hyper parameters. However, the performance change is in between +1 or -1 (Table 3). 

Reviewer #4 

Comment:  The differences between MART and the memory augmented transformer in the 

proposed MIT are minor. 

Response:  Yes, we only modify the structure of the memory block which is the core 

building block of MART. 

Comment: The Figure 3 is not that clear since the blocks of different components share 

similar colors. 

Response:  Please accept our apologies. We will try to change background colors of 

different component in the final version of manuscript, if allowed. 

Comment: Some important related works about dense video captioning are missing 

Response:   We apologize for missed references. We will try to include the suggested 

references in the final draft. 

Comment:  Multi-scale temporal features can be learnt by stacking several layers of 

transformer followed by a meshed-memory decoder as in [R1]. What are the differences 

between this design and the proposed AAP-MIT network? 

Response:  Yes, the stacked transformer encoder and meshed-memory decoder may 

achieve comparable results. The stack of transformer layers may resemble COOT 

architecture [7]. Usually, it can be possible to learn the local features using self-attention 

and global features using cross-modal attention. However, it may be difficult to model the 

temporal dependencies among Fi, Fi+r, Fi+2r, Fi+3r… e.t.c. This can be easily modelled 

using temporal dilated convolutions. For example, if the dilation rate is 6 and 

convolutional kernel is 3*1, we convolve input features Fi, Fi+6, Fi+12, temporally. 

In comparison with meshed-memory decoder (M2T), the M2T constructs the memory-

augmented attention by simply extending the self-attention with additional “slots” , 

However, we construct the multiple memory slots instead of single slot (Eq 3). 
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Comment:  What are the differences between the AAP network and TPN [R2]? 

Response:   We can see TPN [R2] as a variant of our AAP. However, there are some 

architectural differences in between TPN and AAP. TPN utilizes the output features of 

res2, res3, res4, res5 of ResNet, where they are spatially and temporally downsampled to 

learn features. In contrast, we extract features from linear layer of pre-trained network 

and maintain the same feature dimension throughout vb0/ob0 to vb3/ob3. Then, we learn 

the temporal dynamics using set of atrous convolutions at various rates. If we have 10 

features, the vb1/ob1 learns the temporal features as output = conv (Fi, Fi+2, Fi+4) and 

vb3/ob3 as output = conv (Fi, Fi+6, Fi+12). This type of notion is highly different from 

TPN. 
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Paper ID 2133

Paper Title AAP-MIT: Attentive Atrous Pyramid Network and Memory Incorporated
Transformer for Multi-Sentence Video Description

Track Name Main Track

Reviewer #1

View Reviews

Questions
1. [Paper Summary] What is the paper about? Please, be concise (3 to 5 sentences).
This paper proposes an Attentive Atrous Pyramid network and Memory Incorporated Transformer (AAP-MIT) for multi-sentence video description. A temporal pyramid
network and a temporal correlation attention module are used to extract rich temporal features from video sequences, and a memory incorporated transformer is
introduced to generate highly descriptive natural language sentences.

2. [Relevance] Is this paper relevant to an audience to ACM Multimedia? Please check https://2021.acmmm.org/call-for-paper.html.
Relevant to researchers in subareas only

3. [Significance] Are the results significant?
Significant

4. [Novelty] Are the problems or approaches or applications/systems novel?
Novel

5. [Evaluation] Is the idea proposed in this paper well supported by theoretical analysis or experimental results?
Sufficient

6. [Paper Strengths] Please discuss. Justifying your comments with the appropriate level of details about the strengths of the paper (i.e. novelty,
theoretical approach and/or technical correctness, adequate evaluation, clarity, applications, etc.). For instance, a theoretical paper may need no
experiments, while a paper with a new approach or application may require comparisons to existing methods.
1.	The idea of incorporating transformer with memory blocks is novel.

2.	Extensive experiments are done on several benchmark datasets to verify the effectiveness of the proposed method.

3.	The presentation of the paper is good, and it is easy to follow.

7. [Paper Weaknesses] Please discuss. Justifying your comments with the appropriate level of details about the weaknesses of the paper (i.e. lack of
novelty – given references to prior work, lack of novelty, technical errors, or/and insufficient evaluation, etc.). Note: If you think there is an error in the
paper, please explain why it is an error. It is not appropriate to ask for comparisons with unpublished papers and papers published after the ACM
Multimedia deadline. In all cases, please be polite and constructive.
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Reviewer #2

1. The idea of temporal atrous convolution is not new, which can be regarded as a variant of 3D convolution; so using both atrous convolution and optical flow seems
redundant.



2. The motivation of using temporal correlation attention on long-range and short-range temporal features is not clear. It would be nice to provide more details.



3. The performance improvements seems marginal on ActivityNet Captions dataset (Table 1).


8. [Preliminary Rating] Please rate the paper according to one of the following choices.
Borderline Accept

10. [Confidence]
Confident

14. [Final Recommendation] Please provide your final recommendation according to the author rebuttal, the discussions with other reviewers and area
chairs.
Poster

15. [Final Justification] Please provide your justification of your final recommendation.
The authors addressed my concerns in the rebuttal.

Questions
1. [Paper Summary] What is the paper about? Please, be concise (3 to 5 sentences).
This paper improves previous memory augmented recurrent transformer (MART) based video description with Attentive Atrous Pyramid Network (AAP) and memory
incorporated transformer (MIT). Based on the visual and optical flow features, AAP captures the spatiotemporal dynamics of the video data. Similar to MART, MIT is
used to capture the long-range dependency among video segments and text. Experiments on ActivityNet Captions and YouCookII show the improvement of AAP-MIT
over other methods.

2. [Relevance] Is this paper relevant to an audience to ACM Multimedia? Please check https://2021.acmmm.org/call-for-paper.html.
Likely to be of interest to a large proportion of the community

3. [Significance] Are the results significant?
Significant

4. [Novelty] Are the problems or approaches or applications/systems novel?
Somewhat novel or somewhat incremental

5. [Evaluation] Is the idea proposed in this paper well supported by theoretical analysis or experimental results?
Sufficient
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Reviewer #4

6. [Paper Strengths] Please discuss. Justifying your comments with the appropriate level of details about the strengths of the paper (i.e. novelty,
theoretical approach and/or technical correctness, adequate evaluation, clarity, applications, etc.). For instance, a theoretical paper may need no
experiments, while a paper with a new approach or application may require comparisons to existing methods.
1. The proposed AAP is well designed and motivated. Experiment results show the effectiveness of the AAP encoder.

2. This paper gives comprehensive experiments. The results show the substantial improvement of the proposed whole system.

7. [Paper Weaknesses] Please discuss. Justifying your comments with the appropriate level of details about the weaknesses of the paper (i.e. lack of
novelty – given references to prior work, lack of novelty, technical errors, or/and insufficient evaluation, etc.). Note: If you think there is an error in the
paper, please explain why it is an error. It is not appropriate to ask for comparisons with unpublished papers and papers published after the ACM
Multimedia deadline. In all cases, please be polite and constructive.
1. From decoder perspective, I feel MIT and MART are almost the same. It is not very clear for how the MIT improves the MART in decoder part.

2. Miss some explanations of the models in table 1. For example, MIT uses the same encoder as MART?

8. [Preliminary Rating] Please rate the paper according to one of the following choices.
Poster

9. [Rebuttal Requests] Please pose questions you want to be answered in the rebuttal. Please do NOT ask the author(s) to include any new results (e.g.,
experiments and theorems) in the rebuttal.
1. Give more detailed explanation about difference between the MIT and decoder in MART.

2. In table 3, my observation is that the AAP-MIT is more sensitive to hyper-parameter changes.

10. [Confidence]
Confident

14. [Final Recommendation] Please provide your final recommendation according to the author rebuttal, the discussions with other reviewers and area
chairs.
Borderline

15. [Final Justification] Please provide your justification of your final recommendation.
Based on the answers from the authors, I don't think there is significant difference between MIT and the decoder in MART. So I think it is somewhat novel for novelty.

Questions
1. [Paper Summary] What is the paper about? Please, be concise (3 to 5 sentences).
The paper presents a novel framework to generate multi-sentence descriptions for video, which consists of a pyramid network to model multi-scale temporal contextual
information followed by a temporal correlation attention to learn correlations among these multi-scale features as well as a memory incorporated transformer to learn
long-range dependencies among video segments and corresponding descriptions. Experiments and analysis are conducted on ActivityNet Captions and YouCookII
datasets to validate the superiority of the proposed model.
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2. [Relevance] Is this paper relevant to an audience to ACM Multimedia? Please check https://2021.acmmm.org/call-for-paper.html.
Relevant to researchers in subareas only

3. [Significance] Are the results significant?
Highly significant

4. [Novelty] Are the problems or approaches or applications/systems novel?
Somewhat novel or somewhat incremental

5. [Evaluation] Is the idea proposed in this paper well supported by theoretical analysis or experimental results?
Sufficient

6. [Paper Strengths] Please discuss. Justifying your comments with the appropriate level of details about the strengths of the paper (i.e. novelty,
theoretical approach and/or technical correctness, adequate evaluation, clarity, applications, etc.). For instance, a theoretical paper may need no
experiments, while a paper with a new approach or application may require comparisons to existing methods.
1)	State-of-the-art results are achieved.

2)	Extensive experiments are included to demonstrate the effect of different components in the proposed AAP-MIT with various hyperparameters.

3)	The paper is well organized and easy to follow.


7. [Paper Weaknesses] Please discuss. Justifying your comments with the appropriate level of details about the weaknesses of the paper (i.e. lack of
novelty – given references to prior work, lack of novelty, technical errors, or/and insufficient evaluation, etc.). Note: If you think there is an error in the
paper, please explain why it is an error. It is not appropriate to ask for comparisons with unpublished papers and papers published after the ACM
Multimedia deadline. In all cases, please be polite and constructive.
1)	The differences between MART and the memory augmented transformer in the proposed MIT are minor.

2)	The Figure 3 is not that clear since the blocks of different components share similar colors.

3) Some important related works about dense video captioning are missing:

- Streamlined dense video captioning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

- Jointly localizing and describing events for dense video captioning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.




8. [Preliminary Rating] Please rate the paper according to one of the following choices.
Borderline Accept

9. [Rebuttal Requests] Please pose questions you want to be answered in the rebuttal. Please do NOT ask the author(s) to include any new results (e.g.,
experiments and theorems) in the rebuttal.
1)	Multi-scale temporal features can be learnt by stacking several layers of transformer followed by a meshed-memory decoder as in [R1]. What are the differences
between this design and the proposed AAP-MIT network?

2)	What are the differences between the AAP network and TPN [R2]?

[R1] M2: Meshed-Memory Transformer for Image Captioning.

[R2] Temporal Pyramid Network for Action Recognition.


10. [Confidence]
Confident
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14. [Final Recommendation] Please provide your final recommendation according to the author rebuttal, the discussions with other reviewers and area
chairs.
Weak Reject

15. [Final Justification] Please provide your justification of your final recommendation.
After reading the authors' feedback and other reviewers' comments, I vote for "weak reject" for this paper since my main concern about the limited technical
contribution has not been well addressed. From my view, this work is a simple combination of existing techniques (e.g., MART and TPN). Moreover, the reason why
this architecture can outperform stacks of transformer layers in learning temporal dynamics has not been well clarified by the authors in the feedback.
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Response to the Reviewers Comments

We thank the reviewers for their time and effort in providing the constructive and
insightful comments. We have carefully considered the reviewer's comments and
incorporated suggested changes to improve the quality of the manuscript.

We have highlighted the changes in the manuscript (track changes) in Blue color.
Below table provides point-by-point response to the reviewers comments and
suggestions.

Reviewer 1

Comment Response

1) The implementation of the proposed
network is unclear. The authors should
details these contents. Is the training of
the proposed framework end-to-end?

Yes, our AAP-MIT captioning network is
an end-to-end trainable network. However,
the input appearance features are extracted
from the ‘Flatten-673’ layer of ResNet-200
and optical flow features are extracted from
the ‘global pool’ layer of BNInception.
Both these networks are pre-trained on
ActivityNet for action recognition task.

As suggested by the reviewer, we have
revised the implementation details.
[highlighted in manuscript].

2) More example of negative results
should be reported. Also, the
disadvantage of the proposed method
should be analyzed.

Now, we have included more negative
examples in Figure 6 and analyzed
disadvantages of the proposed method in
the revised manuscript.

[highlighted in manuscript].

3) How did the memory bank affect the
performance? The ablation study about
the memory bank should be conducted.

As per reviewer's suggestion, we have
provided ablation study with respect to the
memory bank (Table V and Section

1 of 2
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IV.C.2.b).
[highlighted in manuscript].

4) Some works also explore the attention
mechanism in video analysis, such as
Spatiotemporal co-attention recurrent
neural networks for human-skeleton
motion prediction. IEEE Transactions on
Pattern Analysis and Machine
Intelligence (TPAMI). 2021
Host-Parasite: Graph LSTM-In-LSTM for
Group Activity Recognition. IEEE
Transactions on Neural Networks and
Learning Systems (TNNLS), 32(2):
663-674, 2021
Coherence Constrained Graph LSTM for
Group Activity Recognition. IEEE
Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2019
The authors should introduce these
works in the revision.

We have revised our related work section
by including the suggested research works.
[highlighted in manuscript].

Reviewer 2

Comment Response

1) The related work is still relative short,
and could cover more related topics,
such as feature pyramid networks, and
memory networks in other tasks.

As suggested by the reviewer, we revised the
related work section and incorporated the
research works suggested by the reviewer. .
[highlighted in manuscript].

2) The temporal correlation attention is
designed for encoding the long-range
and short-range temporal features.
However, the ablative results for the
effect of long-range and short-range
temporal features are not shown.

Now we have revised our ablation study
with the results of long-range and
short-range temporal features (Table IV
and Section IV.C.2.a)..

[highlighted in manuscript].

2 of 2
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Response to the Reviewers Comments

We thank the reviewers for their time and effort in providing the constructive and
insightful comments. We have carefully considered the reviewer's comments and
incorporated suggested changes to improve the quality of the manuscript.

We have highlighted the changes in the manuscript (track changes) in Blue color.
Below table provides point-by-point response to the reviewers comments and
suggestions.

Reviewer 1

Comment Response

All issues have been addressed We thank the reviewer for accepting our
manuscript.

Reviewer 2

Comment Response

1) The justification for the
differences with previous methods
(explained in the attached rebuttal)
should be integrated into the paper
as well.

As suggested by the reviewer, we
incorporated the differences with previous
methods in the revised manuscript.
[highlighted in manuscript].

1 of 2
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AAP-MIT: Attentive Atrous Pyramid Network and
Memory Incorporated Transformer for

Multi-Sentence Video Description
Jeripothula Prudviraj∗, Malipatel Indrakaran Reddy, Chalavadi Vishnu, and C. Krishna Mohan, Senior

Member, IEEE.

Abstract—Generating multi-sentence descriptions for video is
considered to be the most complex task in computer vision
and natural language understanding due to the intricate nature
of video-text data. With the recent advances in deep learning
approaches, the multi-sentence video description has achieved
an impressive progress. However, learning rich temporal context
representation of visual sequences and modelling long-term de-
pendencies of natural language descriptions is still a challenging
problem. Towards this goal, we propose an Attentive Atrous
Pyramid network and Memory Incorporated Transformer (AAP-
MIT) for multi-sentence video description. The proposed AAP-
MIT incorporates the effective representation of visual scene by
distilling the most informative and discriminative spatio-temporal
features of video data at multiple granularities and further
generates the highly summarized descriptions. Profoundly, we
construct AAP-MIT with three major components: i) a temporal
pyramid network, which builds the temporal feature hierarchy
at multiple scales by convolving the local features at temporal
space, ii) a temporal correlation attention to learn the relations
among various temporal video segments, and iii) the memory
incorporated transformer, which augments the new memory
block in language transformer to generate highly descriptive
natural language sentences. Finally, the extensive experiments
on ActivityNet Captions and YouCookII datasets demonstrate the
substantial superiority of AAP-MIT over the existing approaches.

Index Terms—Multi-sentence video description, dense video
captioning, atrous pyramid network, temporal correlation atten-
tion, transformers.

I. INTRODUCTION

In recent years, the amount of multimedia data such as
videos is growing tremendously due to the extensive use of
sensors. With this rapid growth of data, it is essential to
understand the multimedia content and describe it in natural
language to benefit data management, retrieval, and enhance
the content search in streaming platforms. The task of multi-
sentence video description (dense video captioning), which
describes the content of video in a series of semantically
meaningful sentences has received an enormous interest in
the intersection of multimedia and computer vision due to
its wide range of applications such as storytelling, human-
robot interaction, support of disabled, and video indexing. In
addition, the dense video captioning is widely adopted in var-
ious domains like surveillance video analysis, personal lifelog

∗- Corresponding author
The authors are with the Visual Learning and Intelligence Group,, IIT
Hyderabad, Hyderabad, India (e-mail: cs17resch01005@iith.ac.in), Page:
https://sites.google.com/view/theswath/home

Concat

Masked
Transformer

Block

Multi-Head
Transformer Block

Textual
Embedding

Video 
Embedding

Memory Block Concat

Visual
Features

Concat "brush some soy sauce on top
and plate them"

"cut the salmon fish meat
into thin slices"

Temporal Pyramid
Network
(TPN)

Temporal Pyramid
Network
(TPN)

Temporal
Correlation Attention

(TCA)

Temporal
Correlation Attention

(TCA)

Optical Flow
Features

Fig. 1. Overview of the proposed AAP-MIT for Multi-Sentence Video
Description

video creations, and query based action/ emotion recognition.
Leaving aside the tremendous applications, the dense video
captioning poses two major challenges: i) The obscure nature
of multiple events in a video and their spatio-temporal struc-
tures make dense video captioning an arduous problem. ii) The
generation of coherent, precise, and semantically meaningful
descriptions is an extremely complex task.

To address above challenges, many works [1], [2], [3], [4],
[5], [6] have been proposed since early 2000s [7]. Inspired
by machine translation tasks, most of the existing works fol-
low encoder-decoder architecture, where the encoder network
embeds the entire video into compact visual representation
and the decoder network generates words and sentences in a
sequence by utilizing the encoded video features. Due to the
rapid development of deep learning approaches, recent works
are utilizing convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and transformers in encoder-decoder
framework and reporting the state-of-the-art performance.
Specifically, Krishna et al. [2] utilized C3D-LSTM based
encoder-decoder architecture to extract visual information of
various temporal event segments of an video and further
generate coherent paragraph description. Whereas, Park et al.
[8] exploited R3D-LSTM network with adversarial learning to
generate list of descriptions for video. Further, the combination
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IEEE TRANSACTIONS ON IMAGE PROCESSING 2

of graph convolutional networks and LSTMs are investigated
in [9].

Recently, transformers [10] are showing superior perfor-
mance over conventional RNNs like LSTM [11] and GRU
[12]. Inspired by this, Zhou et al. [13] explored temporal
convolutional network and masked transformer for dense video
captioning. Further, Lei et al. [14] utilized two stream (visual
and flow) video features with memory augmented transformer
to more coherent and less repetitive sentences for multi-
sentence video description.

Although the existing works are showing impressive per-
formance over multi-sentence video description, they fail to
address the following challenges: i) Some of the methods of
dense video captioning task represent the video sequence as
a collection of frame-level features by ignoring the fact that
the videos contain more sophisticated information such as
appearance & motion information, rich video semantics, fine-
grained information, and temporal dynamics. ii) Since videos
contain complex temporal cues, the content of video repre-
sentation is often too difficult to be described. Hence, there is
a necessity to capture the long-range spatio-temporal context
information in order to build informative and discriminative
feature hierarchy of video at multiple granularities. iii) Even
though the attention mechanisms are widely explored in dense
video captioning, learning temporal correlations among differ-
ent action segments is still a challenging issue. iv) The problem
of context fragmentation is associated with transformers, i.e.,
they operate on fixed-length segments without any additional
information flow across the segments.

To address aforementioned issues of multi-sentence video
description, we propose attentive atrous pyramid network and
memory incorporated transformer (AAP-MIT). The overview
of the proposed AAP-MIT is shown in Figure 1. Mainly,
we construct the AAP-MIT with three major components,
namely, temporal pyramid network (TPN), temporal correla-
tion attention (TCA), and memory incorporated transformer
(MIT). On extracting the visual and optical flow features
from an input video, the temporal pyramid network employs
parallel atrous convolutions over temporal space at multiple
rates in order to build the temporal feature hierarchy and
capture both short-range & long-range spatio-temporal con-
textual information of the video. Further, we incorporate a
novel attention mechanism, i.e., temporal correlation attention
to learn correlation among temporal feature hierarchy. Finally,
the memory incorporated transformer accumulates the past
history of sentences and video segments through an external
memory block in order to generate more precise, diverse, and
meaningful descriptions. The main contributions of the our
work are summarized as follows:

• We introduce temporal pyramid network to effectively
build the saptio-temporal feature hierarchy of an input
video.

• A temporal correlation attention mechanism is proposed
to align various temporal level features and learn the
relations among various temporal cues.

• We design and build the new memory block in trans-
former architecture to capture long range dependencies
over video segments and sentences.

• The efficacy of the proposed attentive atrous pyramid
network and memory incorporated transformer (AAP-
MIT) is verified quantitatively & qualitatively on two
challenging datasets, ActivityNet and YouCookII.

II. RELATED WORK

In this section, we first review prominent works of multi-
sentence video description and then the significant works
related to feature pyramid networks, spatio-temporal coher-
ence, and memory networks are presented as our multi-
sentence video description work includes temporal pyramid
network (TPN), temporal correlation attention (TCA), memory
incorporated transformer (MIT) modules.

A. Multi-sentence video description

In the intersection of computer vision and natural language
processing, the multi-sentence video description has received
great interest in recent years. Generally, the multi-sentence
video description approaches are divided into two categories,
RNN-based approaches [15], [16], [2], [17], [18], [19], [20]
and transformer-based approaches [13], [14], [21]. The RNN-
based approaches leverage either long short term memory
networks (LSTMs) or gated recurrent units (GRUs) to generate
multi-sentence video descriptions. Whereas, the transformer
based approaches utilize the variants of vanilla transformer
architecture [10]. Recently, transformers are exhibiting su-
perior performance over conventional RNN based methods
on sequence learning task due to the inherent self-attention
mechanism.

For the task of dense captioning, the concept of transformer
is first explored in [13], where they simply replace LSTM
decoder with transformer architecture. Another line of work,
Lei et al. [14] presented a systematic study of transformer
for multi-sentence video description. Mainly, they investigated
vanilla transformer [10], transformer-XL [22], and memory
augmented transformer to generate coherent paragraph de-
scriptions. Further, Ging et al [21] explored cooperative hi-
erarchical transformer (COOT) with MART to generate list
of semantic descriptions. Similar to [14], [21], we propose
transformer based approach, AAP-MIT for multi-sentence
video description, where the attentive atrous pyramid network
(AAP) learns the compact spatio-temporal representation of
video and the memory incorporated transformer generates
highly summarized descriptions with the help of augmented
memory block.

B. Feature pyramid networks

Learning short-range and long-range temporal action in-
stance is one of the key factors of action understanding.
For example, it is hard to tell an action instance belongs to
walking, jogging or running based on its visual appearance
alone. However, it is more challenging to capture the subtle
visual tempos of action due to their inter-class and intra-class
variance across different videos. Recently, many works [23],
[24], [25] explored this issue at input-level by leveraging the
feature pyramid networks. Huang et al. [25] introduced an
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attentive temporal pyramid network (ATP-Net) for dynamic
scene classification by extracting and accumulating the most
discriminative and informative features to construct an efficient
representations of dynamic scenes. To incorporate multi-scale
modelling for activity detection, Zhang et al. [24] proposed
dynamic temporal pyramid network (DTPN). The DTPN ex-
ploits the temporal context of activities by fusing multi-scale
feature maps to learn both local and global temporal contexts.
A relation-aware pyramid network is presented in [26], for
accurate temporal action proposals that exploits bi-directional
long-range relations between local features to distill contextual
features. Parsa et al. explored spatio-temporal pyramid graph
convolutions to learn human actions and associated interac-
tions with objects for human action recognition and postural
assessment.

Recently, Dai et al. [27] introduced pyramid dilated at-
tention network (PDAN) to model short-term and long-term
temporal relations simultaneously by drawing local segments
and high temporal receptive fields for action detection task.
Yang et al. [23] proposed a generic temporal pyramid network
(TPN) at the feature-level to model dynamics and temporal
scale of an action instance for action recognition. Furthermore,
temporal pyramid recurrent neural network is proposed in [28],
to learn long-term and multi-scale dependencies in sequential
data for various tasks such as masked addition problem, pixel-
by- pixel image classification, signal recognition, and speaker
identification.

C. spatio-temporal coherence

Recognizing spatial-temporal coherence is considered as
one of the prominent characteristics of video understanding
plays a vital role in video content analysis. To this end, Shu et
al. [29] proposed a novel skeleton-joint co-attention recurrent
neural networks (SC-RNN) to dynamically learn skeleton-
joint co-attention feature map in spatio-temporal space and
refine the observed motion information. Tang et al. [30]
presented a coherence constrained graph LSTM with spatio-
temporal context coherence (STCC) and a global context
coherence (GCC) for group activity recognition where it
captures relevant motions of whole activity while suppressing
the some irrelevant motions. Recently, a novel graph LSTM-in-
LSTM is introduced in [31] for activity recognition to exploit
relationship between the group-level activity and person-level
actions at spatio-temporal space.

D. Memory networks

Memory networks are referred to the neural networks which
contains an external memory block where the information
can be written and read by purposes. In recent years, many
works explored memory networks in the domain of computer
vision. For instance, Oh et al. [32] introduced space-time
memory networks for video object segmentation where the
memory network stores the current and past frames with object
masks along with all the space-time pixel locations. For the
task of visual tracking, Yang et al. [33] proposed a dynamic
memory network in order to adapt the template with the
target’s appearance variations during tracking.

Memory networks also explored for the task of captioning.
By updating existing memory networks, Park et al. [34]
introduced context sequence memory network towards person-
alized image captioning. Recently, Cornia et al. [35] exploited
memory blocks with transformer based architecture for image
captioning task to learn a multi-level representation of the vi-
sual relationships. Pei et al. [36] introduced memory-attended
recurrent network (MARN) for video captioning, where the
memory structure explores the correspondence between a
word and its various similar visual contexts of full-spectrum
across videos in training data. To unify textual memory, visual
memory and an attribute memory in a hierarchical way, a novel
hierarchical memory model is proposed in [37], for video
captioning.

III. METHOD

In this work, we introduce a novel encoder-decoder frame-
work for multi-sentence video description. Given an input
video I , with multiple temporally ordered video segments
{I1, I2, . . . , IT }, our task is to generate sequence of natural
language captions {s1, s2, . . . , sT } to describe the content of
the video. Here, st describes the content of video segment It.
In the following sub-sections, we first revisit the transformer
based dense video captioning approach. Then, we present our
attentive atrous pyramid network and memory incorporated
transformer (AAP-MIT) approach.

A. Recap of vanilla transformer for dense video captioning

Zhou et al [13] first explored the concept of transformer for
dense video captioning, which originally introduced in [10] for
machine translation task. The vanilla transformer based video
paragraph captioning model is shown in Figure 2. The core
building block of this vanilla transformer architecture is scaled
dot-product attention. Given a query matrix (Q), key matrix
(K), and value matrix (V ), the attention output is computed
as

A(Q,K, V ) = softmax

(
QK⊤
√
dk

, dim = 1

)
V, (1)

where softmax(:, dim = 1) represents that the softmax is
performed at the second dimension of the input. Further, we
can obtain the multi-head attention [10] by combining such h
parallel scaled dot-product attention blocks. This multi-head
attention module (MultiHeadAtt(Q,K, V )) is quite generic
and can be adoptable for several tasks. Specifically, it can be
utilized as self/cross-modal attention [10] or memory aggre-
gation [14]. The only difference between the self and cross-
modal attention is that the query, key, and value matrix are
same for self-attention but the query matrix will be different
from the key and value matrix in cross-modal attention. Other
important building block of vanilla transformer architecture is
feed-forward layer, where it takes the input from multi-head
attention and processes through linear projections with ReLU
activation. Typically, the vanilla transformer architecture uses
such building blocks in both encoder and decoder layers to
draw relationships among input features.

As in [10], the baseline dense video captioning framework
[13] incorporates L encoder layers and L decoder layers. At
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Fig. 2. Baseline transformer model for multi-sentence video description [13].
PE represents positional encoding

each lth layer of encoder, the multi-head attention block takes
hidden state from last encoder layer (H l−1) as the input and
performs self-attention [10]. Further, these attention outputs
are inputted to feed-forward layers at each encoder block. At
the lth layer of the decoder, the model first employs the masked
multi-head attention in order to restrict the model from seeing
future words and then encodes the hidden state of last decoder
layers. The multi-head attention uses masked outputs as query
matrix and hidden states of the lth encoder layer (H l) as key
and value matrices. Further a feed-forward layer is used to
encode the sentences and accumulate the encoder information.
We refer interested readers to [13] for more details.

B. Proposed AAP-MIT

The framework of the proposed AAP-MIT is shown in
Figure 3, where we follow the shared encoder-decoder archi-
tecture as in [14] . As shown in Figure 3, we first extract
visual and optical flow features from an input video, then we
feed extracted features to temporal pyramid network (Section
III-B1) to capture the effective representation of visual scene
and model the temporal dynamics of video data. Further,
we learn the temporal correlations of both visual and flow
features using novel attention mechanism (Section III-B2). The
memory incorporated transformer (Section III-B4) takes these
attentive features and generates coherent descriptions of an
input video.

1) Temporal pyramid network: In order to capture the most
informative and discriminative spatio-temporal features, we
should model the temporal dynamics of video information.
Usually, there are two ways to explore the temporal cues of
video data: i) By leveraging average pooling strategy over
temporal space, which simply averages the all features along
temporal dimension. This mechanism inevitably destroys the
temporal sequential information and introduces unnecessary
noise to the input features. The other way is to model the
video features as temporal ordered sequences using LSTMs
[11] or GRUs [12]. Despite the advantages of these models,
the LSTMs and GRUs are complex networks and computa-
tional cost is extremely high when compared to CNN based

networks. To this end, we propose a temporal pyramid network
which exploits atrous convolutions, a special type of convolu-
tional operation to model the temporal dynamics. Mainly, we
employ several atrous convolutions on input features parallelly
at multiple dilation rates to obtain a temporally convolved fea-
tures. The construction of temporal pyramid network (TPN) is
illustrated in Figure 3 (bottom-left). The TPN can incorporate
effective feature representation from the neighbouring frame
features and capture long and short temporal cues.

Given an input video, we first extract visual features and
optical flow features from a pre-trained two stream network
[38]. Thus, we obtain a set of visual features vf ∈ RT×dv

and optical flow features of ∈ RT×do . On obtaining visual
and flow features, we employ temporal pyramid network on
each individual feature set as in Figures 1 & 3 to achieve
pyramid of spatio-temporal features. Since the construction of
temporal pyramid hierarchy is same for both visual feature set
and optical flow feature set, we present all the details with
respect to visual stream as they can be extended as it is to the
optical flow stream.

In our feature pyramid, we first incorporate the original
visual features (vf ) as block-zero features (vb0 ∈ RT×dvb ,
where dvb = dv) by accounting that vf contains rich local
features. Further, we devise vb1 ∈ RT×dvb1 , vb2 ∈ RT×dvb2 ,
and vb3 ∈ RT×dvb3 by learning short-range and long-range
temporal contextual information. Specifically, we learn both
short-range and long-range temporal cues by probing multiple
atrous convolutions at temporal dimension with various rates.
Temporal atrous convolutions are special type of convolutions
that increases the size of temporal receptive field with the
increase of dilation rate.

Given a set of input features E = {e1, e2, . . . , eT }, the
output E(r) of atrous convolution with dilation rate r and
convolutional kernel W can be defined as

e
(r)
t =

w∑
i=1

e[t+r.i] ×W
(r)
i , e

(r)
t ∈ Rd,

where W (r) represents atrous convolution with dilation rate
r and the E(r) is the set of e

(r)
t ’s output. For temporal

atrous convolution, we employ f × 1 filter to convolve input
features at temporal dimension with dilation rate r. And,
we learn the long-range temporal features with the increase
of dilation rate or filter size. With this notion, we employ
three atrous convolutions with dilation rates r1, r2, and r3 in
order to construct atrous visual block features vb1, vb2, and
vb3, respectively, where r1 < r2 < r3. Intuitively, the vb1
captures the neighbourhood information, vb2 incorporates the
short-range temporal features, and vb3 acquires the long-range
information as r determines the temporal stride with which we
sample. For instance, consider the visual example provided
in Figure 3, here, the vbo may capture the representation of
“salmon fish”, vb1 may learn the action of “cut”, and vb2
& vb3 may incorporate the relation between “salmon” and
“sushi”.

In temporal pyramid network, we first employ the temporal
correspondence across temporal dimension d using atrous con-
volutions, where it learns the rich temporal features. Further,
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"cut the salmon fish meat into thin slices"

"stuff the sushi rice inside the meat slice and place
them on a baking sheet in a row"

"using blow torch cook outer layer of the meat"

"brush some soy sauce on top and plate them"

"garnish the salmon with a little sushi rice fish roe
and thick soy sauce"
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Fig. 3. Framework of the proposed AAP-MIT for multi-sentece video description task. Left: Attentive atrous pyramid which is incorporated with two major
components, temporal pyramid network and temporal correlation attention. Right: Proposed memory incorporated transformer.

the attained features are projected onto linear layers to learn
the compact spatio-temporal representation. The linear layers
squish the output of each visual block feature vbj ∈ RT×dvb to
vbj ∈ RT×d′

vb , where d′vb < dvb. The output features obtained
from linear layers are now spatially compact and temporally
aligned. Similarly, we employ temporal pyramid network on
optical flow features in order to generate atrous optical flow
block features, ob0, ob1, ob2, and ob3 . All visual and optical
flow features, i.e., {vb0, vb1, vb2, vb3, ob0, ob1, ob2, ob3} are
further fed to the temporal correlation attention to learn inter-
dependencies among the features.

2) Temporal correlation attention: Recently, many atten-
tion mechanisms [39], [40], [10], [41] have been proposed to
generate the attention aware features and learn correlations
among the features. In this work, we introduce correlation
attention mechanism, similar to [10] in order to learn tempo-
ral correlated features. The proposed attention mechanism is

so
ft
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L
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L
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e
a
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Tanh

L
in
e
a
r

Fig. 4. Temporal correlation attention

shown in Figure 4.
Given two feature maps B ∈ RT×db and P ∈ RT×dp , we

generate query matrix Q ∈ RT×dat by projecting feature map
B to linear layer. And, the key matrix K ∈ RT×dat & value
matrix V ∈ RT×dat are constructed using feature map P ,
where dat is the attention dimension. On extracting query,
key, and value matrix, we first perform element wise sum and
then feed it into to Tanh. The output of Tanh is projected
to linear layers and applied softmax to generate attention
weights. Further, these attention weights are multiplied with
value matrix to produce correlated attentive features. This
attention mechanism can be presented mathematically as

A(Q,K, V ) = [softmax(W3tanh(W1Q+W2K))]⊙ [W4V ],
(2)

where W1,W2,W3, and W4 are learnable parameters. This
attention mechanism can also act as temporal self-attention
when feature maps B and P are same. In other words, the
query, key, and value matrix are generated from a single
feature map.

In our work, we incorporate temporal self-attention on
vb0 & ob0 and temporal correlation attention on rest of the
output features of TPN. For temporal correlation attention, we
generate query matrix from atrous features and key & value
matrix from original features, i.e., vb0 for visual stream and
ob0 for optical flow stream. For example, the query matrix for
vat1, vat2, & vat3 will be vb1, vb2, & vb3, respectively. And,
the key matrix & value matrix will be vb0 for all vat1, vat2, and
vat3. All attentive features, i.e., {vat0, vat1, vat2, vat3, oat0,
oat1, oat2, oat3 } are further concatenated and represented as
video embedding for our transformer based decoder.
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3) Video-text embedding: On extracting attentive visual
(vat0, vat1, vat2, vat3) and optical flow features (oat0, oat1,
oat2, oat3) from temporal correlation attention (TCA), we
concatenate them to construct video embedding H0

I ∈ RTI×dI .
Then, we produce textual embedding H0

s ∈ RTs×ds for
input descriptions, where TI and Ts denote the length of the
video and text features, respectively. As shown in Figure 3,
these two embeddings are further concatenated as input to
the transformer layers, i.e., H0 = [H0

I ;H
0
s ] ∈ RTc×d, where

Tc = TI + Ts and [;] denotes the concatenation. Finally, the
combined video-text embedding is coupled with the trainable
token type embedding (TE) to note whether the token is from
video or text as in [14].

4) Memory incorporated transformer: In our work, we
adopt the shared encoder-decoder transformer architecture as
in [14], which is further incorporated with novel memory
block to learn long-range dependencies among video seg-
ments and their corresponding descriptions. The overview of
memory block is shown in Figure 3 (right). At lth layer,
while decoding the tth video segment at time step t, we use
multi-head attention to accumulate the information from both
intermediate hidden states H l

t ∈ RTc×d and previous memory
state M l

t−1 ∈ RTm×d (Tm denotes the memory state length).
As shown in Figure 3, we use hidden state information as
query matrix (Q = H l

t) and the concatenated memory and
hidden state is used as key matrix & value matrix, i.e., K,V
= [M l

t−1;H
l
t ] ∈ R(Tm+Tc)×d. In memory block, the memory

state M l
t−1 is updated to M l

t using H l
t and M l

t−1 as

X l
t = MultiHeadAtt(M l

t−1, H
l
t , H

l
t),

rlt = sigmoid(W l
mrM

l
t−1 +W l

xrX
l
t + blr),

jlt = sigmoid(W l
mjM

l
t−1 +W l

xjX
l
t + blj),

zlt = sigmoid(W l
mzM

l
t−1 +W l

xzX
l
t + blz),

glt = tanh(W l
mg(r

l
t ⊙M l

t−1) +W l
xiX

l
t + blg),

blt = tanh(jlt ⊙ glt),

M l
t = zlt ⊙M l

t−1 + (1− zlt)⊙ blt, (3)

where ⊙ represents the Hadamard product, W l
∗∗ and bl∗ are

trainable weight matrices and biases. The rlt, j
l
t, and glt are

internal cell states. And, zlt & blt control the information of
memory state. This updating strategy of our memory block
is similar to LSTM [11] and GRU [12]. Mainly, our memory
block supports multiple memory slots instead of single slot
as in LSTM or GRU. This type of memory construction may
model complex relations at higher capacity by memorizing the
history of previous video segments and generated captions.

In this section, we presented AAP-MIT for multi sentence
video description, which combines all three components i.e.,
temporal pyramid network, temporal correlation attention, and
memory incorporated transformer into a unified network in
order to generate highly summarized descriptions. In the next
section, we present the experimental analysis of our AAP-MIT
by quantitatively and qualitatively.

IV. EXPERIMENTS

This section presents the data pre-processing, implementa-
tion details, and experimental results of the proposed approach.

A. Datasets and evaluation Metrics

a) Datasets:: In this work, we verify the effective-
ness of the proposed approach on two challenging multi-
sentence video description datasets, ActivityNet Captions [2]
and YouCookII [42]. Both these datasets are largest datasets
of video description task, and contain multiple temporal event
segments with corresponding descriptions.

ActivityNet Captions provides 10, 009 videos in train set
and 4, 917 videos in validation set. Each video in train set
contains a single reference paragraph, while the validation set
is provided with two reference paragraphs for each video. For
fair comparison with the state-of-the-art models [14], [2], [21],
we use widely accepted split provided in [20]. Particularly, the
validation set is split into ae-validation and ae-test, where, ae-
validation includes 2,460 videos and ae-test contains 2,457
videos. This type of setup makes that the videos of test set
will not be seen in validation set.

YouCookII contains 1,333 videos in train set and 457 videos
in validation set. These videos are collected from YouTube and
cover 89 varieties of recipes. And, each video in YouCookII
has single reference paragraph.

b) Evaluation Metrics:: In this work, we evaluate the
generated descriptions by following the same evaluation pro-
cess as in [14], [8], [6]. Specifically, we report results of
the proposed approach using standard evaluation metrics like
BLEU-4 [43], METEOR [44], ROUGE-L [45], and CIDEr-
D [46]. In brief, all these metrics evaluate the coherence
between the N−gram occurrences in reference paragraph and
generated paragraph. In addition, we evaluate the redundancy
among multi-sentence descriptions using R@4 as in [14], [8],
where it measures the N−gram repetition in the descriptions,
here N = 4.

B. Data Preprocessing and implementation details

a) Data Preprocessing: As in [13], [14], we represent the
videos using both appearance and optical flow features, which
are extracted at 2 FPS. Particularly, the appearance features
are extracted from ‘Flatten-673’ layer of ResNet-200 [47]
and the optical flow features are extracted from ‘global pool’
layer of BNInception [48]. Both these networks are pre-trained
on ActivityNet [49] for action recognition task, developed by
[38]. Thus, we achieve 2048D feature vector for appearance
features and 1024D feature vector for flow features. In our
experiments, we drop the sequences which are longer than
100 for video and 20 for text as in [14]. And, the maximum
number of video segments set to 6 for ActivityNet Captions
and 12 for YouCookII. Further, the vocabulary is built based on
the words that repeat at least 5 times for ActivityNet Captions
and 3 for YouCookII. Thus, we achieve a vocabulary of size
3,544 for ActivityNet Captions and 992 for YouCookII.
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b) Implementation details: The proposed AAP-MIT is
implemented in PyTorch [50] framework. For each video, we
use 100 features of appearance with 2048 dimension and flow
with 1024 dimension to represent video information. Thus,
we achieve visual features vf = 100× 2048 and optical flow
features of = 100 × 1024. On extracting visual and flow
features, we employ temporal pyramid network and temporal
correlation attention on each individual stream, separately.

In temporal pyramid network (TPN), we set atrous convolu-
tional kernel to 5×1, dilation rates to 2, 4,&, 6, and dimension
of atrous convolutional feature map to 2048 for visual & 1024
for optical flow. Further, the linear layer dimension of TPN is
set to 512.

In temporal correlation attention, we set attention dimension
to 512 for visual/appearance features and 256 for optical flow
features. Further, we concatenate attentive visual and flow fea-
tures and obtain feature representation of 100×3072 for each
video. Then, we employ a dropout with drop probability of
0.2 on concatenated attentive visual and optical flow features.

In transformer architecture, we set the hidden size to 768,
the number of transformer layers to 2, and the attention heads
to 12. We follow the fixed scheme as in [10] for positional
encoding. For memory block, the length of recurrent memory
state is set to 1.

We optimize the proposed model by leveraging the strategy
followed in [51]. Further, we use Adam [52] optimizer with
a learning rate of 1e−4 and weight decay of 0.01. We train
the proposed model to at most 50 epochs on both the datasets
with an early-stop using CIDEr-D. Similar to [14], we use
greedy decoding instead of beam search in caption generation.
Further, we train the proposed AAP-MIT framework end-to-
end. In addition, we present more detailed analysis of the
proposed approach with various parameters in section IV-C1.

C. Quantitative and qualitative results

In this paper, we introduce attentive atrous pyramid network
and memory incorporated transformer (AAP-MIT) for multi-
sentence video description. Specifically, we learn the effective
representation of visual scene and model their relations using
attentive atrous pyramid network, which is the combination
of two modules, temporal pyramid network and temporal
correlation attention. In addition, we introduce a novel memory
block in baseline transformer architecture as in [14] to learn
long-range dependencies among video segments and generated
captions. Further, we evaluate the proposed model on two chal-
lenging datasets, ActivityNet Captions and YouCookII using
standard evaluation metrics like BLEU n [43], METEOR [44],
ROUGE-L [45], CIDEr-D [46], and R@4 [14].

Table I presents the performance of the proposed AAP-
MIT on ActivityNet Captions along with the state-of-the-art
approaches. Particularly, we compare the performance of the
proposed model with the LSTM based models and transformer
based approaches. From Table I, we can observer that the pro-
posed approach is outperforming state-of-the-art approaches
in all metrics. Specifically, the AAP-MIT is outperforming all
other approaches on BLEU n, METEOR, RougeL, and R@4
but showing a performance deflation on CIDEr-D. However,

our memory incorporated transformer is exhibiting superior
performance over MART [14] on CIDEr-D when combined
with COOT features [21].

Further, the Table II demonstrates the performance of the
proposed AAP-MIT on YouCookII dataset with state-of-the-art
transformer based approaches. From Table II, we can observe
that the proposed model is exhibiting similar performance
as in Table I. Mainly, the AAP-MIT is outperforming the
all existing approaches on BLEU n, METEOR, RougeL, &
R@4. And, the memory incorporated transformer with COOT
is reporting superior performance over all other methods on
CIDEr-D. In this paper, we compare our approach with LSTM
based models like HSE [53], MFT [6], AdvInf [8], & GVD
[20] and transformer based architectures like MART [14] and
COOT [21]. In particular, our proposed AAP-MIT is closely
relevant to the recent transformer based framework MART
[14]. Hence, we conduct a systematic analysis with MART in
the next section along with the ablation study.

1) Comparison with MART: MART is a memory aug-
mented transformer which memorizes the sentence history and
video segments in order to generate multi-sentence descrip-
tions. Similar to MART [14], we incorporate new memory
block along with the effective video encoding mechanism.
In specific, the MART [14] approach simply uses the con-
catenated appearance and optical flow feature by ignoring
that the video representation contains rich temporal dynamics
and holds concealed relationships. To deal with such char-
acteristics, we propose an attentive atrous pyramid network
which is a combination of temporal pyramid network (TPN)
(Section III-B1) and temporal correlation attention (TCA)
(Section III-B2). Mainly, the TPN learns the local, short-
range, and long-range contextual information by probing
atrous convolutions at multiple rates. And, the TCA learns
the correlation among the output features of the TPN. Further,
we augment a new memory block different from MART [14],
which incorporates multiple memory slot in order to learn
complex and long-range feature representations. From Table I
and Table II, we can observe that the proposed AAP-MIT is
outperforming MART [14] in all metrics. In addition, we can
observe that the COOT with MIT, i.e., COOTvideo+clip + MIT
(Ours) is giving better CIDEr-D score than COOTvideo+clip

+ MART [21].

2) Ablation study: We conducted several experiments be-
fore finalizing the best possible model. Particularly, the consid-
erable hyperparameters of the model are convolution filter size,
number of atrous convolutions used for the construction of
TPN, dilation rate, atrous convolution dimension, intermediate
linear layer dimension, attention size, video embedding, and
text embedding dimension. In addition, we also investigated
the transformer attention [10] instead of temporal correlation
attention (TCA) and observed very low performance. Please
refer Table III for more quantitative results with different
hyperparameters on ActivityNet captions dataset. Moreover,
we also observed that the effect of memory length and number
of memory layers used is not promising. In summary, we
achieved best possible results on ActivityNet captions and
YouCookII when TPN+TCA is associated with MIT.
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TABLE I
COMPARISON OF THE PROPOSED AAP-MIT WITH EXISTING LSTM AND TRANSFORMER BASED APPROACHES ON ActivityNet Captions USING ALL
EVALUATION METRICS. HERE, AAP-VTRANSFORMER: ATTENTIVE ATROUS PYRAMID NETWORK WITH VANILLA TRANSFORMER, MIT: MEMORY

INCORPORATED TRANSFORMER. *-REPRODUCED RESULTS

Method BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR CIDEr-D R@4 ↓ RougeL
LSTM based methods

MFT [6] - - - 10.29 14.73 19.12 17.71 -
HSE [53] - - - 9.84 13.78 18.78 13.22 -
DVcap [2] 26.45 13.48 7.12 3.98 9.46 24.56 - -
GPaS [9] - - - 1.53 11.04 28.20 - -

LSTM based methods with
detection features

GVD [20] - - - 11.04 15.71 21.95 8.76 -
AdvInf [8] - - - 10.04 16.60 20.97 5.76 -

Transformer based methods
VTransformer* [14], [10] 44.51 25.42 15.03 9.21 15.43 21.30 7.49 26.98
Transformer-XL [14], [22] - - - 10.25 14.91 21.71 8.79 -
Transformer-XLRG [14] - - - 10.07 14.58 20.34 9.37 -

MART [14] - - - 9.78 15.57 22.16 5.44 -
COOTvideo+clip + MART [21] - - 17.43 10.85 15.99 28.19 5.35 31.45

AAP-VTransformer (Ours) 48.40 28.70 17.53 10.70 16.26 25.12 7.18 30.42
MIT (Ours) 47.83 28.41 18.29 11.25 17.13 26.23 6.42 31.87

COOTvideo+clip + MIT (Ours) - - - 11.34 16.41 30.87 6.99 31.83
AAP-MIT (Ours) 49.89 29.78 18.94 12.44 17.55 28.32 5.29 32.91

TABLE II
COMPARISON OF THE PROPOSED AAP-MIT WITH EXISTING TRANSFORMER BASED APPROACHES ON YouCookII DATASET USING ALL STANDARD

METRICS. *-REPRODUCED RESULTS

Method BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR CIDEr-D R@4 ↓ RougeL
VTransformer* [14], [10] 41.64 22.60 12.15 6.76 15.85 29.17 7.83 29.60
Transformer-XL [14], [22] - - - 6.56 14.76 26.35 6.30
Transformer-XLRG [14] - - - 6.63 14.74 25.93 6.03

MART [14] - - - 8.00 15.9 35.74 4.39
COOTvideo+clip + MART [21] - - 15.75 9.44 18.17 46.06 6.30 34.32

AAP-VTransformer (ours) 42.34 24.33 14.46 8.62 16.97 35.12 3.42 32.79
MIT (ours) 41.89 23.99 15.37 9.26 17.22 39.77 3.74 34.40

COOTvideo+clip + MIT (Ours) - - - 9.45 18.00 49.18 8.55 34.27
AAP-MIT (ours) 43.98 25.73 16.76 9.82 18.23 43.87 3.50 37.32

TABLE III
THE PROPOSED ATTENTIVE ATROUS PYRAMID AND MEMORY INCORPORATED TRANSFORMER WITH VARIOUS HYPERPARAMETERS ON ACTIVITYNET
CAPTIONS, WHERE TA: TRANSFORMER ATTENTION [10], TCA: TEMPORAL CORRELATION ATTENTION (OURS), VT: VANILLA TRANSFORMER [10],

MART: MART [14], MIT: MEMORY INCORPORATED TRANSFORMER (OURS), B@4: BLEU-4, RL: ROUGEL, MT: METEOR, CR: CIDER-D

Visual
features

Optical
flow

features

# Atrous
Covolutions

(visual, flow)

Size of
Conv
filter

Dilation
rates

Attention
mechanism

Size of
attentive
features

Size of
Video

embedding
Decoder B@4 RL MT Cr

✓ ✓ 3 + 3 5× 1 2, 4, 6 TA 4× 512, 4× 256 768 VT 9.09 27.71 15.33 22.68
✓ ✓ 3 + 3 5× 1 2, 4, 6 TA 4× 512, 4× 256 768 VT 10.70 30.42 16.26 25.12
✓ ✓ 3 + 3 5× 1 2, 4, 6 TCA 4× 512, 4× 256 768 MART 11.57 31.78 16.72 25.14
✓ ✓ 6 + 6 5× 1 2,4, 6, 8, 10, 12 TCA 7× 512, 7× 256 2× 768 MART 11.42 31.76 16.99 25.40
✓ ✓ 6 + 6 5× 1 4, 6, 8, 10, 12, 14 TCA 7× 512, 7× 256 2× 768 MART 11.45 31.64 16.87 25.42
✓ ✓ 6 + 6 5× 1 4, 6, 8, 10, 12, 14 TCA 7× 512, 7× 256 2× 768 MIT 11.20 31.64 16.84 25.82
✓ ✓ 3 + 3 3× 1 2, 4, 6 TCA 4× 512, 4× 256 768 MIT 12.01 32.31 16.93 26.12
✓ ✓ 3 + 3 3× 1 4, 6, 8 TCA 4× 512, 4× 256 768 MIT 11.63 32.00 16.76 25.75
✓ ✓ 3 + 3 5× 1 4, 6, 8 TCA 4× 512, 4× 256 768 MIT 11.62 31.95 16.83 26.04

TABLE IV
EFFECT OF LONG-RANGE AND SHORT-RANGE TEMPORAL FEATURES ON

ACTIVITYNET CAPTIONS, WHERE vb∗ AND ob∗ ARE VISUAL BLOCKS AND
OPTICAL FLOW BLOCKS, RESPECTIVELY.

List of visual and
optical flow features B@4 RL MT Cr

Short-range (SR) vb0, ob0 11.25 31.87 17.13 26.23
Short-range (SR) vb0, vb1, ob0, ob1 11.92 32.21 17.28 27.11
Long-range (LR) vb2, vb3, ob2, ob3 11.89 32.23 17.45 27.98

SR+LR vb0, vb1, vb2, vb3,
ob0, ob1, ob2, ob3

12.44 32.91 17.55 28.32

TABLE V
THE ABLATION STUDY OF THE MEMORY MODEL ON ACTIVITYNET

CAPTIONS

hidden
layers mem. len. B@4 RL MT Cr

hidden
layers

AAP+MIT

1 1 12.30 32.80 16.20 27.12
5 1 13.20 33.10 16.35 27.54

mem. len.

AAP+MIT

2 2 11.90 32.21 15.98 26.43
2 5 11.75 32.02 15.75 26.21

AAP+MIT 2 1 12.44 32.91 17.55 28.32
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a) Effect of short and long range temporal features:
Incorporation of short-range and long-range temporal features
are crucial in video understanding [23], [24], [25]. So, we
provide an ablative study on effect of long-range and short-
range temporal features in IV. From the Table, we can infer
that the combined information of short-range and long-range
features boosts the performance of the model than individual
feature model. Specifically, the performance of the proposed
AAP-MIT with short-range and long-range features boosts the
performance of Rouge-L from 31.87 to 32.91 and Cider-D
from 26.23 to 28.32.

b) Effect of memory model: In our AAP-MIT, the key
parameters with respect to memory model are: number of
hidden layers and memory length. Table V shows the memory
model ablation analysis. From the Table, we can observe that
the models with small memory length have better overall per-
formance than the high memory length. From the experiments,
we finalize the model with 2 hidden layers and memory length
1 as it is showing a considerable balance between performance
and computation.

c) Model architecture comparison with admissible
works: Stacking several layers of transformer [10] followed
by a meshed-memory decoder [35] may learn multi-scale tem-
poral features. This notion learns the local features using self-
attention mechanism and global features using cross-modal
attention. Further, the M2T [35] network can be leveraged
for decoder. Although this approach may achieve comparable
results, it may be difficult to model the temporal dependencies
among input features Fi, Fi+r, Fi+2r, . . .Fi+nr. Moreover, the
temporal dependencies can be easily modelled using temporal
dilated convolutions as in our AAP-MIT. For example, if the
dilation rate is 6 and convolutional kernel is 3× 1, our AAP-
MIT convolves input features in the form of Fi, Fi+6, Fi+12,
temporally to achieve efficient and robust multi-scale temporal
features. In comparison with meshed-memory decoder (M2T )
[35], the M2T constructs the memory augmented attention
by simply extending the self-attention with additional “slots”.
However, our proposed AAP-MIT constructs the multiple
memory slots instead of single slot (Equation 3) to learn more
complex relations.

We can see the temporal pyramid network (TPN) [23] as
a variant of our AAP network. However, there are lot of
architectural differences in between TPN and our AAP. TPN
utilizes the output features of res2, res3, res4, and res5 of
ResNet, where they are spatially and temporally downsampled
to learn features. In contrast, we extract features from linear
layer of pre-trained network and maintain the same feature
dimension throughout vb0/ob0to vb3/ob3. Then, we learn the
temporal dynamics using set of atrous convolutions at various
rates. For instance, if we have 10 features, the vb1/ob1 learns
the temporal features as output = conv(Fi, Fi+2, Fi+4) and
vb3/ob3 as output = conv(Fi, Fi+6, Fi+12). This type of
notion is highly different from model construction of temporal
pyramid network [23].

D. Qualitative analysis
The Figure 5 demonstrates the qualitative results of the

example images, where we show one example video with

generated and ground truth descriptions for ActivityNet cap-
tions (Fig 5 (a)) and YouCookII (5 (b)). From the Figure, we

Ours : a man is seen speaking to the camera while
holding up a violin, the man then begins playing the
instrument while moving his hands up and down, the
man continues playing the instrument while looking

back to the camera.

GT : A young man holds a violin, then he plays
violin, The violinist press the strings with four fingers

and move the bow, Then, the man stops a little bit and
then continues playing, the young man stops playing

and talks.

(a)

Ours : add chickpeas to a food processor, add salt lemon
juice garlic paste salt and oil to the food processor, add salt

pepper and lemon juice, grind the ingredients

GT : add chick peas to a food processor, squeeze the
garlic paste into the food processor, add salt pepper
and oil to a food processor, blend the ingredients in

the food processor

(b)
Fig. 5. Qualitative examples on ActivityNet Captions (a) and YouCooKII (b).

can observe that the proposed AAP-MIT is able to generate
summarized and semantically meaningful descriptions. Specif-
ically, the generated words from Figure 5 (a) such as “man”,
“violin”, “instrument”, “speaking”, “holding”, “playing”,
“begins”, and “up and down” illustrate that the proposed
model is able to learn the actions and relations effectively
along with the context information. And, the generated words
like “add”, “chickpeas”, “food processor”, and “grind ” from
Figure 5 (b) show that the model is able to understand the
visual scene and learn the scene context.

Ours : a woman is seen standing in front of the camera holding a hula
hoop and begins spinning it around, she continues spinning around the

hula hoop while the camera captures her movements, she continues
spinning the hula hoop around her body and ends by holding it up.

GT : A woman is standing in a room holding
a hula hoop, She begins to use the hula
hoop, She lays down on the ground and

uses the hula hoop on her foot.

(a)

Ours : heat some oil in a pan and fry the tofu in
it, place the patty on the pan , place the bread on

the pan,flip the sandwich over, place the cheese on
the bread, place the sandwich on the pan

GT : melt butter in a pan, place the bread in the
pan, flip the slices of bread over, spread

mustard on the bread, place cheese on the
bread, place the bread on top of the bread,

(b)
Fig. 6. Failure cases on ActivityNet Captions (a) and YouCooKII (b).

The failure cases of the proposed AAP-MIT are shown in
Figure 6. Even though our proposed model failed to match
ground truth caption, it is able to detect prominent objects like
“hula hoop” & “bread” and action like “standing” & “flip”.
And, leveraging the previous and future segment information
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for video encoding may lead to better understanding of action
instances and subtle interactions, which can be explored as the
part of future work.

V. CONCLUSION

In this paper, we present attentive atrous pyramid network
and memory incorporated transformer (AAP-MIT) for multi-
sentence video description task. The AAP-MIT has three
major components: temporal pyramid network (TPN), tem-
poral correlation attention (TCA), and memory incorporated
transformer (MIT). The TPN and TCA encode the effective
spatio-temporal representation of video sequences and learn
the concealed relations of different video segments. And, the
MIC memorizes the caption history and video segments infor-
mation to generate highly descriptive sentences. In a nutshell,
our approach provides an effective video-text representation
for multi-sentence video description task by combining TPN,
TCA, and MIC into a uniform network. The experimental re-
sults on two challenging datasets show that the proposed AAP-
MIT has superior performance over existing multi-sentence
video description approaches.
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