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Abstract In this paper, we propose a novel encoding framework to learn the
multi-scale context information of the visual scene for image captioning task. The
devised multi-scale context information constitutes spatial, semantic, and instance
level features of an input mage. We draw spatial features from early convolutional
layers, and multi-scale semantic features are achieved by employing a feature pyra-
mid network on top of deep convolutional neural networks. Then, we concatenate
the spatial and multi-scale semantic features to harvest fine-to-coarse details of
the visual scene. Further, the instance level features are captured by employing
a bi-linear interpolation technique on fused representation to hold object-level se-
mantics of an image. We exploit an attention mechanism on attained features
to guide the caption decoding module. In addition, we explore various combina-
tions of encoding techniques to acquire global and local features of an image. The
efficacy of the proposed approaches is demonstrated on the COCO dataset.

Keywords Image captioning · visual attention · multi-scale context information ·
image encoding mechanism

1 Introduction

Automatically generating a natural language description for a given image termed
image captioning, is one of the primary goals of scene understanding. It has a
tremendous significance on robotic vision, streaming platforms, and aid visually
impaired users. Image captioning [56] is a more challenging task than conven-
tional tasks such as image classification and object detection for two reasons [46]:
i) The visual analysis of the scene not only accounts for objects present in an
image but also must capture and understand the relationships among the objects.
ii) The semantically generated caption is notably more challenging than assign-
ing class labels to an image. Despite these challenges, a neural encoder-decoder
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Fig. 1 Visualization of deep CNN features. Typically, earlier layers of the CNN network
contain spatial features, and top layers employ semantic features. a) Input image. b) Spatial
features incorporate finer details and retain higher spatial resolutions. c) Semantic features
are responsible for coarse-details of an image d) Multi-scale context features own both fine-to-
coarse details.

based frameworks [30,41,58] adopted from machine translation [50] are showing
promising results on captioning tasks. These methods employ convolutional neural
networks (CNNs) to encode the input image into a semantic feature vector, and re-
current neural networks (RNNs) are explored to decode the attained feature vector
into a natural language description. Later, visual attention mechanism has been
explored in image captioning tasks [61,10,32,7,46,19,58,2,39]. These mechanisms
are showing an impeccable performance by learning to focus on influential image
regions on each generated word. In short, most of the image captioning approaches
adopt either encoder-decoder framework [56,28,24] or attention-based approaches
[61,7,35,68] to generate a caption.

Existing image captioning approaches distill an entire image into semantic rep-
resentation to generate a caption. However, the potential drawback of these models
is that the semantic visual representation may not hold object level, instance level,
and spatial information of an image. The attained feature vector of an image is
limited for image captioning task due to the following reasons: i) Diminished spa-
tial features, i.e., the spatial representation of an image diminishes as the depth of
convolutional layers increases (see Figure.1b and 1c). ii) Lack of instance-level &
region-level features, i.e., the model needs to incorporate fine-grained visual clues
in order to generate human-like caption. iii) Static content, i.e., traditional models
do not inspect various regions of an image while generating a caption. iv) Inade-
quate spatial localization, i.e., existing approaches interpret the visual scene using
a global representation of an image instead of focusing on both local and global
relevant aspects.

On the other hand, the feature pyramid network provides rich instance level [9]
and object-level features [37] for semantic understanding of an image. Further,
we achieve a distilled representation of the visual scene by incorporating low-
level representation and interpolating multi-scale semantic features (Figure. 1d).
This sort of representation is vital for image captioning tasks as it holds spatial,
semantic, and region level features of a visual scene.

Motivated by the above observations, we propose attentive multi-scale con-
text information for image captioning. The devised multi-scale contextual infor-
mation learns to retain spatial, semantic, and region level features of an input
image to generate a caption. In this paper, we investigate various combinations
of fusing techniques to generate captions. Typically, the proposed frameworks are
constructed with interpolated features of fused low-level representation and multi-
scale semantic information. This is vital when the image is involved with a lot
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of fine-grained objects. In addition, we incorporate the attention mechanism on
combined spatial and semantic features of an image (Figure 2) to assign a weight
to prominent regions.
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Fig. 2 Illustration of visual attention model [61] and our proposed model. (a) The visual
attention model [61] employs semantic information to generate caption. (b) The proposed
attentive multi-scale context information incorporates both spatial and semantic information.

At first, we explore convolutions with upsampled filters as a potential seman-
tic representation, dubbed bottom-up and top-down encoding mechanism (BuTd,
Section 4.1). The bottom-up pathway is enclosed with a conventional convolu-
tional network, and the top-down pathway is incorporated with upsampled filters.
Most of the captioning works capitalize last convolutional layer of the bottom-up
pathway to encode an image into rich semantic information. However, the spatial
resolution decreases with the increase of depth in the network. In other words, the
representation of small objects diminishes in the top layers of convolutions. Hence,
we adopt upsampling filters to restore resolution with rich semantic information
in the top-down pathway.

Second, we propose a wider multi-scale context feature encoding mechanism
(WMSC, Section 4.2) to investigate spatial and semantic information further. In
WMSC, the context information and local information of visual features are em-
ployed by investigating various receptive fields at the top semantic layer, and then
lateral connections are incorporated in between reconstructed and intermediate
layers.

Third, atrous multi-scale context feature encoding mechanism (AMSC, Section
4.3) exploits atrous/ dilated convolutions to adjust filter field-of-view and procure
the resolution of feature response to investigate multi-scale context information.
Finally, recurrent pooling network is employed on proposed encoding frameworks
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to utilize the complementary information from all encoders. This allows us to
learn interactions among various viewpoints of multiple encoders and generate
diverse and precise captions. The detailed framework of recurrent pooling network
is discussed in Section 4.4.

Further, we make use of Xu et al. [61] attention-based framework to investi-
gate multi-scale context information. The typical comparison between the visual
attention model and proposed approach is depicted in Figure 2. The weights of the
attention layer in the visual attention model [61] are computed on the positions
of the activation grid of semantic convolutional layers. Whereas, the proposed ap-
proach attends on the local regions of holistic spatial and semantic convolutional
features. The proposed framework does not explicitly depend on object detector
frameworks to obtain object feature maps. Instead, it learns the latent alignment of
objects present in the image. This admits that the proposed method goes beyond
image level, object level, and also learns to attend instance-level concepts.

In summary, the proposed models retain spatial features by concatenating them
to the last layers of CNN, and the instance level & region level features are in-
corporated by constructing the hierarchical feature pyramid (Figure 2). Then, at-
tention mechanism is utilized to address dynamic nature and spatial localization
for an image while generating caption. Figure 2 (b) demonstrates the adaptabil-
ity of incorporated attentive multi-scale context information for image captioning
task. The generated caption not only refers to dominant objects (“woman”) in a
scene, but also captures small objects (“nintendo wii”), object properties (“game
controller”), and their interactions (“holding”).

The main contributions of the proposed work are:

– We propose a novel encoding framework that accounts for object level, instance
level, and spatial information of an image.

– Our encoding scheme leverages semantic information of various receptive fields
at multiple scales.

– We introduce three encoding techniques to investigate visual context informa-
tion.

– Unlike existing works [2,20,10,33], The proposed models do not depend on
object detection frameworks, semantic tags, and external domain knowledge.

– Proposed multi-scale context information with a simple attention mechanism
[61] shows comparable performance on the COCO dataset.

The remainder of the paper is organized as follows: We first present related
work in Section 2. Then, Section 3 reviews the conventional image captioning
framework. In section 4, we present proposed encoding mechanisms for image
captioning task. The experimental results and analysis of the proposed approaches
are demonstrated in Section 5. Then, we bring up various prospects of the existing
models in Section 6. Finally, the conclusion is provided in Section 7.

2 Related work

The generation of captions for an image has been a challenging problem in the
intersection of computer vision and natural language processing. Towards this
goal, the classical approach is to use template based methods [42,31], retrieval-
based models [29,43,17], and sentence generation models [16,34]. Although, these
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methods bridge the gap between computer vision and natural language processing
through visual elements (e.g.,objects) & language semantics (e.g., verbs), they are
fixed & limited, and cannot generate natural language descriptions. To address
such issues, probabilistic models like Markov chains [62] and neural networks based
RNNs [20] have been explored in image caption generation.

Inspired by the success of RNNs in machine translation [27,12,50], most of
the image captioning works explored encoder-decoder models [23,55,64,65,20,39,
59]. In its basic form, the convolutional network acts as encoder to attain a vec-
torial representation of an image and recurrent neural network serves as decoder
to sequentially predict the next word in the caption. Several pioneering works [23,
55,64,65,20,39,59] rely on such combination of CNN+RNN encoder-decoder ap-
proach. For instance, Vinyals et al. [56] combined deep CNN with an LSTM to
describe the content of an image. Similarly, Mao et al. [30] explored a multi-modal
CNN+RNN architecture to model visual features and word embeddings. Further,
the bi-directional mapping between images and their corresponding natural lan-
guage sentences is explored in [11]. Zhang et al. [68] proposes a concept of visual
keyword to align visual and semantic information for better image understanding
and sentence generation. Further, Tian et al. [53] presents a multi-level semantic
context information network to leverage the scene contextual information.

The recent surge of research interest in the image captioning task is atten-
tion based models which exploit attention mechanism in caption generation. The
presence of attention is one of the aspects of the human visual system [48,13].
Inspired by this, Xu et al. [61] were the first to incorporate attention mechanism
to the existing encoder-decoder approach for image captioning, in which attentive
visual representation of an image region is utilized to update the recurrent neural
network (RNN) state. At each step of RNN, attention weights for each pixel in
the attention network are generated using encoded image representation and the
previous hidden state of RNN. Then, the previously generated word and weighted
average of encoded image representation are fed to the decoder to generate the next
word in the caption. Usually, the last convolutional layer of CNNs is considered
as encoded image representation, and long-short term memory networks (LSTMs)
are served as a decoder. They introduced two variants of attention mechanisms
in which “soft attention” formulates attention weights deterministically using the
expectation of the context vector, and the “hard attention” considers a single re-
gion stochastically. These mechanisms are further extended by various approaches
[2,7,10,2] to effectively focus on salient aspects of an image.

3 Review of image captioning frameworks

In this section, we first describe the conventional encoder-decoder framework for
image captioning in Section 3.1, then attention based captioning is reviewed in
Section 3.2

3.1 Encoder-decoder model for image captioning

This section outlines the widely adopted encoder-decoder framework [56,28] for
image captioning. Suppose, we have an image I to be captioned by natural lan-
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guage sentence S, where S = {w1, w2, w3, . . .} comprised of Ns words (w). We first
extract a semantic representation of an image I using top layer features of a deep
CNN and then embed it through a linear projection WI . Each word in the caption
S is represented with one hot encoding and embedded with a linear embedding E,
which has the same dimension as WI . Usually, long-short term memory (LSTM)
cells are utilized to generate the next word for a given image and previous words
at time step t. The recursive formulation of an LSTM network is defined as:

it = σ(Wixxt +Wihht−1 + bi), ft = σ(Wfxxt +Wfhht−1 + bf ),

ot = σ(Woxxt +Wohht−1 + bo), ct = it � φ(Wcxxt +Wchht−1 + bc) + ft � ct−1,

ht = ot � tanh(ct), zt = Wzht,

where xt = Ewt−1 for t > 1 and x1 = WI . The φ is maxout non-linearity and
σ is the sigmoid activation function. W∗, V∗, U∗, and b∗ are the parameters to
be learned. The distribution over the next word for obtained ht and ct can be
formulated using softmax function, i.e.,

wt = softmax(zt). (1)

The encoder-decoder model is proposed to learn the parameters θ by maximizing
the likelihood of the observed sequence. The objective is to minimize the cross
entropy loss of the model for a given image and its corresponding caption.

L(θ) = −
T∑
t=1

log(pθ(wt|w1, w2, . . . , wt−1, I)). (2)

where (pθ(wt|w1, w2, . . . , wt−1, I)) is devised from Equation 1

3.2 Attention in captioning
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image termed image captioning, is one of the primary goals of scene understand-
ing. It has a tremendous significance on robotic vision, streaming platforms, and
aid visually impaired users. Image captioning [56] is a more challenging task than
conven- tional tasks such as image classification and object detection for two rea-
sons [46]: i) The visual analysis of the scene not only accounts for objects present
in an image but also must capture and understand the relationships among the
objects. ii) The semantically generated caption is notably more challenging than
assign- ing class labels to an image. Despite these challenges, a neural encoder-
decoder Jeripothula Prudviraj Department of Computer Science Indian Institute
of Technology Hyderabad E-mail: cs17resch01005@iith.ac.in 2 Jeripothula Prudvi-
raj et al. Fig. 1 Visualization of deep CNN features. Typically, earlier layers of the
CNN network contain spatial features, and top layers employ semantic features. a)
Input image. b) Spatial features incorporate finer details and retain higher spatial
resolutions. c) Semantic features are responsible for coarse-details of an image d)
Multi-scale context features own both fine-to- coarse details. based frameworks
[30, 41, 58] adopted from machine translation [50] are showing promising results
on captioning tasks. These methods employ convolutional neural networks (CNNs)
to encode the input image into a semantic feature vector, and re- current neural
networks (RNNs) are explored to decode the attained feature vector into a nat-
ural language description. Later, visual attention mechanism has been explored
in image captioning tasks [61, 10, 32, 7, 46, 19, 58, 2, 39]. These mechanisms are
showing an impeccable performance by learning to focus on influential image re-
gions on each generated word. In short, most of the image captioning approaches
adopt either encoder-decoder framework [56, 28, 24] or attention-based approaches
[61, 7, 35, 68] to generate a caption. Existing image captioning approaches distill
an entire image into semantic rep- resentation to generate a caption. However,
the potential drawback of these models is that the semantic visual representation
may not hold object level, instance level, and spatial information of an image. The
attained feature vector of an image is limited for image captioning task due to the
following reasons: i) Diminished spa- tial features, i.e., the spatial representation of
an image diminishes as the depth of convolutional layers increases (see Figure.1b
and 1c). ii) Lack of instance-level region-level features, i.e., the model needs to
incorporate fine-grained visual clues in order to generate human-like caption. iii)
Static content, i.e., traditional models do not inspect various regions of an im-
age while generating a caption. iv) Inade- quate spatial localization, i.e., existing
approaches interpret the visual scene using a global representation of an image
instead of focusing on both local and global relevant aspects. On the other hand,
the feature pyramid network provides rich instance level [9] and object-level fea-
tures [37] for semantic understanding of an image. Further, we achieve a distilled
representation of the visual scene by incorporating low- level representation and
interpolating multi-scale semantic features (Figure. 1d). This sort of representa-
tion is vital for image captioning tasks as it holds spatial, semantic, and region
level features of a visual scene. Motivated by the above observations, we pro-
pose attentive multi-scale con- text information for image captioning. The devised
multi-scale contextual infor- mation learns to retain spatial, semantic, and region
level features of an input image to generate a caption. In this paper, we investi-
gate various combinations of fusing techniques to generate captions. Typically, the
proposed frameworks are constructed with interpolated features of fused low-level
representation and multi- scale semantic information. This is vital when the image
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is involved with a lot Incorporating Attentive Multi-Scale Context Information for
Image Captioning 3 of fine-grained objects. In addition, we incorporate the atten-
tion mechanism on combined spatial and semantic features of an image (Figure 2)
to assign a weight to prominent regions.A woman holding a clock in her hand Con-
volutional FeaturesAttention + LSTM Input Image (a)Concat A woman holding a
nintendo wii game controller Convolutional Features Hierarchical Feature Pyramid
Attention + LSTM Input Image Spatial Features Early layers of CNN Semantic
Features Last layers of CNNCNN Layers (b) Fig. 2 Illustration of visual attention
model [61] and our proposed model. (a) The visual attention model [61] employs
semantic information to generate caption. (b) The proposed attentive multi-scale
context information incorporates both spatial and semantic information. At first,
we explore convolutions with upsampled filters as a potential seman- tic repre-
sentation, dubbed bottom-up and top-down encoding mechanism (BuTd, Section
4.1). The bottom-up pathway is enclosed with a conventional convolu- tional net-
work, and the top-down pathway is incorporated with upsampled filters. Most of
the captioning works capitalize last convolutional layer of the bottom-up pathway
to encode an image into rich semantic information. However, the spatial resolution
decreases with the increase of depth in the network. In other words, the representa-
tion of small objects diminishes in the top layers of convolutions. Hence, we adopt
upsampling filters to restore resolution with rich semantic information in the top-
down pathway. Second, we propose a wider multi-scale context feature encoding
mechanism (WMSC, Section 4.2) to investigate spatial and semantic information
further. In WMSC, the context information and local information of visual features
are em- ployed by investigating various receptive fields at the top semantic layer,
and then lateral connections are incorporated in between reconstructed and in-
termediate layers. Third, atrous multi-scale context feature encoding mechanism
(AMSC, Section 4.3) exploits atrous/ dilated convolutions to adjust filter field-
of-view and procure the resolution of feature response to investigate multi-scale
context information. Finally, recurrent pooling network is employed on proposed
encoding frameworks 4 Jeripothula Prudviraj et al. to utilize the complementary
information from all encoders. This allows us to learn interactions among various
viewpoints of multiple encoders and generate diverse and precise captions. The
detailed framework of recurrent pooling network is discussed in Section 4.4. Fur-
ther, we make use of Xu et al. [61] attention-based framework to investi- gate
multi-scale context information. The typical comparison between the visual at-
tention model and proposed approach is depicted in Figure 2. The weights of the
attention layer in the visual attention model [61] are computed on the positions
of the activation grid of semantic convolutional layers. Whereas, the proposed ap-
proach attends on the local regions of holistic spatial and semantic convolutional
features. The proposed framework does not explicitly depend on object detector
frameworks to obtain object feature maps. Instead, it learns the latent alignment
of objects present in the image. This admits that the proposed method goes be-
yond image level, object level, and also learns to attend instance-level concepts.
In summary, the proposed models retain spatial features by concatenating them
to the last layers of CNN, and the instance level region level features are in-
corporated by constructing the hierarchical feature pyramid (Figure 2). Then, at-
tention mechanism is utilized to address dynamic nature and spatial localization
for an image while generating caption. Figure 2 (b) demonstrates the adaptabil-
ity of incorporated attentive multi-scale context information for image captioning
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task. The generated caption not only refers to dominant objects (“woman”) in a
scene, but also captures small objects (“nintendo wii”), object properties (“game
controller”), and their interactions (“holding”). The main contributions of the pro-
posed work are: – We propose a novel encoding framework that accounts for object
level, instance level, and spatial information of an image. – Our encoding scheme
leverages semantic information of various receptive fields at multiple scales. – We
introduce three encoding techniques to investigate visual context informa- tion.
– Unlike existing works [2, 20, 10, 33], The proposed models do not depend on
object detection frameworks, semantic tags, and external domain knowledge. –
Proposed multi-scale context information with a simple attention mechanism [61]
shows comparable performance on the COCO dataset. The remainder of the paper
is organized as follows: We first present related work in Section 2. Then, Section 3
reviews the conventional image captioning framework. In section 4, we present pro-
posed encoding mechanisms for image captioning task. The experimental results
and analysis of the proposed approaches are demonstrated in Section 5. Then, we
bring up various prospects of the existing models in Section 6. Finally, the con-
clusion is provided in Section 7. 2 Related work The generation of captions for an
image has been a challenging problem in the intersection of computer vision and
natural language processing. Towards this goal, the classical approach is to use
template based methods [42, 31], retrieval- based models [29, 43, 17], and sentence
generation models [16, 34]. Although, these Incorporating Attentive Multi-Scale
Context Information for Image Captioning 11 features from small receptive fields.
The attained multi-scale semantic information is upsampled using bi-linear inter-
polation and then concatenated with Conv3. The new fusion feature map termed
multi-scale context feature is associated with an attention mechanism to produce
encoding representation of an image. Encoder-decoder framework: In our work,
we leverage Vanilla LSTM net- work to generate captions, and the feature map
obtained from the proposed multi- scale context feature encoding scheme serves as
an encoder. Training methodology: The detailed framework of wider multi-scale
context feature encoding is depicted in Figure 4. In this work, both semantic fea-
tures Conv5 and spatial features Conv3 are extracted from pre-trained ResNet
[21]. The semantic features are fed to the proposed wider network where several
1 ×1 convolutions are employed to reduce the depth of the feature map and ex-
ploited various receptive fields of size 3 ×3 and 5 ×5. And, global average pooling
and 1×1 convolutions are employed parallel to the standard convolutions. The
standard 3 ×3 and 5 ×5 convolutions are convolved using depthwise separable
convolutions. Features of all receptive fields are concatenated and convolved with
a 1 ×1 filter to further reduce the depth of concatenated features. The obtained
aggregated features are restored to a spatial resolution of Conv3 with bi-linear in-
terpolation then concatenated to convolved features of Conv3. Finally, multi scale
context features are encoded to 32 ×32 ×512 feature map and established with a
512 dimensional attention layer. The annotation vectors of attention module are
fed to LSTM to generate a caption, where LSTM is initialized with the average of
attention vectors and 512-dimensional hidden units. 4.3 Atrous multi-scale context
feature encoding mechanism Our goal is to employ the most desirable semantic and
spatial information for image captioning task. In this work, we exploit atrous con-
volutions by adopting multiple atrous rates on various receptive fields to construct
a deep convolutional network that aggregates multi-scale contextual information
without losing spatial resolution. Atrous dilated convolution is an effective tool



10 Jeripothula Prudviraj et al.

to explicitly regulate filter’s field-of-view and controls the resolution of attained
feature maps [8]. In addition, it supports the exponential expansion of the field-
of-view without loss of contextual information and spatial resolution [66]. This
module can be plugged into our proposed framework at various resolutions. The
proposed atrous multi-scale context feature module distill image-level fea- tures
by harvesting the convolutional features at multiple scales, which probes a global
context. We also establish a lateral connection with the concatenated features of
the atrous module to provide local context. Further, the attention mechanism is
investigated on aggregated features and fed to the LSTM. Atrous/ dilated convo-
lutions: Deep convolutional neural networks are the de facto for encoding images
in the task of image captioning. However, the con- tinual use of max-pooling and
striding in the layers of the network substantially reduces the spatial resolution of
the output feature map. To counterbalance, we acclaim the use of “atrous convo-
lution”, originally proposed to address the com- putations of undecimated wavelet
transformation [8]. Incorporating Attentive Multi-Scale Context Information for
Image Captioning 13 Training methodology: We revisit a multi-scale context fea-
ture encoding method by incorporating atrous convolutions. Conv5 feature map
of pre-trained ResNet is processed through multiple atrous rates like 2,4,6 on 3 ×3
receptive field along with 1 × 1 and average pool filters. The concatenated feature
map produces a pyramid of semantic features. The number of channels of obtained
feature map reduced to 512 using 1 ×1 convolutions. The encoded features are bi-
linearly interpolated to increase spatial resolution on the feature pyramid. Then,
the later connection is established using a convolved Conv3 feature map. After the
concatenation, we apply a 3×3 depthwise separable convolutions with 512 channels
to refine the concatenated features. The concatenated feature map 32 ×32 ×512
is broadcasted through the attention layer before feeding it to the LSTM network.
4.4 Recurrent pooling network Even though the individual encoding mechanisms
encode effective information of an image, the multiple encoders characterize the
complementary behaviours of various encoding schemes [26, 18]. Motivated by the
above observation, we leverage a recurrent pooling network in order to combine
complementary information from all our encoders. We employ multiple encoders
i.e., BuTd, WMSC, AMSC, and Resnet-101baseline with multiple RNNs to gener-
ate diverse and precise captions of an image. The overview of the recurrent pooling
network is illustrated in Figure 6. The proposed framework has two phases, where
we employ multiple LSTMsPooling Resnet BuTd WMSC AMSC LSTM LSTM
LSTM LSTM Multi-attention LSTM caption Fig. 6 Recurrent pooling network
with attention mechanism on multiple encoders to generate caption. At first, each
individual LSTM network computes hidden states on each encoder component.
Then, we pool all hidden states and share among the all components to learn the
interactions of one component with other set of components. The hidden state of
qth component is computed at time step t as [hq t,cq t] = LSTMq t (Ht,Attq
t(Eq,hq t1)) (4) where Ht is the pool of hidden states, Attq t is the attention
module, Eq is the encoding component, and ht ct are the hidden and context
vectors of LSTM network.

In this section, we summarizes the conventional attention mechanism proposed
in [61] for image captioning task. The set of feature vectors of an image, referred to
as annotation vectors, are captivated from the top layer of the CNN network. The
convolutional layer features allow the decoder to deliberately focus on prominent
regions of an image by choosing a subset of all the annotation vectors. Let a =
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{a1, a2, . . . , aL} be the set of annotation vectors. Then, ai, i= {1, 2, . . . , L} is the
extracted feature vector at image location i. For each location i, the attention
mechanism assigns a positive weight of αi. In other words, the significance of
location i is blending with ai’s together. The attention weight αi is computed
by attention model qatt using annotation vector ai and previous hidden state
of LSTM cell ht−1. The attention module is formulated as bti = qatt(ai, ht−1),

αti = exp(bti)∑L

k=1
exp etk

. From the attained attention weights, context vector (zt) is

updated as zt = ψ(ai, αi), where ψ is a function that outputs a single vector from
the set of annotation vectors and their corresponding attention weights.

4 Attentive Multi-Scale Context Information Model

Despite the advancements in the captioning models, they still lack accountability
and explainability − i.e., there is a need for accounting fine-grain details along
with coarse-grain details of an image, and modelling their relationships. Most
of the image captioning approaches utilize the output of the last layer of CNN
to encode the global representation of an image. This representation holds rich
semantic information of objects and robust to critical appearance variations in
an image. However, the extracted global representation lacks spatial resolution
and suffers from the mislocalization of subtle objects in a scene. In contrast, early
layers of convolutional networks contribute rich spatial information and support
precise localization [41].

In this paper, we interpret multi-scale context information as an encoding
representation of an image to generate captions. Further, a classical attention
mechanism [61] is adopted to focus on prominent feature regions of an encoded
representation. Section 4.1 presents a bottom-up and top-down encoding mech-
anism which restores the spatial resolutions of a convolved feature with upsam-
pling filters. Section 4.2 introduces a wider multi-scale context feature encoding
technique by concatenating both global and local features. Where, the top con-
volutional layer is convolved with various receptive fields, then integrated with
the intermediate layers of CNN to provide spatial resolutions. Further, Section 4.3
presents atrous multi-scale context feature encoding model, which inspects atrous
convolution with various field-of-view on the semantic feature map and combined
with spatial features.

4.1 Bottom-up and top-down encoding mechanism

Existing captioning works generate captions by leveraging the bottom-up pathway
as an encoding mechanism. In this work, our key idea is to employ a top-down
pathway to the existing bottom-up pathway for encoding the image, which has
high-level semantics. The objective of the proposed approach is to establish high-
level information by exploiting a semantic feature map from the bottom-up path-
way and low-level features from the top-down pathway. The proposed bottom-up
and top-down encoding mechanism is shown in Figure 3. The proposed model
typically follows the encoder-decoder framework. The encoder model takes a pre-
processed image as input and outputs a unified representation of global and local
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semantics of an image. Then, the decoder model leverages long-short term memory
to generate a caption. We adopt the conventional attention mechanism prescribed
in Section 3.2 to aim attention at significant regions. The construction of various
modules is stated as follows.
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Fig. 3 Bottom-up and top-down encoder framework

Bottom-up pathway: The bottom-up pathway is a typical feed forward con-
volutional neural network, which formulates a feature hierarchy by convolving the
input feature map at several scales with a scaling step of 2. The deeper network
potentially increases the semantic value at each layer. The potential objective in
the bottom-up pathway is to devise rich semantic information of an input. We uti-
lize ResNet [21] architecture as a backbone network for our bottom-up pathway.
It consists of five residual blocks which we refer as Convi for i = {1, 2, 3, 4, 5} with
implicit convolution layers. The spatial dimension at each step is reduced to 0.5
of its original size. The output of the last layer convolution module is fed to the
top-down pathway. This setting is sophisticated since the deepest layer of CNN
has the substantial features.

Top-down pathway: The proposed top-down pathway takes a convolutional
feature map (Conv5) from the bottom-up pathway, which inherently contains rich
semantic features. Then, two stage upsampling is performed at a step of 2 to boost
the spatial resolution of the input feature. The depth of the feature map is reduced
using convolutional filters, and spatial resolution is increased using bilinear inter-
polation to make a compact and unified representation of both spatial & semantic
features. Further, a soft attention mechanism is employed on the upsampled fea-
ture map. The attention layer learns to focus on important spatial regions of the
feature map dynamically by conditioning on hidden states of LSTM and previ-
ously generated words. Finally, LSTM generates a natural language sentence, as
described in Section 3.

Training methodology: Unifying top-down pathway with a bottom-up path-
way is only worthwhile when the latter approach can represent semantic concepts
in deeper layers. Hence, we typically employ a pre-trained bottom-up network.
Then, we construct the top-down path on the final convolutional layer of pre-
trained network. Please refer to Figure 3. for a detailed framework.

We consider a Conv5 feature map of pre-trained ResNet architecture, which has
a spatial resolution of 8×8 with 2048 channels for a given pre-processed image. This
feature map is fed to the top-down pathway. First, we reduce the dimensionality of
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the attained feature map to 256 channels with 1×1 convolutions. Then the spatial
resolution is doubled using bilinear interpolation. Further, receptive field, number
of channels, and spatial resolution are increased by employing 3× 3 convolutions
with 512 channels & bilinear interpolation. The fundamental units like attention
unit, hidden state, and cell state are initialized with 512-dimensional vectors.

The Bottom-up and top-down encoding mechanism constituted with rich se-
mantic features but lacks multi-scale context features, which possess global infor-
mation at multiple scales. This is essential when an image involved with a lot of
small objects. Hence, we investigate multi-scale context features along with spatial
features of an image in further sections.

4.2 Wider multi-scale context feature encoding mechanism

In scene understanding, both semantic and spatial information of an image play a
vital role. Semantic features typically contain the context information of dominant
objects, and spatial features usually hold the fine-grained information of objects
in a scene. However, the reconstructed feature map of the bottom-up and top-
down encoding mechanism is semantically strong but does not hold information
of small objects. Most of the finer details are lost in the initial layers of CNN
architecture. Hence, we need to design a framework that outputs the representation
of both coarse-grain and fine-grain objects. Therefore, in this work, we incorporate
both features in order to caption the image. By taking advantage of the powerful
representation of convolutional networks, image classification, object detection,
and image captioning have achieved impressive progress. Different from existing
approaches, we incorporate various receptive fields over the final layer of CNNs
architecture.

We construct a wider multi-scale network by incorporating various receptive
fields on top of semantic features (Conv5). The obtained multi-scale semantic fea-
tures are further up-sampled to restore spatial resolutions, then concatenated with
spatial feature maps (Conv3) through lateral connections to equip fine-grain de-
tails. Further, each multi-scale context feature is associated with attention weights
αi to focus on both fine-grain and coarse-grain objects selectively. The detailed
framework is illustrated as follows:

Multi-scale semantic features: In visual representation, multi-scale context
information is crucial for two reasons. i) understanding of scene context relation-
ship plays a prominent role in complex scene understanding, especially when a
scene involved with co-occurrent visual patterns. For instance, a game controller
likely to be in hand although human recognized in the scene. ii) Usually, the visual
scene includes various arbitrary size objects. Certain small objects like signboards
or game controllers are hard to detect while looking at the global representation of
the scene, and they may be essential while captioning. In brief, most errors are en-
tirely or partly related to both global information and the contextual relationship
of objects.

Typically, the size of the receptive field in a deep neural network characterizes
the context information which we use. Zhao et al. [10] demonstrates that the re-
ceptive field is much smaller on high-level layers of CNN (ResNet), and effective
representation of small or large objects can be achieved by gathering various re-
ceptive fields information. By considering the above observations, in this work, we
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Fig. 4 Wider multi-scale context feature encoding framework

exploit the potency of global context information by aggregating various receptive
field’s semantic information. The multi-scale context feature module fuses semantic
features under four different scales. We achieve this by introducing global average
pooling and receptive fields of multiple scales on global representation. Global av-
erage pooling is widely adopted as global contextual prior in image classifications
tasks [24, 11] and semantic segmentation [9]. And, semantic information from dif-
ferent receptive fields at multiple scales helps to attain representation of various
categories without uncertainty. The construction of a multi-scale semantic feature
module upon the final layer feature map (Conv5) of the deep convolutional net-
work (ResNet) is illustrated in Figure 4. We employ various receptive fields of
varied sizes i.e. 1× 1, 3× 3 and 5× 5 along with global average pooling, inspired
by the Inception framework [51]. 3×3 and 5×5 convolutional filters are employed
with depthwise separable convolutions to reduce the number of parameters in each
weight matrix. 1 × 1 convolutions are incorporated before each receptive filed to
reduce the dimension of the semantic feature in order to preserve the same weight
at each output feature. Then we concatenate the semantic feature and further
reduced to 512-dimensional feature map. Attained feature map is upsampled via
bilinear interpolation to restore spatial resolution of the feature map. Note that
the number of receptive fields and the size of each filter can be modified.

Depthwise separable convolution: The classical Inception module exploits
1 × 1 convolutions to pay attention to cross channel correlations and then maps
all correlations using regular 3 × 3 or 5 × 5 convolutions. On the other hand,
depthwise separable convolutions factorize a standard convolution into a depthwise
convolution, followed by a point-wise convolution. This form of convolutions highly
reduces computational complexity. Typically, the spatial convolutions for each
input channel are carried out by depthwise convolution, whereas the point-wise
convolution is incorporated to integrate the output of the depthwise convolutions.

Semantic and Spatial Content Fusion: The proposed method builds on
the prospect of the last convolutional layers of deep CNN network holds semantic
abstraction, and the early layers preserve fine-grained spatial details of the input
image. For instance, the area of “remote controller” in Figure 4. is about 20× 40,
and we could attain substantial representation only within the shallow layers of
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ConvNet (Conv2 or Conv3). Finer details of the “remote controller” will gradually
diminish on the following layers and be completely lost on the coarse, the deepest
layer. Hence, we propose a fusion module to take advantage of the shallow layers
to incorporate rich fine details and semantic information from the coarse layers of
a deep network.

We can analyze semantic spatial content fusion from Figure 4. The early feature
map (Conv3) inherently has a high spatial resolution and possesses refined infor-
mation of small objects. We add semantic information to these spatial features to
construct semantic context information through fusion. We typically choose multi-
scale semantic information rather than semantic information in order to acquire
features from small receptive fields. The attained multi-scale semantic information
is upsampled using bi-linear interpolation and then concatenated with Conv3. The
new fusion feature map termed multi-scale context feature is associated with an
attention mechanism to produce encoding representation of an image.

Encoder-decoder framework: In our work, we leverage Vanilla LSTM net-
work to generate captions, and the feature map obtained from the proposed multi-
scale context feature encoding scheme serves as an encoder.

Training methodology: The detailed framework of wider multi-scale context
feature encoding is depicted in Figure 4. In this work, both semantic features
Conv5 and spatial features Conv3 are extracted from pre-trained ResNet [21].
The semantic features are fed to the proposed wider network where several 1× 1
convolutions are employed to reduce the depth of the feature map and exploited
various receptive fields of size 3 × 3 and 5 × 5. And, global average pooling and
1×1 convolutions are employed parallel to the standard convolutions. The standard
3×3 and 5×5 convolutions are convolved using depthwise separable convolutions.
Features of all receptive fields are concatenated and convolved with a 1× 1 filter
to further reduce the depth of concatenated features. The obtained aggregated
features are restored to a spatial resolution of Conv3 with bi-linear interpolation
then concatenated to convolved features of Conv3. Finally, multi scale context
features are encoded to 32 × 32 × 512 feature map and established with a 512
dimensional attention layer. The annotation vectors of attention module are fed
to LSTM to generate a caption, where LSTM is initialized with the average of
attention vectors and 512-dimensional hidden units.

4.3 Atrous multi-scale context feature encoding mechanism

Our goal is to employ the most desirable semantic and spatial information for
image captioning task. In this work, we exploit atrous convolutions by adopting
multiple atrous rates on various receptive fields to construct a deep convolutional
network that aggregates multi-scale contextual information without losing spatial
resolution. Atrous dilated convolution is an effective tool to explicitly regulate
filter’s field-of-view and controls the resolution of attained feature maps [8]. In
addition, it supports the exponential expansion of the field-of-view without loss of
contextual information and spatial resolution [66]. This module can be plugged
into our proposed framework at various resolutions.

The proposed atrous multi-scale context feature module distill image-level fea-
tures by harvesting the convolutional features at multiple scales, which probes
a global context. We also establish a lateral connection with the concatenated
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features of the atrous module to provide local context. Further, the attention
mechanism is investigated on aggregated features and fed to the LSTM.

Atrous/ dilated convolutions: Deep convolutional neural networks are the
de facto for encoding images in the task of image captioning. However, the con-
tinual use of max-pooling and striding in the layers of the network substantially
reduces the spatial resolution of the output feature map. To counterbalance, we
acclaim the use of “atrous convolution”, originally proposed to address the com-
putations of undecimated wavelet transformation [8].

Given input feature map x, convolutional filter w, and output feature map y
of two-dimensional signals, the atrous convolution is applied as follows:

y[i] =
∑
k

x[i+ r · k]w[k], (3)

where the atrous rate r denotes the stride with which we sample the input signal.
The standard convolution is defined at the rate r = 1. As we tune atrous rate, the
atrous convolutions adaptively modify the filter’s filed-of-view.

Fig. 5 Atrous multi-scale context feature encoding framework

Multi-scale context information This module presents the systematic way
of aggregating the multi-scale context information by leveraging atrous/ dilated
convolutions without losing spatial resolutions. We propose atrous convolutions
by the fact that they support the exponential expansion of the receptive field of
feature map with the change of the atrous rate r.

The context module employs atrous convolution on top of a deep convolutional
network at multiple dilation rates. First, we map the output feature map to 256
channels using 1 × 1 convolutions, and then the atrous convolutions are incorpo-
rated by applying 3× 3 convolutions with different rates. The dilation rates are 1,
6, 4, 2, 1, where rate r = 1 is employed for average pooling and 1×1 convolutions.
Each 3 × 3 convolutions are computed using depthwise separable convolutions.
i.e., the standard convolution with dilation in the first two dimensions followed
by pointwise convolutions. Specifically, we employ 1 × 1 convolutions and global
average pooling on the last feature map of the deep network to adopt image-level
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features from the global context information. Whereas, the atrous module with dif-
ferent rates effectively captures multi-scale context information. To be concrete,
we consider the last layer feature map of ResNet 101 (denoted as Conv5 in Figure
5) and apply parallel atrous convolutions with different dilation rates to produce
convolutional features at multiple scales along with the image-level features. The
attained multi-scale semantic features are upsampled by a factor of 4 with bilinear
interpolation and then concatenated with the corresponding spatial features to
produce a multi-scale context feature.

Training methodology: We revisit a multi-scale context feature encoding
method by incorporating atrous convolutions. Conv5 feature map of pre-trained
ResNet is processed through multiple atrous rates like 2, 4, 6 on 3 × 3 receptive
field along with 1 × 1 and average pool filters. The concatenated feature map
produces a pyramid of semantic features. The number of channels of obtained
feature map reduced to 512 using 1 × 1 convolutions. The encoded features are
bilinearly interpolated to increase spatial resolution on the feature pyramid. Then,
the later connection is established using a convolved Conv3 feature map. After the
concatenation, we apply a 3×3 depthwise separable convolutions with 512 channels
to refine the concatenated features. The concatenated feature map 32× 32× 512
is broadcasted through the attention layer before feeding it to the LSTM network.

4.4 Recurrent pooling network

Even though the individual encoding mechanisms encode effective information
of an image, the multiple encoders characterize the complementary behaviours of
various encoding schemes [26,18]. Motivated by the above observation, we leverage
a recurrent pooling network in order to combine complementary information from
all our encoders. We employ multiple encoders i.e., BuTd, WMSC, AMSC, and
Resnet-101baseline with multiple RNNs to generate diverse and precise captions of
an image. The overview of the recurrent pooling network is illustrated in Figure
6. The proposed framework has two phases, where we employ multiple LSTMs

Pooling

Resnet
BuTd

WMSC

AMSC

LSTM

LSTM

LSTM

LSTM

Multi-attention

LSTM

caption

Fig. 6 Recurrent pooling network

with attention mechanism on multiple encoders to generate caption. At first, each
individual LSTM network computes hidden states on each encoder component.
Then, we pool all hidden states and share among the all components to learn the
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interactions of one component with other set of components. The hidden state of
qth component is computed at time step t as

[hqt , c
q
t ] = LSTMq

t

(
Ht, Att

q
t (E

q, hqt−1)
)

(4)

where Ht is the pool of hidden states, Attqt is the attention module, Eq is the
encoding component, and ht & ct are the hidden and context vectors of LSTM
network.

On achieving hidden states of each components, we employ multi-attention
and compress the outputs of first phase into one hidden vector. This mechanism
exploits the interactions among the hidden states and captures the complementary
information. The basic intuition behind the proposed recurrent pooling network
is to combine the complementary information from the multiple encoders and
produce comprehensive and effective hidden states than conventional ones.

5 Experimental Results

In this section, we demonstrate the efficacy of the proposed models with quantita-
tive and qualitative analysis on COCO dataset. First, we present the quantitative
analysis on proposed models using standard evaluation metrics like BLEU-n, ME-
TEOR, ROUGE L, and CIDEr. Then, the couple of sample images are examined
using attention maps and generated captions in qualitative analysis.

5.1 Dataset

We use challenging COCO captioning dataset [38] to conduct the experiments and
validate the proposed models. The COCO dataset is the largest image captioning
dataset, which contains 82, 783 images in training set and 40, 504 & 40, 775 images
in both validation & test set. Further, each image in the dataset is provided with
5 human annotated captions. Since the ground truth captions of COCO test is not
available, we adopt a widely used COCO data split [28]. This new split [28] divides
the original validation set into new validation and test subsets for experiments &
model selection. The new data split [28] contains 113, 287 images for training and
5000 images for validation and test each.

We evaluate generated captions using standard evaluation metrics like BLEU-
n [44] (B-1, B-4), METEOR (MR) [4], ROUGE L (RL) [36], CIDEr (Cr) [54],
and SPICE [1] . In a nutshell, all these metrics evaluate the coherence between
the n-gram occurrence in reference caption and generated caption. The coherence
is weighted by the diversity and saliency of the ground-truth caption.

5.2 Implementation details

We mainly implement proposed captioning models on Pytorch [45] framework.
The multi-scale context feature embedding, attention layer embedding, and LSTM
hidden units are fixed to 512 for all proposed models. ADAM optimizer is used
with a learning rate of 0.0001 and 0.0004 for encoder and decoder, respectively.
All models are specified with a batch size of 32 and learned until the accuracy
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on the validation set does not change for 20 epochs. The decay rate is established
when the model does not improve for eight consecutive epochs.

Encoder: The input image is fed to the pre-trained ResNet [21] to extract
global (Conv5) and local (Conv3) convolutional features. The obtained Conv5
features map is further processed to boost the semantic information by construct-
ing a feature pyramid with an atrous convolutional module and wider multi-scale
context module. The constructed framework is proposed to learn by increasing the
spatial resolution without losing the semantic information of an image. The atten-
tion mechanism [61] is utilized to selectively focus on the regions of multi-scaled
features. In our settings, we exploit convolution filters of size 1× 1, 3× 3, & 5× 5
and feature maps of size 512 to 2048. The dilation rates which we use in AMSC
are 1, 2, 4, and 6 as shown in AMSC architecture (Figure 4.3).

Decoder: The standard LSTM [22] cells are incorporated to generate captions.
However, the input to the LSTMs includes annotation vectors obtained from the
attention layer and input word at time instance t. Each annotation vector dynam-
ically learns to focus on region with respect to previously generated words and
hidden state of LSTM as described in Section 3.2.

5.3 Quantitative analysis

Recent works on image captioning task present various approaches to effectively
describe the content of an image in a natural language sentence. For instance,
Xinyu [60] et al. presented a hierarchical three-layer LSTM network to fuse visual
and textual semantics to generate captions. The cross-modal circular correlation
learning (C3L) approach aims to understand the latent correlation between image
and text, further realize cross model generation to produce descriptions. Lian et
al. [70] leverage visual saliency and semantic saliencey to caption an image. Topic
oriented image captioning is proposed in [67], where topic, caption, and image are
preserved in the embedding space in a hierarchical structure. Lingxiang et al. [57]
proposed a Recall network, which selectively recall image contents while generating
each word by incorporating the semantic information using a GridLSTM.

The other set of works leverage attention mechanism to the existing encoder-
decoder framework. Linghui et al. [33] introduced global and local attention to
associate object-level features with image-level feature. Chen et al. [7] proposed
a spatial and channel-wise attention that dynamically modulates the sentence
generation context in multi-layer feature maps. A compact attention module is
presented in [52]. Gan et al. [20] incorporated tag dependent weight matrix to the
LSTM network. In contrast to the existing works, we propose a novel encoding
approach that leverages multi-scale context information to produce a feature map
at multiple field-of-view. The proposed encoding mechanism enriches the seman-
tic and spatial features of an image. The fused representation advocates global,
local, and region level features of an image. Although the proposed model is eval-
uated on image captioning task, it can be extended to many vision to language
tasks, like visual question answering, visual commonsense reasoning, and image
retrieval. Moreover, the data cleaning operations proposed in [6,5] provide better
functional dependencies (fds) and relaxed functional dependencies (rfds) to boost
the performance of the model.
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Table 1 Performance of the proposed models and other state-of-the-art methods on the
COCO dataset, where B-n, MR, RL, and Cr are short for BLEU-n, METEOR, ROUGE L,
CIDEr-D scores, and SPICE respectively.

Model B-1 B-4 MR RL Cr S
S-ATT [61] 70.7 24.3 23.9 - - -

SCA-CNN [7] 71.9 31.1 25.0 - - -
SCN [20] 72.8 33.0 25.7 - 101.2 -
C3L [47] 68.5 28.3 23.3 - 84.3 -

VIS-SAS [70] 72.49 28.08 23.66 55.43 82.12 -
GLA [33] 72.5 31.2 24.9 53.3 96.4 -

COMIC [52] 72.9 32.8 - - 100.1 -
DHEDN3 [60] 73.1 32.3 25.6 53.7 99.3 -

T-oe [67] 73.9 32.6 26.1 54.4 103.8 -
CTI [49] 74.3 33.9 26.2 54.8 103.6 -

EE-LSTM-P [69] 75.7 34.6 26.8 56 109.6 -
Recall [57] 75.8 33.06 24.6 - 103.7 -

AoANet [25] 80.2 38.9 29.2 58.8 129.8 22.4
M2T [14] 80.8 39.1 29.2 58.6 131.2 22.6

Proposed-BuTd 76.3 33.5 26.4 55.4 114.6 19.7
Proposed-WMSC 78.9 36.3 27.9 56.9 120.2 21.2
Proposed-AMSC 79.2 37.9 28.4 57.3 121.4 21.9
Proposed-RPN 81.2 39.4 29.8 58.8 130.4 22.7

Our goal is to produce effective encoding representation for a given image
without explicitly depending on external knowledge like semantic attributes [20]
and region proposals generated by object detection framework [33]. We introduce
multi-scale context features rather than semantic features obtained from the final
convolution layer to represent an image. In addition, we investigate attained multi-
scale context features with a simple attention mechanism proposed in [61].

Table 1 presents the performance comparison with the state-of-the-art models
on the COCO dataset. From the table, we can infer that the proposed recur-
rent pooling network and atrous multi-scale context feature encoding mechanisms
are outperforming recent state-of-the-art models. And, the BuTd and WMSC ap-
proaches are showing comparable performance with the conventional methods in
all metrics. In particular, our proposed RPN approach surpasses the recent atten-
tion based encoder-decoder approach [52] and hierarchical encoder-decoder model
[60]. In addition, our approach learns to align object level & semantic level fea-
tures while generating natural sentences and shows superior performance over the
previous state of the approaches which exploits semantic alignment embedding
[69] and self-attention mechanisms [25,14].

Even though the proposed models outperform recent works [67,57,60], there
are still many scopes involved in the proposed approach. Primarily, we utilized
conventional attention mechanism to selectively focus on prominent regions of an
image. However, other hard-wired attention mechanisms [3,40,15] can be adopted
to the proposed model. In addition, we can leverage semantic attributes, relations,
visual reasoning to guide the captioning module. As in [60,2], we can investigate a
stack of LSTM networks with visual attention to effectively utilize visual features.

In addition, we present the performance of different components of recur-
rent pooling network in Table 2. From the table, we can observe that the pro-
posed encoding mechanisms are constantly showing comparable performance on
COCO dataset. Specifically, RPNAMSC+WMSC is showing comparable perfor-
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mance with RPNAll, i.e. RPNResnet+BuTd+AMSC+WMSC. From the above ob-
servation, we can infer that the joint AMSC and WMSC model can inherently learn
deep multi-level features and complement the ResNet and BuTd models. Also, we
could observe that RPNAMSC is showing favourable performance when compared
with RPNResnet+BuTd. Although different combinations of RPNs are showing
consistent performance on COCO dataset, the unified model, i.e., RPNAll is sur-
passing previous state-of-the-art models and reporting its superiority on COCO
dataset.

Table 2 Performance of the different components on the COCO dataset

Model B-1 B-4 MR RL Cr S
RPNResnet 75.6 33.2 25.7 53.5 111.8 19.1
RPNBuTd 76.3 33.5 26.4 55.4 114.6 19.7
RPNWMSC 78.9 36.3 27.9 56.9 120.2 21.2
RPNAMSC 79.2 37.9 28.4 57.3 121.4 21.9

RPNResnet+BuTd 79.5 38.2 28.7 57.9 123.2 21.8
RPNResnet+WMSC 80.2 38.3 28.9 58.1 123.4 21.9
RPNResnet+AMSC 80.5 38.6 28.9 58.1 123.7 21.9
RPNBuTd+WMSC 80.9 38.7 29.0 58.2 124.6 22.2
RPNBuTd+AMSC 81.2 39.3 29.1 58.8 126.2 22.3
RPNAMSC+WMSC 81.7 39.1 29.3 58.5 129.7 22.5

RPNAll 81.2 39.4 29.8 58.8 130.4 22.7

5.4 Qualitative analysis

This section presents a qualitative analysis of the proposed encoding mechanisms.
The attention maps and generated captions of a given input image are depicted
in Figure 7. From Figure, we can examine that the captions generated by the pro-
posed approaches are diverse and precise. In particular, the generated word “grassy
field” validates that the proposed model retains spatial resolutions at the encod-
ing phase. The generated word “lush green” and “grass covered” indicates that
the model is accounting finer details. Besides, the words like “couple”, “ standing”
and “top” determines the semantic relationships in the generated caption. More-
over, the captions generated by BuTd, WMSC, AMSC, RPN show a successive
refinement over one another. For instance, the generated words “lush green field”
and “standing on top of” by RPN model are more fine-grained and divers over
the generated words of BuTd, i.e., “grassy field” “standing in”.

Also, we can observe that the bottom-up and top-down mechanism (BuTd) is
producing blobs on coarse-grain objects. And, the multi-scale context information
incorporated in WMSC and AMSC approaches is learning to focus on fine-grain
details. Whereas, the multi-level features incorporated using recurrent pooling
network (RPN) learn to focus on both coarse-grain and fine-grain details. This
implication of the proposed frameworks is inferred from the focused regions of
attention maps, where large blobs indicate rich semantic information, and small
blobs demonstrate multi-scale context information.
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1) BuTd Cap: two giraffes are standing in a grassy field 2) WMSC Cap: a couple of giraffe standing 
next to each other

3) AMSC Cap: a couple of giraffe standing on top of a 
grass covered field

4) RPN Cap: a couple of giraffe standing on top of 
a lush green field

Fig. 7 Visualization of attention maps along with generated captions on the COCO dataset.
The output captions are generated by 1) Bottom-up and top-down encoding mechanism, 2)
Wider multi-scale context feature encoding mechanism, 3) Atrous multi-scale context feature
encoding mechanism, 4) Recurrent pooling network

6 Conclusion

The state-of-the-art approaches highly depend on either object detection frame-
works [33,63] or explicit knowledge like semantic tags [20] to generate human-like
caption. On the other hand, simple CNN plus RNN approaches [56,28] are not
showing promising results due to a lack of powerful representation of an image.
In this work, our goal is to show the effectiveness of attentive multiscale context
information in the context of image captioning task. For each input image to be
captioned, we equip both semantic and spatial representations of an image by
exploiting multi-scale context information. We investigate three encoding mecha-
nisms to produce effective context information of an image to generate captions.
All three encoding mechanisms utilize pre-trained ResNet for both semantic and
spatial convolutional features. The bottom-up and top-down encoding mechanism
is proposed to reconstruct the spatial resolution by utilizing the final convolu-
tional layer of the CNN framework. Here, attention mechanism selects regions
of reconstructed feature maps to generate captions. The wider multi-scale con-
text feature encoding technique employs various receptive fields on the semantic
feature map then concatenated with the spatial features obtained from the early
layers of convolutions. The atrous multi-scale context feature encoding mechanism
utilizes atrous/ dilated convolutions with varied filter sizes to provide multi-scale
field-of-view. The obtained feature pyramid is further concatenated with lateral
connections of deep CNN. Finally, we pool all encoder components with recurrent
pooling network to learn complimentary information of all our encoders. Further,
the proposed approaches are built on a simple attention mechanism rather than
a hard-wired mechanism. The proposed encoder multi-scale context module has
wide-ranging uses, and in this work, we exploit for image captioning task. In which,
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the models are proposed to learn global and local context at various filed-of-view.
The effectiveness of the proposed encoder mechanisms is demonstrated by compar-
ing it with the recent works. Besides, the attention maps and generated captions
signify that the proposed models learnt to focus on fine-grain details to generate
captions.
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