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Abstract AI is adept at using large quantities of data,

sometimes sensitive personal data, and can adversely affect

individuals’ privacy. Data privacy concerns significantly

impact the course of next-generation AI. Users do not trust

anyone withholding their data and need privacy-preserving

intelligent systems. In addition, several regulations man-

date that organizations handle users’ data in ways that do

not affect their privacy and provide them control on their

data. Federated Learning emerged as a privacy-preserving

technology for data-intensive machine learning by training

the models on-site or on-device. However, several concerns

related to federated learning emerged due to: (i) dynamic,

distributed, heterogeneous, and collaborative nature of

client devices, (ii) membership inference and model

inversion attacks affecting the overall privacy and security

of FL systems, (iii) the need for strict compliance to data

privacy and protection laws, (iv) the vulnerabilities at local

client devices leading to data leakage, and (iv) diversity

and ubiquity of smart devices collecting real-time multi-

modal data leading to lack of standardization efforts for

security and privacy management framework. In this paper,

we discuss (a) how federated learning can help us with-

holding privacy, (b) the need for improving security and

privacy in federated learning systems, (c) the privacy

regulations and their application to federated learning in

various business domains, (d) proposed a federated rec-

ommender system and demonstrated the performance that

matches the central setting.
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1 Introduction

Artificial intelligence and big data are receiving significant

attention and raising privacy and other ethical concerns.

All the concerning stakeholders need to comprehensively

understand these issues and find mechanisms to address

them to harvest the benefits of these technologies. There is

a considerable advancement in multiple domains such as

small businesses, automated vehicles, smart cities powered

by these ubiquitous intelligent devices. 5G and Edge Cloud

is bringing the intelligence closer to the edge, or the cell,

instead of centralizing it in a set of servers. When data

privacy is a significant concern, there is a high need for

security and not trust anyone withholding our data.

On the other hand, federated learning (FL) acts as pri-

vacy-preserving learning mechanism which incorporates

privacy into intelligent systems. FL can also help build

better models, especially when minimal data is available

with the service provider for training. When multiple
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entities have silos of data but have privacy concerns

sharing the data, FL can help learn single and better models

on these silos on-premises. Despite fewer data, low pro-

cessing, and computing capabilities of FL clients, they can

reap the benefits of the superior performance of deep

learning algorithms.

Several countries enacted regulations to protect the

privacy of the users. At the same time, some of them

mandate restrictions on how the data is collected and

processed but do not clearly mention the steps in case of

indirect loss of sensitive personal data.

Traditional machine learning trains a model on data

stored at a centralized server to make predictions. This

leads to typical data privacy leakage issues as the data from

different client resources and sensors are stored at a central

server for processing. On the contrary, federated learning

(FL) allows only the exchange of trained model parameters

between the central server and the local client devices. In

addition, it computes the local model update at the client

device using data privacy protection techniques ensuring

privacy. Further, these model updates are sent to the server

for aggregation to improve the global model.

Federated Learning allows smarter models, lower

latency, and less power consumption while ensuring pri-

vacy. In FL firstly, the server initializes the global model

by pre-training it with publicly available central training

data. Next, it selects K clients out of N clients to distribute

the parameters of global model based on their resource

information [1]. Further, each selected client trains the

global model with their respective local data and uploads

the model updates to the server. Finally, the server aggre-

gates all the model updates and updates the global model

by the averaged model as shown in Fig. 1. This process is

repeats until the global model reaches convergence.

The distributed nature of federated learning enables data

scientists to effectively train a global model with only

shared model weights obtained by local model training by

decentralized devices as shown in Fig. 1. It implies that

although data scientists learn the same globally shared

across client devices, there is no exchange of any private

data in federated learning. Unlike traditional machine

learning with a centralized data resource, federated learn-

ing ensures data security and privacy by not sending the

data to a server.

In addition, there is a high risk in centralized machine

learning where the server holding the data can put the

client’s privacy at stake. On the contrary, federated learn-

ing allows the exchange of minimal model updates

required to learn a global model that shows high perfor-

mance on the test data. These model updates do not contain

any private information related to the local data that can

threaten the client’s privacy. Despite all the advantages

mentioned earlier of federated learning, several challenges

[2] still need to be addressed. We list these challenges

below:

1. Trade-off between efficiency and privacy: FL may not

result in a better model or a model having equivalent

performance as in a centralized setting.

2. Privacy risks: FL may not always guarantee privacy as

the movement of model updates between the server

and local clients can leak sensitive data information.

Two primary attacks that can lead to privacy leakage

are membership inference attacks and model inversion

attacks.

3. Communication bottlenecks: The movement of model

and its parameters between the server and client

devices may impact the FL environment due to

communication bottlenecks, which could stall or delay

the Federated training process.

4. Selection of clients among registered clients: To

optimize systems having heterogeneous resources,

aggregation frequency must be dynamically adjusted

to reduce communication overhead over networks with

limited resources. Also, a selection approach needs to

be employed to iteratively select a subset of clients for

aggregation under the total registered client devices.

5. System and Statistical heterogeneity:The local client

training in FL comes with a challenge in that all client

devices contain heterogeneous computational

resources and non-i.i.d(independent identically dis-

tributed) data. This challenge leads to improper

training of the local model, which eventually affects

the global model performance on the test data. Hence,
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Fig. 1 The central server trains a global model on central data to

share with local client devices (C1;C2; . . .;Cn). At each communi-

cation round, the clients share the local updates of the trained model.

The server performs model aggregation to update the global model

and sends it back to the client devices
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it is necessary to handle the heterogeneity of client

devices to ensure robust FL scalability.

6. Poisoning: Adversarial clients can modify a part or

entire training data resulting in data poisoning attacks.

The adversary could also try to tamper the model

layers in model poisoning attack to generate a

poisoned update. Finally, the adversary aims to corrupt

the global model by sending malicious updates.

7. Aggregator turning malicious: The central server can

turn malicious and estimate private and sensitive

information from the model updates received.

8. Privacy vs performance: Additional privacy mecha-

nisms such as Differential Privacy (DP) add noise to

the training data to ensure privacy. However, with DP,

the performance of the model may be compromised.

Hence, a trade-off between the right amount of privacy

with performance is necessary.

There exist several review papers [3–7] on Federated

learning in the literature. These review papers broadly

discuss the issues in Federated Learning and the methods

addressing these issues. However, these papers do not

dwell much on the regulations and their impact on feder-

ated learning. These data regulations’ impact could be

different for various application sectors such as healthcare,

retail, banking etc. Hence, this paper, explores these chal-

lenges concerning federated learning to comply with data

protection regulations. Further, we summarize the main

contributions of this paper as follows:

1. Explored federated learning through the lens of data

privacy regulations and investigated the threats and

defenses on federated learning systems.

2. Explained the data protection and privacy regulations

and extended them to comply using federated learning.

3. We investigated the meta-learning approach in FL to

deal with non-i.i.d and heterogeneous data among

client devices.

4. We have demonstrated the use case of federated

learning on the session-based recommendation system.

We explained the NISER method for private and

secure recommendation systems in FL. Also, we have

thrown some light on federated reinforcement learning

use-case for detecting attacks.

2 Regulations for data protection and privacy

Many countries have laws restricting the collection, use,

and disclosure of personal data. Often, the processing and

use of personal data is subjected to strict legal requirement

and protective measures. These data privacy laws impose

restrictions on when to collect the data and under what

circumstances organizations may collect sensitive personal

information, what purposes it can be used, and whether or

not individuals first need to give consent before it is stored,

processed, or disclosed. Policies on data ownership,

informed consent, confidentiality, and security would be

beneficial for identifying liabilities.

General Data Protection Regulations (GDPR) [8],

California Consumer Privacy Act (CCPA) [9] provides

rights to data owners to control their data. The GDPR

focuses on creating privacy by default legal framework for

the entire EU. CCPA lets consumers know what data is

being collected, when it’s being sold and shared for a

business purpose. The principle user rights of the privacy

regulations include the right to be informed, the right to

access, the right to deletion, the right to prior consent, right

to opt-out. ML algorithms’ designs should accommodate

sufficient privacy-preserving techniques to comply with

rigorous regulations.

India’s NITI Aayog’s [10, 11] document on Resposible

AI recommends that AI maintain the privacy and security

of data of individuals or entities used for training the

system.

The location and ownership of computers that store and

access data for AI to use are essential. Court of Justice of

the European Union (CJEU) [12] ruled in the Schrems II

case that the EU-US Privacy Shield is void, terminating

free data flows between the EU and the United States,

providing impetus to ways to share the data without actu-

ally compromising on the privacy. Figure 2 broadly clas-

sifies the measures to be taken for data privacy protection

in general. These measures include both technical and non-

technical approaches. The technical methods help in

achieving privacy at different stages of data processing

pipeline. Regulations should require that personal data

remain in the jurisdiction from which it is obtained, with

few exceptions to address rigorous requirements of these

regulations, ML algorithms shall accommodate sufficient

privacy-preserving techniques which do not require data to

be moved from one geography to another and one device to

another in the design.

Few national laws require formal audits to determine

compliance with privacy protection requirements. Also,

audits are often necessary to support investigations into

regulatory violations. In some countries, government

oversight bodies or other authorities have the right to

conduct audits of organizations within their jurisdictions.

2.1 Ethical issues

While the data protection regulations broadly cover the

aspects of privacy in handling the users’ data, they may not

cover some aspects and may result in ambiguity in inter-

pretation based on regional, and cultural practices. In
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addition to adhering to the regulations, organizations may

take the initiative and follow ethical principles in handling

the users’ data for privacy. Recently, EU’s HLEG [13]; on

AI recommended guidelines to promote Trustworthy AI.

Particularly on privacy, it recommends (i) respect for pri-

vacy, (ii) quality and integrity of data, and (iii) access to

data. Organizations developing AI solutions are recom-

mended to follow human centered approach and values.

3 Attacks on federated learning

Multi-agent collaboration in Federated Learning is an

exciting development in deep neural networks (DNN) [14].

This learning method achieves remarkable results in sev-

eral application areas by offloading the computation-in-

tensive training work to the clients. Functioning as a

typical distributed system, the clients (or agents) send local

model updates regularly to the central server. After col-

lecting this local information, the server updates the global

shared model and communicates the weights back to the

clients. This iterative learning is repeated until the global

server model reaches convergence. One fundamental dif-

ference between Federated Learning (FL) and Distributed

Learning is that FL does not allow direct raw data com-

munication. On the contrary, distributed learning does not

have any such restriction and communicates the data.

The Federated Learning approach is developed to ensure

data privacy and security onto deep learning models. FL

allows only model parameters sharing between a central

server and connected client devices. However, these model

parameters can further leak data information using model

inversion attacks and membership inference attacks, caus-

ing data privacy threats. The model querying capability

thus is a significant vulnerability, and differential privacy

and secure aggregation can further address the

vulnerabilities.

Primarily the privacy concerns in federated learning

arise due to the track of running estimates during training

of deep learning models that an attacker can invert [15].

Atanov et al. [16] proposed a static batch normalization

(sBN) to optimize privacy-constrained deep neural net-

works. The algorithm ensures normalizing the batch data

without keeping track of running estimates during the

training phase. After the model convergence, it calculates

only the hidden representation statistics from the local

client’s data. Hence, sBN is highly suitable for the feder-

ated learning process as the local client models need to

upload only the trained model parameters for each com-

munication round. Further, local clients can only upload

their trained model statistics after optimization, reducing

the data leakage risk at the server.

However, there has been tremendous research interest in

designing novel adversarial attacks and developing defense

mechanisms for DNN [24] because of its gross mispre-

dictions, even with minor perturbations [25]. This interest

has percolated into the privacy-preserving Federated

Learning, as researchers have begun investigating it

through the lens of adversarial settings. A summary of

related works is shown in Table 1. There is a high possi-

bility to construct a poisoning attack in FL as the client’s

local data and training process are not accessible by the

global server [26]. It is highly impossible to verify the

authenticity and trustworthiness of a client’s update as

shown in Fig. 3. Prediction confidence reduction, mis-

classification, and targeted mis-classification are the pri-

mary goals of adversarial attacks on deep neural networks.

These attacks can be divided into poisoning/causative

attacks (i.e., training time attacks) and evasion/exploratory

attacks (i.e., test time attacks).

Black-box adversarial attack in multi-agent communi-

cation is first introduced [27] using a computationally

expensive surrogate-based approach. Bhagoji et al. [19]

have focused on targeted model poisoning insted of data

Fig. 2 Measures for data security
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poisoning in federated learning. Zizzo et al. [28] have

taken the first step known in literature towards defense

against the threat of evasion attacks during inference in FL.

Nonetheless, this can create some empirical robustness;

and data privacy across all clients will be compromised as

this can leak some local data by inducing a small set of

adversarial training data globally shared between all

learning clients.

In addition to adversarial attacks, the attacker’s moti-

vation extends to privacy leakage in FL. The continuous

communication of model updates between the server and

the local clients throughout the training process can reveal

sensitive data information to a third party or the central

server. Aono et al. [29] have shown that local data leakage

can happen even with a small portion of original gradient

information.

Table 1 Related works on FL privacy & security threats

FL attack Model(s) Dataset(s) Attacker Attacker’s

Knowledge

Attack purpose

Information leakage in FL [17] GAN,

CNN

MNIST, AT&T dataset

of faces

Client White-box Membership

Inference

Attack

Deep Leakage from Gradients [18] CNN MNIST, CIFAR-10,

SVHN and LFW

Client White-box Membership

Inference

Attack

Model poisoning attack using boosting [19] CNN Fashion-MNIST, UCI

Adult Census dataset

Client White-box Poisoning local

model

Model poisoning attack [20] CNN Fashion-MNIST Client White-box Poisoning local

model

Comprehensive Privacy Analysis of Deep Learning [21] ResNet ,

DenseNet

Texas100, Purchase100,

CIFAR100

Client,

Server

White-box Membership

Inference

Attack

Beyond Inferring Class Representatives: User-Level

Privacy Leakage From Federated Learning [22]

CNN AT&T , MNIST,

CIFAR100

Server White-box Model Inversion

Attack

Inverting Gradients - How easy is it to break privacy in

federated learning? [23]

CNN MNIST, CIFAR100 Server White-box Membership

Inference

Attack

Deep Models Under the GAN: Information Leakage from

Collaborative Deep Learning [17]

CNN MNIST, AT&T Client White-box Model Inversion

Attack

Central Server

Lo
ca

l C
lie

nt
s

Causative/Training time adversarial attacks
Attacker exploits privacy leakage about
individual local client's data records using
membership inference attacks 

Attacker

Defense mechanism

Transfer o
f m

odel

updates

Defense against Causative/Training time
adversarial attacks
Differential Privacy can be employed as a
defense against membership inference attacks

Evasion/Test time adversarial attacks
Attacker can query the model enough times, to
reconstruct the data using model inversion
attack

Defense against Evasion/Test time
adversarial attacks
Homomorphic encryption can be employed to
protect gradient/model inversion attacks on
untrusted server

Global model aggregation

Fig. 3 Overview of privacy and

security threats of Federated

Learning. There are two types

of attacks: causative (training

time) evasion (test time) attacks.

The attacker exploits privacy

leakage about individual local

client’s data records using

membership inference attacks

and model/gradient inversion

attacks. Differential privacy;and

homomorphic encryption can be

used to defend against these

attacks
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Further, the membership inference attacks [30–32] on

FL can exploit leakage of local client’s data during train-

ing. In addition, the attacker can build a shadow model to

create a dataset similar to that of the original dataset. Also,

model updates in FL can leak information about training

data features as deep learning models are designed to

internally recognize many data features unrelated to main

tasks. On the other hand, model inversion attacks [33, 34]

on FL drastically lead to data privacy leakage as the

attacker learns the data distribution from other participating

client devices. The attacker can also record the model

parameters at regular intervals and exploit the difference

between the subsequent model updates. Since the model

updates are derived from the client’s private data, the

adversary can reconstruct the data using model inversion.

[35] Discusses a good approximation of private client data

labels using those labels provides a novel way to retrieve

the original batch from the client data.

In addition, the attacker aims to corrupt the entire fed-

erated learning process by compromising the benign

learning nodes with poisonous data in the form of altered

features or false labels. The attacker can control the

learning process and send malicious updates to the central

server. These poisoned updates used for aggregation cause

drastic degradation of the overall performance.

4 Federated learning and regulations

Identifying and clarifying the laws that apply to the

respective geographies, businesses is the first step in

achieving compliance. In addition, clearly understanding

what personal information is protected by the respective

privacy acts and what aspects relate to consumer control of

private information play important role in achieving

compliance.

Article 24 of the GDPR directs organizations to fully

comply with all data protection principles. In centralized

machine learning, data is collected from end-users, the

privacy notice should explain the lawful basis for pro-

cessing and the purposes of the processing. Similarly, in a

federated learning setting, if the central server or aggre-

gator is categorized as a data controller and a data pro-

cessor, hence it is responsible for demonstrating and

ensuring compliance with the regulation’s data protection

principles.

Current ML system now have several privacy-preserv-

ing methods, however implementing these regulatory

obligations even in a centralized ML-based system is non-

trivial, and maybe technologically impractical.

Federated learning is an alternative for the cloud-centric

and centralized ML approaches, and not anymore preferred

choice due to challenges of compliance to regulations on

vast aggregation and processing of personal data. As

indicated in earlier sections, federated learning potentially

mitigates data privacy-related risks by enabling collabo-

rative training of ML models while retaining original per-

sonal data on their devices.

While Federated learning is deemed to protect the per-

sonal information of the client devices or end-users, attacks

[5, 6] on the model updates could prove it be otherwise. A

central server in the FL setting may not be directly ful-

filling the role of the data controller or data processor,

However, any compromise on the intermediate model

updates received from the end nodes or devices may lead to

hefty penalties as the collection of model updates maybe

sometimes done in the background without explicit end-

user attention or knowledge.

Central server or aggregator as a data controller must

implement appropriate technical measures and security

measures that demonstrate the data processing activities

such as training client nodes, communication, and model

aggregations have been performed in accordance with

regulations. While the regulations mention differing roles

for controllers and processors, there could be some overlap

of the responsibilities in a federated learning setting. Both

the central server and client nodes may have to fulfill the

roles of controller and processor. For example, a client has

access to the model(data controller) trained on other’s data

and further training on local data (data processor). Also, a

server may have similar access to the model (data con-

troller) and client updates(data processor). In essence, the

security of the users’ data is a collective responsibility of

both the central server and client nodes. Unfortunately,

there are no regulations to control if the end devices turn

out to be malicious and cause privacy issues. But, the laws

may be directly applicable in the case of central server.

In FL, the workflow for training at multiple clients

involves: (i) selection of the global model (ii) selection of

initial training data (iii)selection of the number of clients

(iv) selection of the clients among the registered clients

(v) selection of secure aggregation mechanism (vi)selec-

tion of secure communication mechanism (vii) selection of

hyper-parameters (viii) selection of privacy-preserving

training mechanism (ix) selection of evaluation approach.

Each of the above steps is influenced by the regulations

directly or indirectly. For example, selecting a global

model could be critical for countering some attacks. The

Selection of clients(possibly colluded) and hyper-parame-

ters can impact the security of the model.

Also, who is responsible for deploying client functions

as in the case of serverless cloud architecture, significantly

impacts security and privacy. If the controller is responsi-

ble, it is expected to have a homogeneous security archi-

tecture across clients. Security architecture could be

heterogeneous when participating institutions and users are
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responsible for deploying the client functions themselves.

FL clients may belong to separate organizations and net-

works. It is crucial that only authenticated and authorized

entities can invoke client functions as their functionality is

exposed to the public internet. This allows the clients to

have their local training workflows, resulting in a data leak.

The data leak at one client could affect the overall privacy

of all the users/clients.

Even though appropriate authentication and authoriza-

tion mechanisms are in place, the federated learning setting

assumes all the end nodes or clients are considered trust-

worthy and this assumption may not hold from a security

angle.

The HIPAA (Health Insurance Portability and

Accountability Act) [36] enacted for the protection of

Protected Health Information (PHI) at each stage of data

life cycle including when it created, sourced, used, and

maintained by the service entity. HIPAA privacy rules

regulate the use and disclosure of individuals’ health

information and other individually identifiable health

information. HIPAA protects patient health data from

organizations that provide healthcare services, such as

insurance companies and hospitals. Organizations or ser-

vices such as DNA analysis for health conditions, are not

legally counted as healthcare services and can exploit

healthcare data and still can evade regulations. Appropriate

safeguards must be taken at each workflow stage when the

AI models are built using these silos of healthcare data.

Healthcare made significant advances due to data-driven

machine learning on medical data, but still, due to privacy

constraints, not all the available data is used. Federated

learning can solve privacy issues to some extent. WHO

recently issued six guiding principles for AI in healthcare

through ‘‘Ethics and governance of artificial intelligence

for health’’. Protecting human autonomy is one of the

essential guiding principles which mandates (i) healthcare

systems and medical decisions shall be under the control of

humans; (ii) privacy and confidentiality should be pro-

tected. FDA [37] recently released its Software as a Med-

ical Device (SAMD) action plan covering privacy and

security of medical devices.

Also, GDPR does not make a distinction between ‘‘tech

companies’’ and ‘‘organizations that provide health ser-

vices.’’ Under the law, all organizations must obtain

informed, explicit consent from the user to collect their

data. A few general recommendations that ensure privacy

policies and ethical standards are guaranteed include i)

educate users on how their data will be used. ii) right to

decline or withdraw consent iii) incorporate technical

safeguards into their AI systems. Technology companies

can take care of the third aspect using federated learning

while complying with the local regulations.

Retail businesses often engage in targeted online

advertising and sometimes process sensitive personal

information. In 2018, California passed the California

Consumer Privacy Act (CCPA), which will come into

effect from 2023. CCPA enables the right for private citi-

zens to sue businesses for privacy violations. These laws on

Consumer Data Protection mandate organizations to pub-

lish a privacy policy that informs consumers how the

consumers’ data is collected, used and shared. In addition,

some of these laws introduce Cybersecurity requirements.

These laws also, enable consumers to opt-out of data for

advertising and from the sale of their data to third parties,

which may not be easy for the retailers to comply with as

often retailers might be operating heterogeneous and dis-

tributed systems. It is challenging to locate and delete a

user’s data on each device or node. Federated Learning

could enable e-commerce or retailers to comply with the

privacy regulations to some extent. Still, as seen in the

previous sections, FL-based solutions are also vulnerable to

attacks, and companies are responsible for cybersecurity

risks at information and curated model levels. However, FL

may alleviate the problem of right-to-be-forgotten as the

data is collected anonymously through model updates.

Nevertheless, when the retails need to personalize the

services, they may not wholly avoid personal data.

As in the case of retail, banking services also need to

protect individuals’ privacy by taking measures according

to the law of the land. Banking applications such as fraud

detection, the financial performance of individuals, per-

sonalized banking products are increasingly using ML and

need greater attention in terms of privacy compliance.

While banks may use silos of data from other banks in

training the models in a federated way for a common

purpose, they still need to ensure the data is de-identified

before processing to avoid any penalties as they can carry

information about the location of the bank. Unlike the retail

sector, any banking and financial data resides with both the

user and the bank. Hence it is difficult to identify where the

data leaked from. Also, any custom product and services

using personal and sensitive data must ensure that all the

regulations are followed in writing and spirit.

It is demonstrated in the recent literature that retaining

data and computation on-device in federated learning is

insufficient for privacy assurances. Exchange of machine

learning model parameters between entities in an FL system

can still conceal sensitive information and be exploited in

some privacy attack compromising on privacy guarantee.

4.1 Evolving privacy laws and technology

Compliance and privacy laws continue to evolve. Simi-

larly, organizations incorporate new technologies to

improve and expand their solutions. These changes will
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affect compliance at different stages and scales. Technol-

ogy must provide for ongoing regulations and compliance

monitoring changes to prove effective in the long term.

5 Security of federated learning systems

Federated learning systems shall be strengthened by effi-

cient privacy-preserving techniques to comply with the

GDPR and other regulations. In federated learning archi-

tecture, the aggregating server and the other participating

clients could be malicious. A high-level security architec-

ture for federated learning systems has been depicted in

Fig. 4 which showcases different privacy-preserving tech-

nologies. These technologies address different issues rela-

ted to privacy and security in federated learning workflow.

Generally, the summary of the new knowledge learned

on the client’s data is sent back to the server in FL. For

security, this knowledge is encrypted. To prevent the server

from estimating individual data samples based on the

summary update it has received, a Secure aggregation

protocol [38] is developed by Google. Other methods such

as FedMA, FedPer are introduced to improve FL privacy

preservation in FL workflow. In FedMA [39] layers are

independently trained and communicated to the server.

FedPer [40] splits the model into the base and personalized

layers. In this, only base layer updates are sent to the server

are aggregated by the federated server using transfer

learning methodologies and the personalized layers are not

communicated to the server protecting individuals client’s

privacy.

Cryptographic methods like homomorphic encryption;

[41–43], and secure multi-party computation [44] are

common privacy methods used in FL systems. Homo-

morphic encryption of model updates could prevent both

the client and server from extracting knowledge about the

training data. With homomorphic encryption, encrypted

data from clients are sent to the server. The server works on

the encrypted data. Lastly, the encrypted output is

decrypted to get the final result. Although these methods

provide cover against many attacks, they are computa-

tionally expensive as the FL process involves multiple

rounds of learning.

Differential privacy [45–48] can be used to provide

quantifiable privacy in a database. This can be done by

working with different approaches to adding noises to the

users’ data to provide ample privacy. This can help us

ascertain the likelihood of someone leaking private infor-

mation from the dataset and define the upper bound on how

much data can be leaked at most.

One common technique used by differential privacy is to

protect local clients’ privacy is by adding noise (e.g.

Gaussian and Laplacian) to the data. It can be categorized

according to the place the noise is added as

1. Local differential privacy: the noise is added to each

individual data point in the local client training dataset.

2. Global differential privacy: the required noise to

protect the user privacy is added at the output of the

query of the local dataset.

Aggregator(MPC)

Central Server

Global
model

Gradient
updates
(PKE)

Global model

Noise(DP) Noise(DP)

Inference
(HE)

Client devices

MPCDPPKE HE

Security mechanisms

Fig. 4 A high level security

architecture for Federated

learning systems
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Federated learning aims to protect data privacy through

distributed learning methods that keep the data on device/

premises without transferring it to untrusted data proces-

sors. But, this does not prevent privacy attacks such as

membership inference and model inversion. Likewise,

differential privacy aims to improve data privacy protec-

tion by measuring the privacy loss in the communication

among the elements of federated learning. Differential

privacy employs random noise to data or model parame-

ters, thereby masking the gradients. Differential privacy

defends against the attacks [49–52], albeit with varying

levels of protection-privacy trade-offs. A significant

drawback of this method is that the model accuracy is

significantly reduced due to added noise. Global differen-

tial privacy has been shown to perform better than local

differential privacy while keeping the same privacy level.

But, an explicit trust is required on people donating or

sharing their data and information to the data aggregator.

The data aggregator will add suitable noises into the user

data to preserve privacy. FedProx [53] is proposed to tackle

heterogeneity in federated networks. It provides conver-

gence guarantees when learning from non-identical distri-

butions (i.e. statistical heterogeneity) data. Differential

Private versions of FedAvg [54] , and SCAFFOLD [53]

were proposed to address the security and heterogeneity

issues in federated learning.

5.1 Federated reinforcement learning for detection

of attacks

Developing a robust federated learning system is chal-

lenging due to data heterogeneity and the vulnerability of

client devices to privacy threats. Traditional centralized

machine learning defense mechanisms with a high false

alarm rate fail to address the threats. In addition, they do

not take privacy into account. On the other hand, Federated

Reinforcement Learning (FRL) framework is proven to be

a robust defense mechanism in detecting attacks to mitigate

the risk due to attack in different scenarios [55]. Mowla

et al. [56] proposed an adaptive federated reinforcement

learning-based defense strategy against jamming attacks.

The authors developed a model-free Q-learning directed by

an on-device federated jamming detection mechanism with

an adaptive exploration-exploitation epsilon-greedy pri-

vacy strategy. Wang et al. [57] built a universal anomaly

detection model using a federated learning technique where

each local client model trains a deep reinforcement learn-

ing algorithm. The authors claim that anomaly detection

accuracy can be significantly improved by introducing

privacy leakage degree and action relation to detection

design. We observed very few works that use federated

reinforcement learning to detect anomalous client updates

at the central server in the literature. In the future, we

would like to design and develop a deep reinforcement

learning algorithm to detect malicious client updates at the

central server. Also, the algorithm helps in the client

selection process for model aggregation.

5.2 Meta learning

Federated learning has been shown to struggle to deal with

non-IID data and the heterogeneous structure among cli-

ents. To this end, one can use meta-learning to extract and

propagate internal transferable representations of prior

tasks. This has the advantage of preventing over-fitting and

improving generalization. This shows that meta-learning

can help handle the statistical and systematic challenges of

a federated setting [58]. Though meta-learning is helping

us address the systemic and statistical heterogeneity, the

shared global model still implicitly includes all clients’

privacy. Hence, a thorough evaluation of the global meta

learner is necessary against various privacy and security

[59, 60] threats.

Fig. 5 The current session

based recommendation systems

without any user privacy. All

the interactions has to be shared

with the organization/service

provider for training the

recommendation engine
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6 Federated learning on session based
recommendation system

Recommendation systems have been used heavily by

online streaming services, retail services, dating platforms

to provide the user with relevant items which are otherwise

very difficult to do in their absence.

6.1 Recommendation systems

Different algorithms have been proposed based on the

availability of the data and domain constraints. Collabo-

rative filtering is one such class of recommendation algo-

rithms. The recommendation is generated using the rating

information from other users and items in these algorithms.

But these algorithms do not factor in any content related to

users and items, resulting in a cold-start problem. Content-

based recommendation algorithms were proposed to deal

with this issue that uses additional information about users

and/or items. This helps the recommendation system to

make more relevant recommendations to users. Both the

collaborative and content-based filtering methods generally

rely on historical user-item interactions to understand a

user’s long-term preferences. The underlying assumption

here is that historical interactions are equally important to

the user’s current preference, which might not be accurate.

To make more relevant recommendations, both a user’s

longer-term historical and recent preferences should be

considered together. Hence, session-based recommenda-

tion algorithms were proposed which rely heavily on the

user’s most recent interactions rather than only on her

historical preferences. It is also appropriate when she

appears anonymously rather than logged in. Figure 5

shows a typical workflow of centralized recommendation

system without any privacy measures in place.

Popularity Bias. The aforementioned class of recom-

mendation algorithms has been shown to improve the

recommendations to the user based on her historical and

recent interactions. However these algorithms are known to

suffer from the popularity-bias problem wherein popular

items get a lot of exposure while less popular ones are

under-represented in the recommendations. It has been

found that popular SR-GNN [61] suffers from it. It

becomes more problematic in an online setting where new

items are frequently added to the catalog and are less

prevalent in the initial days. To mitigate this, Normalized

Item and Session Representation (NISER) [62] for session-

based recommendations was proposed. This restricts the

item and session-graph representation to lie on unit

hyperspace both during training and inference, which helps

tackle the popularity bias.

6.2 Privacy issues in recommendation systems

This should be noted that all the methods using the

aforementioned algorithms are developed from the private

data collected from the users. This private comprises the

behavioral information, the contextual information, the

domain knowledge, the item metadata, the purchase his-

tory, the recommendation feedback, the social data, and so

on. Some integrate multiple data sources from other

organizations to improve these recommendations. All these

users’ private information is stored on a central system

where recommendation engines are trained. This data

centralization poses grievous privacy and security risks.

Not only the centralized data is more vulnerable to hacking

and other forms of data theft, but it also gives control to

whoever controls the server. The user has no control

whatsoever over how their data is used once handed over.

6.3 Federated learning for resolving privacy issues

Data decentralization is necessary to prevent such gross

mishandling of user’s data adhering to privacy laws and

regulations. This decentralization can adversely affect the

recommendations systems development as there will not be

much data to learn from them. Hence, federated learning

can be used to train recommendation systems where the

data never leaves the user’s device, respecting the privacy

of her data. Only the model parameter updates are used to

communicate with the aggregating server.

6.4 Private NISER using federated learning

To provide users with better and more relevant recom-

mendations but at the same time preserve the privacy of

their data, we adapt the NISER [62] algorithm to the fed-

erated setting. We train the recommendation model using

the same algorithm used in NISER but at the user’s

devices.

6.4.1 The method

To train the NISER [62] in federated setting, we define a

global model F g at server and N clients of which C will be

chosen to train the global model which will be eventually

shared with all N clients. Each client n will have all past

sessions Sn, and set of m items observed (In) in the set S .

Each session s 2 Sn is a chronologically ordered tuple of

item-click events: s ¼ ðis;1; is;2; . . .; is;lÞ where each of the l

item-click events is;jðj ¼ 1; 2; . . .; is;lÞ corresponds to an

item in In and j denotes the position of the item is;j in the

session s. A session s can be modeled as a grah

Gs ¼ ðVs; EsÞ, where is;j 2 V is a node in the graph.
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Further, ðis;j; is;jþ1Þ 2 Es is a directed edge from isj to is;jþ1.

Given s, the goal of SR is to predict the next item is;jþ1 by

estimating the mdimensional probability vector ŷs;lþ1 cor-

responding to the relevance scores for the m items. The K

items with highest scores constitute the top-K recommen-

dation list. We follow the steps in algorithm 1 to update the

global model F g using popular federated averaging [63].

As mentioned in algorithm 1, the randomly initialized

global model(F g ¼ h0 is shared with a randomly chosen

N � K client for the local training. At each client, the ses-

sions are recorded and item embeddings (I s) for all the

sessions (Sk). Locally, these item embeddings are updated

using a graph neural network from the nodes and vertices

obtained from the I . This gives a combined embedding of

normalized item representation, session representation, and

position embedding. This updated item embedding is then

used to obtain the relevance score for net clicked item ik
computed as,

ŷk ¼
expðr~iTk ~sÞ

Pm
j¼1 expðr~i

T

j ~sÞ
ð1Þ

where m is the total number of items present. Local training

of the model and subsequent update of the global model by

aggregating the model updates will continue to go on until

the global model has achieved convergence.

6.4.2 Dataset and evaluation metrics

We evaluate the federated model on a publicly available

benchmark dataset: Diginetica, transactional data from the

CIKM Cup 2016 challenge. This dataset contains 700K

train sessions 60859 test sessions over 43K items. The

average length of a session is 5.12.

We use two evaluation metrics to evaluate the global

model: Recall@K and Mean Reciprocal Rank(MRR@K)

as in NISER [62] with K=20. Recall@K represents the

proportion of test instances which has desired item in the

top-K items. MRR@K is the mean of reciprocal ranks of

the desired item in the recommendation list. The large

value of MRR indicates the item is in the top of the rec-

ommendation list.

6.4.3 Implementation details

We reproduce the NISER [62] model which we treat as

central model to compare the federated model with. We

follow the same steps in [62] to train and test the model.

The central model was trained with item embeddings of

size 100, learning rate of 0.001, Adam optimizer and

dropout was set to 0.1. 10% of the train set was used for

validation set.

For federated model, we simulate the experiments with

100 clients for 500 rounds. At client side, to train the local

model we use epochs ¼ 3, learning rate is set as 0.001,

dropout is 0.1 and SGD optimizer with momentum set to

Algorithm 1 Private NISER for Private and Personalized Recommendations
using Federated Averaging

On Server
initialize global model Fg = θ0
for each round t = 1, 2, . . . do

c ← max(N · C, 1)
for each client m ∈ c in parallel do

θct+1 ← ClientUpdate(c, θt)
end for
θt+1 ←

∑K

c=1
nc
n

θct+1
end for
ClientUpdate(c, θ) : � Run on client c
B ←(Split S� into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
get item embeddings Ic

normalize Ic

initialize two adjacency matrices Ain
s and Aout

s using Ic for incoming/outcoming
edges

θ ← θ − η∇loss(θ; b)
return updated item embeddings for session s Ĩs using GNN on graph

G(Ain
s , Aout

s , Ĩs); θ)
end for

end for
return θ to server
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0.9. The gradients from the clients are aggregated using

federated averaging [63] at server.

6.4.4 Results and discussion

This section discusses the efficacy of recommendations in

federated against the recommendations by the central

version of the model. In Fig. 6, we present average client

loss (Fig. 6a) across rounds. Also, Fig. 6b and 6c shows

the Recall@20 and MRR@20 across 500 rounds, respec-

tively, for the updated global model. As we can see in

Table 2, recommendations in both centralized and feder-

ated settings are comparable with minimal depreciation in

performance. But, the federated model does not require the

data to be present at a server as it gets aggregated from the

parameters obtained from the client. The client updates the

shared global model locally and shares the parameters with

the trusted server for updating the global federated model.

In earlier sections, it has been seen that just adapting to a

federated setting will not necessarily make it private. The

private NISER is only private in ideal conditions when

treating all participating parties as honest. For example,

there is still the chance of model poisoning by a dishonest

client. A dishonest aggregator can still infer private infor-

mation from the client updates. To improve in such sce-

narios, algorithms based on meta-learning and differential

privacy are in the pipeline to reduce the threats related to

models’ and users’ privacy and security.

7 Conclusion

Federated learning is helpful in building privacy-aware

collaborative learning with the cooperation of multiple

clients or institutions and a data or central server. FL opens

Fig. 6 For federated NISER (global) model, we present across rounds, (a) the average client loss, (b) recall@20 and (c) mean reciprocal rank

(MRR@20)

Table 2 Central vs. federated model: a comparison between central

and federated model on Diginetica dataset

Model Recll@20 MRR@20

Central 52.63 18.27

Federated 51.2 17.56
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new opportunities despite strict privacy regulations due to

its nature of learning by only allowing model updates to be

exchanged while retaining original raw data at the source.

With the increase in the adoption of cloud-based services,

FL can accelerate the training of AI models from silos of

data scattered across institutions. FL can facilitate the

personalization of services by training AI models locally.

While FL provides the convenience of learning on-site, it is

still vulnerable to attacks from malicious entities in the

learning workflow. In this paper, we discussed FL’s ben-

efits and challenges and the impact of regulations on the

learning process. Each of the entities in the FL workflow

has to fulfill multiple roles as laid by the regulations based

on what kind of data they possess, even if it is temporary.

The interpretation of privacy regulations on the federated

learning architecture under poisoning, model inversion,

inference attacks is crucial to achieving absolute compli-

ance and trust among the users.
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