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Spontaneous Expression Recognition using
Universal Attribute Model

Nazil Perveen, Debaditya Roy, and C. Krishna Mohan

Abstract—Spontaneous expression recognition refers to recog-
nizing non-posed human expressions. In literature, most of the
existing approaches for expression recognition mainly rely on
manual annotations by experts, which is both time-consuming
and difficult to obtain. Hence, we propose an unsupervised
framework for spontaneous expression recognition that preserves
discriminative information for the videos of each expression
without using annotations. Initially, a large Gaussian mixture
model called universal attribute model (UAM) is trained to learn
the attributes of various expressions implicitly. Attributes are the
movements of various facial muscles that are combined to form
a particular facial expression. Then a concatenated mean vector
called the super expression-vector (SEV) is formed by using a
maximum a posteriori adaptation of the UAM means for each
expression clip. This SEV contains attributes from all the expres-
sions resulting in a high dimensional representation. To retain
only the attributes of that particular expression clip, the SEV is
decomposed using factor analysis to produce a low-dimensional
expression-vector. This procedure does not require any class
labels and produces expression-vectors that are distinct for each
expression irrespective of high inter-actor variability present in
spontaneous expressions. On spontaneous expression datasets
like BP4D and AFEW, we demonstrate that expression-vector
achieves better performance than state-of-the-art techniques.
Further, we also show that UAM trained on a constrained dataset
can be effectively used to recognize expressions in unconstrained
expression videos.

Index Terms—Expression recognition, feature extraction, uni-
versal attribute model, map adaptation, factor analysis, Gaussian
mixture model.

I. INTRODUCTION

Automated facial expression recognition (AFER) has im-
mense potential for application in neuromarketing, psycho-
logical treatment, interrogation simulators, robotics, real-time
gaming, recommendation systems and so on. One of the
biggest challenges in AFER is to recognize emotions such
as anger, disgust, fear, happiness, sadness, and surprise in
natural human expressions known as spontaneous expression
recognnition (SER) [1]. The area of spontaneous expression
recognition (SER) has witnessed ample research in the past
decade to differentiate it from deliberate facial expressions that
are easier to recognize [2]-[7] . Attempts have been made
to recognize genuine smiles [8], posed versus fake expres-
sions [9], pain, frustration, and fatigue [10] in spontaneous
environments. These attempts involve using 3D information
for view-independent analysis [I1], and using thermal and
audiovisual information, mainly to suit the needs of better
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facial expression recognition in the wild [12]. Also, sponta-
neous expressions have been analyzed intensively using RGB
characteristics, relative speed, and timing information [13]-
[15]. For evaluation, multiple databases like CK+ [16], BU-
3DFE [17], BU-4DFE [18], and BP4D [19] consist of sponta-
neous expressions captured in a controlled environment. More
challenging databases like acted facial expression in the wild
(AFEW) [20] and affective MIT facial expression database
[21] capture spontaneous expressions in an unconstrained
environment (also known as in-the-wild).

One of the most popular methods for recognizing sponta-
neous facial behaviour has been the use of facial action units
(AU) where each AU is defined as a contraction or relaxation
of one or more facial muscles [22], [23]. As automatic AU
recognition is challenging, some approaches have aimed to
capture facial movements directly using spatio-temporal rep-
resentations like local binary patterns - three orthogonal planes
(LBP-TOP) [24], histogram of gradients (HOG)/ histogram of
optical flow (HOF) [25], HOG3D [26], and 3D scale-invariant
feature transform (SIFT) [27]. As these features are captured
locally, they are used to perform expression analysis on the
part of the face that is termed as micro-expression recognition
[28].

One such approach from Yong et al [29] recognizes sponta-
neous micro-expressions using main directional mean optical
flow (MDMO) feature representation that is computed from the
local optical flow and spatial location information. In MDMO,
only the highest optical flow in a particular region of interest
is considered whereas in HOF, flow in all the directions are
weighted. An SVM trained with MDMO features was shown
to work better than HOF and LBP-TOP for recognizing micro-
expressions. However, local representations often suffer from
noise and spatio-temporal sensitivity. To obtain a more robust
mid-level representation, expressionlets were proposed in [30].
At first, a Gaussian mixture model called universal manifold
model (UMM) was learned, where each mixture captures the
spatial and temporal correspondence in each local spatio-
temporal manifold using HOG3D and 3DSIFT features. For
each spatio-temporal manifold (STM), top T local features
are chosen per mixture of the universal manifold model
(UMM) using posterior probability. Every video is considered
as an unaligned STM. The top T features per mixture are
concatenated to form an aligned STM of dimension C' x T x d,
where C' is the number of mixtures in UMM, and d is the
dimension of the local feature. The means of top T features
per mixture are calculated and corresponding UMM means
are subtracted to get centered covariances. These concatenated
covariances form expressionlets of dimension C' x d. Each
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expression video contains feature vector that represents the
features that best matches each of the mixtures.

While most of the above methods work in constrained
environments, the captured views of the subject in the wild
are often either occluded or profiled. In such cases, spatial and
appearance similarity is hard to establish, which can lead to
problems in learning a view-invariant representation. Further,
a classifier or discriminant has to be trained, which means that
clear discrimination cannot be achieved inherently with local
or mid-level representations. Also, the learned representations
are high-dimensional that induces the curse of dimensionality
in the case of a vast number of videos. In the proposed work,
we provide an actor-invariant, low-dimensional, and high-
level representation for spontaneous expression recognition
in the wild which we call the expression-vector. We explore
histogram of oriented gradients (HOF) and motion boundary
histogram information (MBH) [3 1] for capturing facial muscle
movements that we term expression attributes.

The aim of the proposed method is to capture the attributes
of all expressions in a single model. Hence, a Gaussian
mixture model known as a universal attribute model (UAM)
is learned separately for the HOF and MBH descriptors. Then
using the mean adaptation of the UAM mixtures, a super
vector representation called super expression vector (SEV) is
obtained for every expression clip. Since the SEV contains
the information from all the attributes, it is intrinsically high-
dimensional (num_miztures X feature_dim). To capture
only the essential attributes, the SEV is decomposed using fac-
tor analysis which yields a low-dimensional (200) expression-
vector representation. We show the efficacy of the proposed
approach on BPAD and AFEW datasets. To summarize, the
contributions of the proposed method are listed as follows:

o A universal attribute model (UAM) for learning expres-
sion attributes implicitly and subsequent extraction of a
discriminative low-dimensional representation from the
UAM called expression-vector.

o Spontaneous expression recognition of unconstrained
video clips using a UAM trained on a constrained dataset.

The rest of the paper is organized as follows. In Section
II, we discuss existing approaches for spontaneous expression
recognition. Then in section III, unsupervised expression-
vector extraction is described in detail with UAM construction,
SEV generation, and low-dimensional decomposition of SEV.
Section IV introduces the various expression-vector scoring
mechanisms used in this work. The experimental results on
benchmark databases are discussed in Section V and the
conclusions are presented in Section VI.

II. RELATED WORK

To accurately recognize expressions, representation of
facial expression dynamics is of utmost importance. Based
on the extraction of features, most of the methods in
literature perform either explicit modelling or implicit
modelling of expression dynamics. Explicit modelling
methods correspond to hand-coded extraction of facial
features like HOG hogy, STFT1001[32], Gaborwavelets
1001[33], Gaussiantrans formations

1001[34], localphasequantization(LPQ)
1001[35], andsoon.Morerecently, domain —
speci ficdescriptorslikethepyramidof HOG(PHOG)

1001[36], localbinarypattern

1001[37], etc.havegainedimportance. W hilesuchdescriptor saremeant
TOP1001[38]andLBP — TOP
1001[39]alsorecordtemporaldynamicsthatcanprovidediscriminatives
1001[10], bothhand—codedf eatures f or spatialrepresentationand LB P
1001[11Jwhereinsteado fextractingthe featuresoveralltheattributes,

basedselectionscheme, speci ficfacialpatchescorrespondingtoeachex,

Videos captured in unconstrained environments mostly con-
tain spontaneous facial expressions like Binghamton Pittsburgh
4D (BP4D) and acted facial expression in the wild (AFEW).
In such environments, cross-database and subject independent
evaluations have been used because: 1) models can be trained
on constrained datasets and tested on unconstrained datasets
[42] and 2) collecting sufficient samples for each subject
in unconstrained environments is both challenging and time-
consuming. Such evaluations give better insights into handling
challenges like illumination, pose, and alignment across multi-
ple datasets that help in testing the generalization capability of
the learned model. Moreover, subject-independent evaluation
has also been applied in online facial expression recognition
[43] and in some scenarios like lie detection, where the
subjects are not readily available [44].

III. PROPOSED APPROACH

Following the literature presented in the previous section,
we use explicit features for building the universal attribute
model (UAM). Figure 1 presents the block diagram for the
proposed method. The various stages of the proposed method
are discussed in the following subsections.

A. Feature Extraction

Given an expression video clip, the subject’s face is detected
and fitted using discriminative response map fitting (DRMF),
which has been shown to outperform other face fitting methods
[45]. Also, DRMF is computationally efficient and hence
can be used to process a large number of videos. Next,
the face is cropped using the landmark points to eliminate
background information, resulting in an aligned video where
dense trajectories are computed as explained below.

First, feature points are densely sampled on a grid spaced
by W = 5 pixels [31] in different spatial scales. There are
at most 8 spatial scales increasing by a factor of 1/v/2 and
the actual number of scales used depends on the resolution of
the video. Feature points are tracked on each spatial scale
separately using dense optical flow. For each frame I, its
dense optical flow field w; = (us,v;) is computed w.r.t. the
next frame /;,, where u; and v; are the horizontal and vertical
components of the optical flow. Given a point P; = (x¢,y:)
in frame I, its tracked position in frame I;;; is smoothed by
applying a median filter on wy:

Pt+1 = (xt-‘rlayt-l—l) - (xtvyt) + (K * wt)|($t7yt)a (1)

where K is the median filtering kernel of size 3 x 3 pixels.
Once the dense optical flow field is computed, points can
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Fig. 1: Block diagram of the proposed expression-vector extraction using universal attribute modelling (best viewed in colour).

be tracked very densely without additional cost. The points
in subsequent frames are concatenated to form trajectories
(P, Piy1, Piyo, ...). However, if no tracked point is found in
a W x W neighbourhood, a new point is sampled and added to
the tracking process so that a dense coverage of trajectories is
ensured. As trajectories tend to drift from their initial locations
during the tracking process, we limit their length to L = 15
frames to overcome this problem [46]. Also, trajectories with
sudden large displacements are most likely to be erroneous.
Hence, if the consecutive frame displacement > 70 % of
the overall displacement of the trajectory, the trajectory is
removed.

Local descriptors like HOG3D, 3DSIFT, and LBP-TOP are
usually computed in a 3D video volume around interest points,
which ignore the fundamental dynamic structures in the video.
Hence, the HOF and MBH descriptors are calculated here
within a space-time volume of size N x N pixels, where
N = 32 and L frames [40] aligned with a trajectory as shown
in Figure 2. To obtain local structural information, this volume
is subdivided into cells of size n; X n, X n:, where n;, = 2,
ny = 2, and n; = 3 are height, width, and temporal segment
lengths. We compute a descriptor (HOF and MBH) in each
cell of the space-time volume.

For HOF, orientations are quantized into a total of 9 bins
and are normalized by its L, norm. The final descriptor size
is 108 for HOF. The MBH descriptor encodes the gradient
of the optical flow, which results in the removal of locally
constant camera motion and the retention of information about
changes in the flow field (i.e., motion boundaries). The MBH
descriptor separates optical flow w = (u,v) into its horizontal
and vertical components. Spatial derivatives are computed for
each of them, and orientation information is quantized into
histograms, and the magnitude is used for weighting. We
obtain an 8-bin histogram for each component (i.e., MBHx
and MBHy). Both histogram vectors are normalized separately

with their L, norm. The dimension obtained for both MBHx
and MBHy is 96 (i.e., 2 x 2 x 3 x 8). After computing HOF
and MBH descriptors, a universal attribute model (UAM)
is constructed for each descriptor as described in the next
subsection.

B. Universal Attribute Model (UAM)

We can consider each expression clip to be a sample
function, which realizes the random process generating the
expression. To compare the similarity of two expression clips,
we need to match the sample functions. Such a match can
be based only on the parameters of the probability density
function (pdf) that describes the random process generating
the expression. If we assume that the underlying pdf can be
estimated using a GMM, then the number of mixtures must
be sufficiently large to accommodate the intra-expression vari-
ances encountered in spontaneous expressions. Unfortunately,
a single clip does not have enough data points to estimate the
pdf of the expression. Hence, we propose to train a universal
GMM using the clips of all the expressions. We call this
model the universal attribute model (UAM), which has a large
number of mixtures for modelling the attributes of different
expressions. However, it is observed that as attributes are
shared across expressions, even a modest number of mixtures
is enough for achieving good representation.

The universal attribute model (UAM) can be represented as

c
p(Xl) = chﬂ(xl“l’cv o-c)a (2
c=1

where the mixture weights w,. satisfy the constraint
Zil we = 1 and p,o0. are the mean and covariance for
mixture ¢ of the UAM, respectively. A feature x; is part of a
clip x represented as a set of feature vectors x1,Xa, - ,Xf.
This feature can be either an HOF or an MBH descriptor and
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Facial feature tracking

Trajectory Description

we train a separate UAM for each descriptor during evaluation
using standard EM estimation.

We hypothesize that after training the UAM, each Gaussian
component in the UAM captures an attribute. This attribute
can be specific to a particular expression or may be present in
multiple expressions. As the goal is still to find the pdf of the
expression that generates a clip, we need to adapt the UAM
parameters using the data in the clip [47], [48].

C. Super expression-vector (SEV) representation

The UAM parameters are adapted for each mixture com-
ponent given L feature vectors of a clip x. The probabilistic
alignment of these feature vectors into each of the C' mixture
components of the UAM is calculated as a posterior p(c|x;)
given by

wcp(xl|C)
emy wep(xalc)
where x; is a d x 1 feature vector and p(x;|c) is the likelihood
of a feature x; arriving from a mixture c.

The posterior probability is then used to calculate the
zeroth and first order Baum-Welch statistics for a clip
x given as n.(x) = ZzL:1 p(clx;) and F.(x) =
(Zle p(e|xi)x;)/n.(x), respectively. The MAP adapted pa-
rameters of a clip-specific model can be obtained as a convex
combination of the UAM and the clip-specific statistics. For
every mixture ¢ of the UAM, the adapted weights and means
are calculated as

plefx;) = 3)

We = ane(x)/L 4 (1 — a)w, (4a)

and

p,=aF.(x)+ (1 —-a)u,. (4b)

The covariance is not modified as there is not enough
data in one clip to update the entire covariance matrix of
the UAM. The adapted means for each mixture are then
concatenated to compute a (C'd x 1)-dimensional SEV for each
clip s(x) = [ftyfty - f1o]". Obtaining a fixed-dimensional
representation like the super expression-vector normalizes the
effect of varying length clips but results in a high-dimensional
representation. This representation though contains many of
the attributes that do not contribute to the clip and hence
are not changed from the original UAM. Since each clip

Ve
HOF
Fig. 2: HOF and MBH extraction from trajectories. Adapted from [46]. Best viewed in colour.

contains only a few of the total UAM mixtures (attributes),
only those means are modified. Hence, the SEV is intrinsically
low-dimensional, and by using a suitable decomposition, we
can extract such a representation, which we refer to as an
expression-vector.

D. Expression-vector representation

In order to arrive at a low-dimensional representation, the
super-expression vector s is decomposed as

s=m + Tw, (®)]

where m is the supervector that is actor and viewpoint
independent (can be assumed to be the unadapted UAM
supervector), T is a low-rank rectangular matrix known as the
total variability matrix of size C'f X r, and an r-dimensional
random vector w whose prior distribution is assumed to be
a standard Gaussian .47(0,I) [49]. We refer to this random
vector as an expression-vector, which is a hidden variable and
is defined by its posterior distribution P(w|x) after observing
a clip x as

P(w|x) « P(x|w)4(0,I) (6)

e (= (v = L) MG w ~ LGx) |

where 3 is a diagonal covariance matrix of dimension
Cd x Cd and it models the residual variability not cap-
tured by the total variability matrix T. The matrix L(x) =
M ! (x)T'E"'5(x), where §(x) is the centered supervec-
tor, which appears because the posterior distribution of w
is conditioned on the Baum-Welch statistics of the clip
centered around the means of the UAM. The first order
Baum-Welch statistics centered around the UAM mean can
be obtained as F.(x) = Zlep(dxl)(xl — ). We can
now express S(x) as the concatenated first-order statistics
§(x) = [F1(x)Fy(x)---Fa(x)]. Also, the matrix M(x) =
I+ T'S'N(x)T, where N(x) is a diagonal matrix of
dimension C'd x Cd whose diagonal blocks are n.(x)I, for
c=1,...,C and I is the identity matrix of dimension d X d.

From Equation 7, the mean and covariance matrix of the
posterior distribution are given by

E[w(x)] = M} (x)T'Z7'5(x) (8a)
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and

Cov(w(x), w(x)) = M *(x), (8b)

respectively. Using EM algorithm [50], we iteratively estimate
the posterior mean and covariance in the E-step and use the
same to update T and X in the M-step.

In the first E-step of the estimation, m and 3 are initialized
with the UAM mean and covariance, respectively. For the total
variability matrix T, a desired rank r is chosen, and the matrix
is initialized randomly. Then E[w(x)] and Cov(w(x), w(x))
are calculated according to Equations 8a & 8b.

In the M-step, the matrix T is calculated as the solution of

Y NE)TEwx)w (x)] =Y §x)EW' (x)], )
which results in a system of r linear equations. The right hand
side of Equation 9 contains §(x), accounting for the number
of features in the clip. As T is the same for all the clips, the
left hand side is also weighed by IN(x) to account for the
number of features in the clip.

For each ¢ = 1,--- ,C, the residual matrix 3 is estimated
mixture by mixture as

Y= (10)

(Z 5.0 - M> |
where M, denotes the ¢ diagonal block of the Cd x Cd
matrix 1 > §(x)E[w!(x)]T* + TE[w(x)]5'(x). And, S.(x)
is the second-order Baum-Welch statistics of the clip centered
on the means of the UAM calculated as

1
ne(x)

L

Sc(x) = diag (Z plelxr) (xi — pe) (x1 — uat) .an
=1

After the final M-step i.e. estimation of T and X matrices, the

expression-vector for a given clip can be represented using the

mean of its posterior distribution as

w(x) = I+ T 'N)T)'T'S'5(x). (12

This process of obtaining the expression-vector is known as
factor analysis [50]. The T-matrix contains the eigenvectors
of the largest r eigenvalues of the total variability covariance
matrix [49]. We hypothesize that these large eigenvalues arrive
from the Gaussian mixture(s), which model the attributes in
the clip. The original SEV can now be projected onto a r-
dimensional expression-vector based on 7'. In the next subsec-
tion, we explore various scoring mechanisms for expression-
vectors like cosine scoring, linear discriminant analysis, and
probabilistic linear discriminant analysis.

IV. EXPRESSION-VECTOR SCORING

The main objective of this work is to compare expression
clips based on the underlying pdf of the expressions. The
pdf was estimated using a GMM (UAM) where each mixture
is assumed to learn an attribute. Using an adapted UAM
and factor analysis, we arrived at a representation called
expression vector, which contains only useful attributes for
that expression clip. Once such a normalised representation is
obtained (because of N(x) in Equation 12), we can directly

compare the expression-vectors of any two clips using cosine
scoring.

Cosine scoring. For cosine scoring, the distance between a
pair of expression-vectors is given as

wiws

k(wy,wo) = (13)

t

wiwy\/wh

WoWo

Linear Discriminant Analysis (LDA). While cosine scoring
requires no class labels for evaluation, it cannot address intra-
expression variability. Such variability arises when recording
the same expression from different camera view that can reveal
or hide certain expression attributes. We hypothesize that using
class information in multi-class linear discriminant analysis
can reduce the effect of intra-class variability. Hence, the
coefficients of the projection matrix A are chosen so as to
maximize the ratio of the between-class scattering S; to the
within-class S,, scattering

. A'S,A
A = argmax ———.
A A'S,A

The solution to the above maximization problem is given by
the following generalized eigenvalue problem:

SyA = AS,A.

(14)

15)

Generally, at most (m — 1) generalized eigenvectors of A are
useful to discriminate among m expressions.

Probabilistic Linear Discriminant Analysis (PLDA). Even
though LDA solves the intra-expression variability issue, the
number of dimensions available for projection is always
limited by the number of classes. In PLDA, there is no
dimensionality constraint and it has been shown to produce
better results than LDA for tasks like face recognition [51],
[52] and object recognition [53]. Hence, we propose to use
PLDA based expression-vector scoring, which is derived with
a two-covariance model similar to LDA. The two-covariance
model is known as a generative linear-Gaussian model, where
latent vectors y representing expressions are assumed to be
distributed according to the prior distribution

p(y) = A (y|1, Sp).

For a given expression represented by a latent vector ¥, the
distribution of expression-vector w is assumed to be

p(y) = A (Wly,Sw).

The maximum-likelihood estimates of the model parameters,
u, Sy, and S,,, can be obtained using EM algorithm. Now,
in case of LDA, the projection of all the vectors using the
projection matrix w would be followed by cosine scoring. In
PLDA, the projection matrix w is not obtained explicitly and
scoring is done using every pair of expression-vectors (w1,ws)
using the following two hypotheses:

(16)

a7)

o Null hypothesis 7¢;: A single latent vector ¥ representing
the expression is generated from the prior p(y), for which
both w; and wy are generated from p(w|y).

o Alternative hypothesis ¢;: Two latent vectors represent-
ing two different expressions are independently generated
from p(y). For each latent vector, either wi or wy is
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generated.

The score can now be calculated as a log-likelihood ratio
between the two hypotheses 77 and 7 as

_ 1ogPW1, W2l H5)
k(wl,wQ)flogp(Wl’Wﬂ%) (18)
_ logl Pp(welyipa)dy (o
p(w1)p(wz)

where in the numerator, we integrate over the distribution of
expression-vectors to determine the likelihood of producing
both expression-vectors having the same expression. For the
hypothesis that the expression-vector belongs to separate ex-
pressions, the product of the marginals p(w;) and p(ws) is
used.

V. EXPERIMENTS
A. Datasets and protocols

To show the applicability of the proposed method on dif-
ferent recording conditions, we chose two datasets - BP4D,
which is recorded in a controlled setup and AFEW, which is
compiled from videos shot in an unconstrained environment.

BP4D- The Binghamton Pittsburgh 4D (BP4D) spontaneous
expression dataset [19] is recorded in a controlled environment
where the subjects respond naturally to different video clips
being played in front of them. The dataset consists of 41
subjects, captured from 9 different views with 8 distinct tasks
(where each task is meant to elicit a particular expression)
resulting in a total of 2952 videos. As per the protocol followed
in [19], 39 subjects were used for training, and 2 (1 male) were
used for testing. We focused on recognizing five emotions,
namely, anger, fear, happiness, sadness, and surprise. The main
reason for selecting BP4D database is because it is the first
dynamic and spontaneous facial expression database, which is
not deliberately posed and contains subjects across different
age groups and different countries.

AFEW- Acted Facial Expression in the Wild (AFEW) [20]
is a dynamic video dataset created from Hollywood movies
containing 723 training videos and 383 validation videos. The
videos are completely unconstrained and provide a fair idea of
real world conditions in which expressions can be captured.

In all the results reported below, the expression-vector is
200 dimensional, which was determined empirically as the best
value. For PLDA, the best projection dimension was found to
be 150, and in case of LDA, the number of dimensions is 4,
which is one less than the total number of expressions.

B. Analysis of expression-vector on dataset specific UAM

In Table I and Figure 3, the classification performance
of expression-vector is presented on both BP4D and AFEW
datasets. There are 4 UAMs which are trained for this purpose,
2 trained each on BP4D and AFEW datasets using both HOF
and MBH descriptors. The best performance of expression-
vector for BP4D is obtained using HOF descriptor for 256
UAM mixtures and SVM classifier. On the other hand, for
the AFEW dataset, 64 UAM mixtures trained with either
HOF or MBH descriptor and PLDA classifier gives the best

classification accuracy. Hence, it can be observed that a UAM
with a smaller number of mixtures is suitable for AFEW while
a larger number of mixtures benefits BP4D. This leads us to
conjecture that as the number of views in AFEW is less than
BP4D, it gives rise to fewer attributes. Also, it can be observed
that increasing the number of mixtures does not cause much
difference in classification for AFEW dataset, which supports
our hypothesis.

C. Cross-dataset evaluation

In nearly all expression recognition settings, most of the
labelled training examples are obtained from constrained en-
vironments. However, in real-world situations, the instances
to be classified are mostly obtained from unconstrained en-
vironments. So, in this work, we attempted to recognize
expressions in an unconstrained dataset, i.e. AFEW using an
attribute model trained on a constrained dataset, i.e. BP4D.
We used the UAM and total variability matrix (Equation 5)
trained on the BP4D dataset to form expression-vectors for the
unconstrained videos in the AFEW dataset. The classification
accuracy on AFEW dataset is presented in Table II and
Figure 4. It is interesting to note that the best classification
performance surpasses what was obtained for the UAM trained
on AFEW. This shows that BP4D has more diverse attributes
than AFEW, which results in a more discriminative expression-
vector. Hence, we hypothesize that both UAM and T-matrix
trained on enough diverse examples generalize well for unseen
data. Also, in cases where unconstrained data is not sufficient
to train a UAM, one that is trained on constrained data can be
effectively used.

D. Analysis of expression-vector on combined UAM

As BP4D captures spontaneous expressions in a controlled
environment and AFEW captures them in an unconstrained
environment, we explore whether they may contain compli-
mentary attributes which can benefit the expression-vector
representation. The combined UAM and total variability ma-
trix are trained using the training data of both BP4D and
AFEW datasets. In Table III, the classification performance
of expression-vector extracted from a combined UAM is
presented. It can be observed that there is no improvement in
classification performance in the case of BP4D or AFEW when
compared to the individual UAMs. So, it can be concluded that
there are no complimentary attributes that are modelled using
the combined UAM to arrive at a better expression-vector.

E. Comparison with state-of-the-art approaches

The comparison of the proposed method with state-of-the-
art techniques is presented for BP4D and AFEW datasets in
Table IV and V, respectively. The existing approaches depend
on an ensemble of low-level features [35], [54], annotated
facial action units [55], multi-modal features (face, facial
actions, and audio) [55], [56], and polynomial fitting of spatio-
temporal volumes (for view invariance) [19] to achieve state-
of-the-art performance. However, such representations often
suffer from noise and spatio-temporal sensitivity, which lead
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TABLE I: Expression-vector classification performance (in %) for BP4D and AFEW with dataset specific UAM.

Number of UAM mixtures
Scoring BP4D AFEW
mechanism HOF MBH HOF MBH
64 128 256 64 128 256 64 128 256 64 128 256
Cosine 63.89 | 61.11 | 62.96 | 67.59 | 66.67 | 67.59 | 56.79 | 53.31 | 53.94 | 56.79 | 56.47 | 55.84
LDA 66.67 | 59.26 | 62.96 | 63.88 | 64.81 | 66.67 | 57.10 | 53.63 | 53.32 | 57.10 | 55.21 | 56.47
PLDA 63.89 | 60.18 | 60.19 | 62.97 | 62.04 | 65.75 | 57.10 | 53.94 | 54.26 | 57.10 | 55.52 | 55.84
SVM 75.40 | 80.80 | 81.30 | 71.00 | 69.90 | 72.20 | 45.90 | 45.60 | 45.00 | 46.40 | 46.60 | 45.40
90 60
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60 40
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B MBH(mix=128) " MBH(mix=256) B MBH(mix=128)® MBH (mix=256)
0 ——— e I e 0 ——— e I e
Cosine PLDA SVM Cosine PLDA SVM

Scoring mechanism (mix represents number of mixtures in UAM.)

(a) BPAD

Scoring mechanism (mix represents number of mixtures in UAM.)

(b) AFEW

Fig. 3: Classification performance of expression-vector with dataset specific UAM. Best viewed in colour.

TABLE II: Expression-vector on-line classification perfor-
mance (in %) on AFEW. UAM learned using training data
from BP4D.

Number of UAM mixtures
Scoring HOF MBH
mechanism 64 128 256 64 128 256
Cosine 54.26 | 52.68 | 54.57 | 52.05 | 51.42 | 50.16
LDA 54.57 | 52.37 | 54.26 | 50.47 | 50.79 | 50.16
PLDA 54.26 | 53 5394 | 50.79 | 52.37 | 50.47
SVM 726 | 72.8 74.1 65.2 67.40 | 68.60

a
o

Accuracy (%)
5 8 8 &

o

Cosine

Scoring mechanism (mix represents number of mixtures in UAM.)

PLDA

B HOF(mix=64) ™ HOF(mix=128)
HOF(mix=256) ® MBH (mix=64)
lMBH(rmx 128) MBH(rmx 256)
e

SVM

Fig. 4: Classification performance of expression-vector on
AFEW with UAM and T-matrix learned using training data
from BP4D. Best viewed in colour.

to poor performance, especially on an unconstrained dataset
like AFEW as compared to the proposed expression-vectors

as can be seen in Table V. It should also be noted that
expression-vectors achieve view invariance without the need
for polynomial fitting as in [19]. This is because the UAM
model trained in the proposed approach allows for a view
normalized expression representation.

The closest approach to the proposed expression-vector is
an ensemble of mid-level representation called expressionlet
[30] which was discussed in Section I. However, expression-
vectors outperform the expressionlet ensemble on uncon-
strained (AFEW) and spontaneous (BP4D) datasets. This can
be attributed to the fact that the formation of expression-
vectors uses adapted means of the UAM whereas expres-
sionlets are formed using the means of chosen local features
per mixture of the universal model. Further, we hypothesize
that the factor analysis can preserve important attributes better
than discriminative learning used for forming the ensemble of
expressionlets. From Tables IV and V, it can be observed that
expression-vectors combined with an unsupervised scoring
technique like cosine scoring, perform better on constrained
and unconstrained datasets as compared to supervised classi-
fication of expressionlet ensemble.

F. Expression-wise comparison

The confusion matrices for the best performance on BP4D
and AFEW are presented in Figure 5 (a) and 5 (b), respectively.
It can be seen that the classification performance for all the ex-
pressions is close to the overall classification accuracy, which
shows that UAM captures the attributes of all expressions
equally well. In particular, we can observe misclassification
of happy clips as angry and vice-versa for both the datasets.
As shown in the Figure 6 (a), there is an overlap in the
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TABLE III: Expression-vector classification performance (in %) for BP4D and AFEW with combined UAM.

Number of UAM mixtures
Scoring BP4D AFEW

mechanism HOF MBH HOF MBH

64 128 256 64 128 256 64 128 256 64 128 256
Cosine 71.30 | 62.04 | 60.19 67.59 | 64.81 | 62.03 | 52.36 | 53.94 | 50.47 | 55.84 | 53.94 | 54.26
LDA 60.18 | 63.89 | 62.037 | 65.74 | 64.81 | 66.67 | 52.36 | 51.41 | 51.10 | 53.31 | 51.73 | 55.20
PLDA 62.03 | 73.15 | 74.07 59.26 | 63.89 | 62.04 | 48.26 | 50.47 | 48.58 | 48.89 | 48.26 | 49.21
SVM 74.20 | 75.50 | 81.00 74.20 | 73.70 | 76.90 | 44.50 | 44.80 | 46.40 | 43.30 | 43.80 | 43.60

TABLE IV: State-of-the-art on BP4D dataset
Methods

Accuracy (%)

3DCNN* [57] 46.5
HOG + HMM [58] 72.2
Nebula + LDA [19] 76.1
Rotation reversal HOG 76.8

+ conditional random forests [59] ’
Expression-vector +cosine 71.3
Expression-vector +SVM 81.3

* our evaluation using C3D features

TABLE V: State-of-the-art on AFEW dataset

Methods Accuracy (%)

3DCNN [60] 31.3
Expressionlet [61] 31.7
Multi-modal CNN + DNN [56] 49.5
Feature Ensemble 523

+ Partial Least Squares [35] ’
AU + Audio + SVM [55] 53.8
HOG + Boosted cascade [62] 56.8
Expression-vector +cosine 56.8
Expression-vector +SVM 74.1

extracted expression-vectors for happy and angry which results
in this confusion. However, in the case of Figure 6 (b), there
is almost no overlap in the expression-vectors for happiness
and surprise, which reduces the confusion between these two
classes.

VI. CONCLUSION

In this work, we proposed a novel actor-independent, low-
dimensional, and high-level representation for spontaneous
expression recognition termed expression-vector. With no pre-
processing and manual annotation, feature descriptors were
obtained, and an entirely unsupervised learning mechanism
was shown for obtaining expression-vectors. On BP4D and
AFEW datasets, expression-vectors demonstrated better per-
formance than state-of-the-art approaches, which shows the
ability of the proposed approach in capturing discriminative
information without supervision. Also, we have shown that a
UAM trained on a constrained dataset can be used to recognize
unconstrained expression clips effectively. In future, we would
like to investigate the performance of expression-vector for
localization of expressions in temporally untrimmed clips.

An

Sa

Su

5% 3%

An Fe Ha Sa Su An Fe Ha Sa Su

(a) BP4D dataset (b) AFEW dataset

Fig. 5: Confusion matrix for expression-vector with best model
(HOF features on 256 components, classified using SVM).
Best viewed in colour.
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Fig. 6: t-sne plot for expression-vectors of (a) happy vs. angry
and (b) happy vs. surprise of BPAD dataset.
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