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Unsupervised Universal Attribute Modeling for
Action Recognition

Debaditya Roy, K. Sri Rama Murty, and C. Krishna Mohan

Abstract—A fixed dimensional representation for action clips
of varying lengths has been proposed in the literature using
aggregation models like bag-of-words and Fisher vector. These
representations are high-dimensional and require classification
techniques for action recognition. In this paper, we propose a
framework for unsupervised extraction of a discriminative low-
dimensional representation called action-vector. To start with,
local spatio-temporal features are utilized to capture the action
attributes implicitly in a large Gaussian mixture model called
universal attribute model (UAM). To enhance the contribution
of the significant attributes in each action clip, a maximum
aposteriori adaptation of the UAM means is performed for each
clip. This results in a concatenated mean vector called super
action vector (SAV) for each action clip. However, the SAV
is still high-dimensional because of the presence of redundant
attributes. Hence, we employ factor analysis to represent every
SAV only in terms of the few important attributes contributing
to the action clip. This leads to a low-dimensional representation
called action-vector. This entire procedure requires no class labels
and produces action-vectors that are distinct representations of
each action irrespective of inter-actor variability encountered in
unconstrained videos. An evaluation on trimmed action datasets
UCF101 and HMDB51 demonstrates the efficacy of action-
vectors for action classification over state-of-the-art techniques.
Moreover, we also show that action-vectors can adequately
represent untrimmed videos from the THUMOS14 dataset and
produce classification results comparable to existing techniques.

Index Terms—Action recognition, universal attribute model,
unsupervised feature extraction, MAP adaptation, factor analysis,
Gaussian mixture model.

I. INTRODUCTION

Human actions can be modeled in terms of a sequence
of atomic attributes. For example, the act of boxing can be
interpreted as a combination of attributes such as right-hand
forward punch and right-hand retraction, followed by a left-
hand forward punch and left-hand retraction. However, the
definition of attributes is a subjective phenomenon and hence
a manual annotation of attributes is highly inconsistent [38].
In addition, unconstrained videos have inter-actor variability
or viewpoint differences which cause large deviations within
the same attribute, making their explicit extraction difficult.
Hence, we propose a framework for implicit attribute mod-
elling using a universal attribute model (UAM). In order
to represent an action, we should be able to determine the
attributes that are responsible for that action. Since these

Debaditya Roy and C. Krishna Mohan are with the Visual Learn-
ing and Intelligence Group (VIGIL), Department of Computer Science
and Engineering, Indian Institute of Technology Hyderabad, India, e-mail:
{cs13p1001,ckm}@iith.ac.in.

K. Sri Rama Murty is with the Department of Electrical Engineering, Indian
Institute of Technology Hyderabad, India, e-mail: ksrm@iith.ac.in.

attributes are implicitly modeled, we use factor analysis to
discover them. Finally, we obtain a description containing only
the contributions from the implicit attributes for that action.
We refer to this representation as an action-vector that is both
low-dimensional and distinct for different actions.

Recent literature regarding action representation focuses on
long-term features which are extracted from the entire video
clip. In [5], motion dynamics from a whole clip were captured
using a long short term memory (LSTM) where each frame
was represented as an output of a convolutional neural network
(CNN). Another approach considered long frame sequences
(60-100 frames) for capturing long-term temporal relationships
for action description [25]. In [33], temporal segment networks
were used to sample entire videos in order to produce a single
feature vector representation. Although long-term features can
summarize an entire video, it is computationally expensive
to calculate such features for very long videos. Especially,
in the case of temporally untrimmed videos which contain
background movement, obtaining an adequate representation
for the desired action is challenging.

There exists an extensive use of short-term features to rep-
resent short duration snippets in literature before the advent of
long-term features. Improved dense trajectory[28] is the most
popular amongst such features and it describes a set of points
being tracked across several frames (generally considered to
be 15). This description contains a) the histogram of oriented
gradients (HOG) which defines the spatial structure of the
neighbourhood of the point, b) the histogram of optical flow
(HOF) descriptor that calculates the temporal derivative of the
trajectory taken by the point, and c) the motion boundary
histogram (MBH) which is the concatenation of horizontal
and vertical spatial derivatives calculated on the temporal
derivatives used for HOF. Another representation which has
gained prominence is the 3D CNN features which are also
extracted from 16 consecutive frames [24]. Both these features
perform close to long-term features for action classification
when combined with a suitable classifier like a support vector
machine (SVM). However, the biggest challenge in using
short-term features is that the number of features is dictated
by the duration of the clip, leading to varying length patterns.

Attempts have been made to arrive at a fixed dimensional
representation for each clip in order to overcome the varying
number of short-term features extracted from each clip. In
this regard, some methods consider an action as a sequence
of features. Gaidon et al. [7] proposed that each action can be
decomposed to be a sequence of atomic units called actoms.
A histogram of visual features was extracted from each actom,
and a sequence of these features was used to model the
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action. While the actoms were annotated manually during
training, they were obtained automatically while testing. In
another approach, actions were decomposed into actionlets
and represented using Markov dependencies between these
actionlets [15]. Although this method can capture long-term
dependencies among actionlets, it nevertheless requires a
manual identification of actionlets and explicit modelling. In
[35], every action was divided into a set of events and the
start of each event was associated with a latent variable.
The action detection problem was then posed as a quadratic
programming (QP) problem using these latent variables. How-
ever, this approach demands precise manual identification of
start and end points of the events, and also requires fixed
length representation of each event for formulating the QP. A
similar problem is encountered in temporal clustering-based
methods that rely mainly on change detection for identifying
and clustering motion segments [37]. Moreover, the methods
mentioned above do not model fluid actions like blowing out
candles or playing a flute where marking the start and end of
events within the action becomes challenging.

Apart from sequential modelling of features, there are
many aggregation based frameworks like bag-of-words (BoW),
Fisher vector and vector of locally aggregated descriptors
(VLAD) which have been predominantly used for action rep-
resentation [28]. To derive either of the descriptors mentioned
above, the short-term features are clustered using k-means
or Gaussian mixture models (GMM). Following which, the
BoW descriptor is computed using the zeroth order statis-
tics, VLAD requires the first-order statistics of the clusters
and Fisher vectors are obtained by using both the first and
second-order statistics. In [34], a BoW model was created
using HOG and HOF features which were utilized for ac-
tion classification. Similarly, Fisher vectors have also been
extensively used as a feature for standard classifiers such as
SVM [28] and feed-forward neural networks [2] to perform
action recognition. Notably, Fisher vectors calculated with the
motion descriptors such as HOF and MBH have shown good
classification performance on large action datasets[27], [26].
A recent improvement in VLAD termed as VLAD3 was used
to provide a video-based representation [16] and was shown to
perform better than Fisher vector on action datasets. In [8], an
alternative descriptor called a super vector was computed using
the maximum aposteriori (MAP) adaptation of the means
of each mixture in the GMM. However, the resultant super
vector is quite high-dimensional as the GMM contains many
mixture components to accommodate all the actions and is
also computationally expensive.

In the aggregation frameworks discussed above, either de-
liver a very high dimensional representation, or they are
not specifically tuned for each action. So, in the proposed
method, we aim to provide a distinct low-dimensional repre-
sentation for each action. Also, most of the existing research
demonstrates the use of some supervision in the form of
manually annotated bounding boxes for feature extraction[27],
[26]. In the proposed method, we extract HOG, HOF, and
MBH features without using bounding boxes or body joint
localization. Subsequently, we build a UAM to estimate the
probability density function for implicit modelling of attributes

across the actions. Using the UAM removes the need for
manual annotation of attributes making it an excellent option
even for fluid actions like blowing out candles and playing
a flute. For the next step, a fixed-dimensional super action
vector (SAV) is obtained by concatenating the adapted means
of the UAM for a given clip. The SAV obtained is intrinsically
low-dimensional because an action is composed of only a few
attributes. So, to obtain a low-dimensional representation, we
decompose the SAV using factor analysis. In the process, we
get a low-dimensional representation for each clip to which
we refer to as an action-vector. Finally, we demonstrate that
even simple cosine scoring can be used for classifying action-
vectors as they are found to be distinctive for each action.
Unlike in most of the existing literature [2], [28], [16], this
characteristic of the action-vectors eliminates the need for
using class labels to build a classifier. Fig. 1 presents a block
diagram of the entire process of action-vector extraction.

The main contributions of this paper are listed as follows.
• A universal model for representing actions in terms of

their implicit attributes.
• Unsupervised extraction of a low-dimensional represen-

tation for each clip.
• Representation of an untrimmed clip using a single

action-vector to highlight the relevant action while sup-
pressing irrelevant background.

The rest of the paper is organized as follows. In Section
II, action-vector extraction is discussed in detail through the
process of UAM construction, SAV generation, and low-
dimensional decomposition of SAV. Section III introduces
the action-vector scoring mechanisms used in this work. The
results and relevant discussion regarding both trimmed and
untrimmed videos are covered in Section IV and the conclu-
sions are presented in Section V.

II. ACTION-VECTOR EXTRACTION

Each video clip can be considered as a sample function
of the random process responsible for that action. In order
to quantify the similarity between two action clips, we need
to match the corresponding random processes. The random
process of an action, in turn, involves sequence of random
variables describing different attributes of the action. Hence,
the similarity between two action clips depends on the pa-
rameters of the probability density functions (pdf ) of the
random variables associated with the random processes of
those action. If we assume that the underlying pdf can be
estimated using a GMM, then the number of mixtures must
be large enough to accommodate the intra-action variability
in the unconstrained videos. Unfortunately, a single clip does
not have enough data points to estimate the pdf of the action.
Further, research shows that training a GMM for every action
is challenging especially for actions with few examples [8].
Hence, we propose to train a universal GMM using the clips
of all the actions. We call this model the universal attribute
model (UAM) which has a large number of mixtures for
modelling the attributes of different actions spanning across
datasets. However, it has been observed that even for a large
number of actions spanning multiple datasets, the number of
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Fig. 1. Unsupervised attribute modelling and action-vector extraction

mixtures does not amount to be exceedingly large since they
share attributes.

A. Universal Attribute Model (UAM)

The universal attribute model (UAM) can be represented as
follows

p(xl) =

C∑
c=1

wcN (xl|µc,σc), (1)

where the mixture weights wc satisfy the constraint∑C
c=1 wc = 1 and µc,σc are the mean and covariance for

mixture c of the UAM, respectively. A feature xl is part of a
clip x represented as a set of feature vectors x1,x2, · · · ,xL.
This feature can be either a HOF or an MBH descriptor and
we train a separate UAM for each during evaluation using
standard EM estimation.

Since our goal is to find the pdf of the action process
that generates a clip, we need to adapt the UAM parameters
using the data in the clip. We perform a maximum aposte-
riori (MAP) adaptation similar to [19], [8] for obtaining the
requisite pdf which describes the clip.

B. Super action-vector (SAV) representation

In the MAP adaptation, the parameters of the UAM are
adapted after observing each clip to enhance the contribution
of the attributes present in that clip. The posterior probability
of a mixture component (representing an attribute), given the
feature vector from xl ∈ Rd from a clip, p(c|xl) is given by

p(c|xl) =
wcp(xl|c)∑C
c=1 wcp(xl|c)

, (2)

where p(xl|c) is the likelihood of drawing a feature xl from
the cth mixture, and wc is the prior probability of that mixture.

In Fig. 2 shows the posteriogram representation for two
actions, viz., Hulahoops and Benchpress. The posteriogram
is a 3-dimensional representation in which the intensity at a
pixel (l,c) denotes the posterior probability of the cth Gaussian
mixture for the lth feature vector p(c|xl). Hence, the darker
pixels correspond to the important attributes in the action. The
posteriograms extracted from the action Hulahoops, performed
by two different actors, shown in Fig 2(a) show almost
identical patterns. The slight changes in the patterns for two
clips of the same action can be attributed to actor-specific and
viewpoint-specific variations. A similar trend can be noticed
for the Benchpress action as well, in Fig. 2(b).
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(a) Action:Hulahoops
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(b) Action:Benchpress

Fig. 2. Posteriograms (using 256 Gaussian mixtures) for two actions of
UCF101: (a) Hulahoops and (b) Benchpress. Although the two clips of
Hulahoops have variable number of frames, the sequence of Gaussian mixtures
having the highest posterior probability (in black) is similar throughout the
action. These mixtures represent the attributes which contribute to the action
and the slight deviations may be caused by actor or viewpoint variability.
Similar behavior can be observed in the clip of Benchpress.
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The posterior probability p(c|xl) computed in Equation 2 is
then used to estimate the zeroth and first order Baum-Welch
statistics [21] for a clip x given by

nc(x) =

L∑
l=1

p(c|xl), and (3a)

and

Fc(x) =
1

nc(x)

L∑
l=1

p(c|xl)xl, (3b)

respectively. The MAP adapted parameters of a clip-specific
model can be obtained as a convex combination of the UAM
and the clip-specific statistics. For every mixture c of the
UAM, the adapted weights and means are calculated as

ŵc = αnc(x)/L+ (1− α)wc, (4a)

µ̂c = αFc(x) + (1− α)µc. (4b)

The covariance matrices of the UAM are not adapted due to
data insufficiency. The adapted means are concatenated to form
a (Cd×1)-dimensional super action vector (SAV) for the clip
as

s(x) = [µ̂1µ̂2 · · · µ̂C ]
t. (5)

While the SAV provides a fixed-dimensional representation
for varying-length clips, it results in a high-dimensional rep-
resentation. This representation though contains many of the
attributes that do not contribute to the clip and hence are not
changed from the original UAM. According to Equation 2, the
likelihood p(xl|c) is close to zero for mixtures in the UAM
which do not model the attributes given by the features in
the clip. This translates to posterior probability p(c|xl) being
close to zero for the same mixtures which leads the Baum-
Welch statistics for these mixtures, nc(x) and µc(x) to be
close to zero. Finally, this leads to the MAP adapted weights
ŵc and means µ̂c for these non-contributing mixtures to be the
same as that in the UAM. Since each clip contains only a few
of the total UAM mixtures (attributes), only those means are
modified. Hence, the SAV is intrinsically low-dimensional, and
through the use of a suitable decomposition, we can extract a
representation of this kind, which has been referred to in this
paper as an action-vector.

C. Action-vector representation

In order to arrive at a low-dimensional representation, the
SAV s is decomposed as

s = m + Tw, (6)

where m is assumed to be an actor and viewpoint independent
supervector. A supervector of this kind can be initialized using
the UAM supervector. This is possible as the UAM is trained
using large number of actors and viewpoints resulting in a
distribution that is marginalized over views and actors. Also, T
is a low-rank rectangular matrix known as the total variability
matrix of size Cd× r, and a r-dimensional random vector w
whose prior distribution is assumed to be a standard Gaussian
N (0, I) [3]. We refer to this random vector as an action-
vector which is a hidden variable and is defined by its posterior

distribution P (w|x) after observing a clip x as P (w|x) ∝
P (x|w)N (0, I)

∝ exp

(
wTtΣ−1s̃(x)− 1

2
wtTtN(x)Σ−1Tw − 1

2
wtw

)
= exp

(
wTtΣ−1s̃(x)− 1

2
wtM(x)w

)

= exp

(
−1

2
(w − L(x))tM(x)(w − L(x))

)
× constant.

(7)
Here, Σ is a diagonal covariance matrix of dimension Cd×Cd
and it models the residual variability that is left uncaptured by
the total variability matrix T. The matrix L(x) is defined as

L(x) = M−1(x)TtΣ−1s̃(x) (8)

where s̃(x) is the centered supervector which appears because
the posterior distribution of w is conditioned on the Baum-
Welch statistics of the clip centered on the means of the UAM.
The first order Baum-Welch statistics centered on the UAM
mean can be obtained through

F̃c(x) =

L∑
l=1

p(c|xl)(xl − µc). (9)

We can now express s̃(x) as the concatenated first-order
statistics given below

s̃(x) = [F̃1(x)F̃2(x) · · · F̃C(x)]
t. (10)

Also, the matrix M(x) is defined as

M(x) = I + TtΣ−1N(x)T, (11)

where N(x) is a diagonal matrix of dimension Cd×Cd whose
diagonal blocks are nc(x)I, for c = 1, ..., C and I is the
identity matrix of dimension d× d.

From Equation 7, the mean and covariance matrix of the
posterior distribution are given by

E[w(x)] = M−1(x)TtΣ−1s̃(x) (12a)

and
Cov(w(x),w(x)) = M−1(x), (12b)

respectively. Using EM algorithm [12], we iteratively estimate
the posterior mean and covariance in the E-step and use the
same to update T and Σ in the M-step.

In the first E-step of the estimation, m and Σ are initialized
with the UAM mean and covariance, respectively. For the total
variability matrix T, a desired rank r is chosen, and the matrix
is initialized randomly. Then E[w(x)] and Cov(w(x),w(x))
calculated according to Equations 12a & 12b.

In the M-step, the matrix T is calculated by solving∑
x

N(x)TE[w(x)wt(x)] =
∑
x

s̃(x)E[wt(x)], (13)

which results in a system of r linear equations. The right hand
side of Equation 13 contains s̃(x) which also accounts for the
number of features in the clip. As T is the same for all the
clips. the left hand side is also multiplied by N(x) to account
for the number of features in the clip.
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For each c = 1, · · · , C, the residual matrix Σ is estimated
mixture-by-mixture as

Σc =
1

nc(x)

(∑
x

S̃c(x)−Mc

)
(14)

where Mc denotes the cth diagonal block of the Cd × Cd
matrix 1

2

∑
x s̃(x)E[wt(x)]T t + TE[w(x)]̃st(x) and S̃c(x)

is the second-order Baum-Welch statistics of the clip centered
on the means of the UAM calculated by

S̃c(x) = diag

(
L∑

l=1

p(c|xl)(xl − µc)(xl − µc)
t

)
. (15)

After the final M-step i.e. estimation of T and Σ matrices,
the action-vector for a given clip can be represented using the
mean of its posterior distribution as follows

w(x) = (I + TtΣ−1N(x)T)−1TtΣ−1s̃(x). (16)

This process of obtaining the action-vector is known as factor
analysis [12]. The T-matrix contains the eigenvectors of
the largest r eigenvalues of the total variability covariance
matrix [3]. We hypothesize that these large eigenvalues arrive
from the Gaussian mixture(s) which model the attributes in
the clip. The original SAV can now be projected onto a r-
dimensional action-vector based on T . The 2-D visualization
of action-vectors (r=200) is presented in Fig. 3(b) using t-
distributed stochastic neighbor embedding (t-SNE) [17]. It
follows, therefore, that most of the actions of UCF101 form
easily identifiable clusters that which are in contrast to Fig.
3(a) where highly overlapping MBH features can be seen for
the same actions. Hence, the proposed approach can effectively
represent the video clip in a fixed dimensional space. The abil-
ity to obtain such a lower dimensional embedding confirms our
hypothesis that SAVs are intrinsically low-dimensional. The

(a) (b)
Fig. 3. t-SNE visualization on selected classes of UCF101 (a) MBH features
(b) MBH action-vectors. Best viewed in color.

visualization of action-vectors for the MBH feature (Fig. 3(b))
shows that there is a general distinction among actions which
is obtained without the use of action labels. This visualization
necessitates an exploration of the viability of action-vectors
for the purpose of classification without explicitly training a
classifier. Hence, we explore various scoring mechanisms like
cosine scoring, linear discriminant analysis, and probabilistic
linear discriminant analysis in the following section.

III. ACTION-VECTOR SCORING

started with the goal of comparing clips based on the
underlying pdf of their actions and arrived at an action-vector

representation. The pdf was estimated using a GMM where
each mixture was assumed to learn an attribute. Hence, the
action-vector extraction method of obtaining useful attributes
to represent a clip is equivalent to obtaining the pdf for that
clip. Once such a normalized representation (because of N(x))
in Equation 16 has been obtained, we can directly compare the
action-vectors of any two clips using cosine scoring.

Cosine scoring. For cosine scoring, the distance between a
pair of action-vectors is expressed as

k(w1,w2) =
wt

1w2√
wt

1w1

√
wt

2w2

. (17)

Linear Discriminant Analysis (LDA). While cosine scoring
requires no class labels for evaluation, it cannot address intra-
class variability. Such variability arises when recording the
same action from different camera views which can reveal
or hide certain action attributes. In a attempt to address this,
we hypothesize that using class information in multi-class
linear discriminant analysis can reduce the effect of intra-class
variability. Hence, the coefficients of the projection matrix Â
are chosen in a manner so as to maximize the ratio of the
between-class scattering Sb to the within-class Sw scattering

Â = argmax
A

AtSbA

AtSwA
. (18)

The solution is to the above maximization problem is given
by the following generalized eigenvalue problem

SbA = λSwA. (19)

There are at most (m − 1) generalized eigenvectors of A
available to discriminate between m actions. Fig. 4 shows the
LDA projected action-vectors onto 100 dimensions (highest
available for 101 actions). Clearly, the different actions are
better separated into clusters than Fig. 3(b).

Fig. 4. t-SNE visualization of LDA projected MBH action-vectors on selected
classes of UCF101. Best viewed in color.

Probabilistic Linear Discriminant Analysis (PLDA). Even
though LDA solves the intra-class variability issue, the number
of dimensions available for projection is always limited by
the number of classes. In PLDA, there is no dimensionality
constraint and it has been shown to produce better results
than LDA for tasks like face recognition [20], [1] and object
recognition [9]. Hence, we propose to use PLDA based action-
vector scoring which is derived with a two-covariance model
similar to LDA. The two-covariance model is known as
a generative linear-Gaussian model, where latent vectors y
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representing actions are assumed to be distributed according
to the prior distribution

p(y) = N (y|µ,Sb). (20)

For a given action represented by a latent vector ŷ, the
distribution of action-vector w is assumed to be

p(w) = N (w|y,Sw). (21)

The maximum-likelihood estimates of the model parameters,
µ,Sb, and Sw, can be obtained using EM algorithm. Now,
in case of LDA, the projection of all the vectors using the
projection matrix A would be followed by cosine scoring. In
PLDA, the projection matrix A is not obtained explicitly and
scoring is done using for every pair of action-vectors (w1,w2)
using the following two hypotheses

• Null hypothesis Hs: A single latent vector ŷ representing
the action is generated from the prior p(y), for which both
w1 and w2 are generated from p(w|ŷ).

• Alternative hypothesis Hd: Two latent vectors represent-
ing two different actions are independently generated
from p(y). For each latent vector, either w1 or w2 is
generated.

The score can now be calculated by means of a log-likelihood
ratio between the two hypotheses Hs and Hd as

k(w1,w2) = log
p(w1,w2|Hs)

p(w1,w2|Hd)
= log

∫
p(w1|y)p(w2|y)
p(w1)p(w2)

where in the numerator, we integrate over the distribution of
action-vectors to determine the likelihood of producing both
action-vectors from the same action. For the hypothesis that
action-vectors belong to separate actions, the product of the
marginal likelihoods p(w1) and p(w2) is used.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of action-vector
representation across different datasets and features. A detailed
performance analysis of action-vectors across various features,
different UAM configurations, and scoring mechanisms is
performed on the UCF101 dataset. This is because UCF101 is
one of the largest trimmed action dataset consisting of 13000+
clips of human actions spanning 101 classes [23]. Each video
clip contains only the action of interest, and the average
duration of each clip is around 7.21 seconds. Feature extraction
on these clips in the form of HOG, HOF, and MBH descriptors
is done (as part of the iDT framework [28]) without using
any human annotations. Though the classification performance
of iDT significantly improves when using human bounding
boxes [27], annotations are either not available or expensive
to acquire for most of the unconstrained videos.

A. Effect of features and UAM mixtures

Action-vector performance is evaluated for different UAMs
and features on the UCF101 dataset. Every UAM is trained by
pooling clips from one of the training splits mentioned in [23]
for a particular feature. For each mixture in the UAM, diagonal
covariance matrices are trained as there are a large number of

mixtures and an insufficient number of features. Also, a similar
number of feature vectors are chosen from each action to avoid
the bias towards a particular action during training.

Table I presents the classification performance of SAV and
action-vectors using different scoring techniques, namely, (a)
cosine, (b) LDA, (c) PLDA, and (d) SVM, over a 2048
mixture UAM. The scores obtained in Table I are produced by
averaging over the officially provided test splits for UCF101.
The action-vector dimension used is 200, and it is observed
empirically that any further increase in feature dimension does
not yield any noticeable increase in performance. For LDA
scoring, 100 dimensions are used during projection. It can be
seen from Table I that MBH consistently performs better than
HOF and HOG. This is also true at feature level where MBH
outperforms the other descriptors when used for classifica-
tion with SVM [6], [27]. Also, action-vector representation
performs much better compared to SAV which shows that
removing redundant attributes results in a more discrimina-
tory representation. The inherent capability of dissociation of
action-vectors is evident as an unsupervised technique like
cosine scoring shows comparable performance to supervised
methods like SVM, LDA, and PLDA. As a scoring technique,
PLDA consistently outperforms other scoring techniques like
LDA and cosine scoring, and is marginally better than SVM.
Hence, a projection matrix based on similarity or dissimilarity
of action-vectors provides better discrimination than a single
projection matrix for all the action-vectors.

TABLE I
CLASSIFICATION ACCURACY (%) FOR VARIOUS CLASSIFIERS ON UCF101

USING SAV AND ACTION-VECTORS.

Representation +
Scoring technique HOG HOF MBH

SAV + cosine 66.45 67.5 72.11
action-vector + cosine 87.17 88.80 90.67
action-vector + LDA 87.24 90.10 92.20
action-vector + SVM 88.54 91.24 93.88
action-vector + PLDA 88.84 92.73 93.92

Fig. 5 charts the performance of action-vectors across
UAMs with varying number of mixtures. Action-vectors on
256 mixture UAM demonstrate low accuracy because the
number of mixtures may not be enough to model all the
attributes of the 101 actions in UCF101. The classification per-
formance of the action-vector rises steadily for both SVM and
PLDA classifiers with an increase in the number of the UAM
mixtures. Hence, it is observed that adding mixtures leads
to the representation of more distinctive attributes. However,
there is no substantial improvement recorded beyond 2048
mixtures and in addition, training UAMs with 4096 mixtures
increases computation time enormously. So, in order to further
improve performance, we explore fusion of action-vectors for
leveraging complimentary information.

B. Action-vector fusion

In [27], HOG, HOF, and MBH have been shown to extract
complimentary information and they are combined in various
ways to improve action recognition performance. So, we
explore different fusion techniques like: (a) concatenation
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Fig. 5. Effect of number of UAM mixtures on action-vector extracted using
MBH features for UCF101. Best viewed in color.

(concat) of action-vectors with cosine scoring, (b) intermediate
fusion (IF) of action-vectors scored with SVM classifier, (c)
intermediate latent dimension fusion (ILDF) using PLDA, and
(d) score fusion (SF) using PLDA scores. In Table II, we
present the results using these fusion techniques on action-
vectors. To perform intermediate fusion (IF), the action-vectors
of different features for the same clip are concatenated and
classified using an SVM. In case of IDLF, a PLDA model
is trained on the concatenated action-vectors of the training
set, following which, the concatenated action-vectors of the
test clips are classified using this model. For score fusion
(SF), a convex combination of PLDA scores is used which
is optimized for accuracy. In all cases, the action-vectors
and PLDA classification scores are obtained on 2048 mixture
UAMs trained separately for each feature. It is observed that
an action-dependant latent projection technique like PLDA
performs better than either concatenation of action-vectors
(intermediate fusion scored with SVM) or score fusion. For
our next step, we present action-vector performance on other
benchmark datasets and compare our performance with state-
of-the-art techniques.

TABLE II
COMPARISON OF ACTION-VECTOR FUSION TECHNIQUES ON UCF101

(2048 MIXTURE UAM)

Feature
combination

Accuracy (in %)

concat + cosine IF + SVM PLDA-based
ILDF SF

HOG + HOF 89.11 90.45 91.23 92.99
HOG + MBH 90.72 93.15 93.74 93.92
HOF + MBH 90.81 93.56 94.10 93.96
HOG + HOF + MBH 91.12 94.21 95.13 93.98

C. Comparison with state-of-the-art

To explore the generalization capability of action-vectors,
we present results on two other challenging action datasets:
HMDB51 and THUMOS14. The HMDB51 dataset consists
of 51 classes of actions containing 6766 clips [13]. On
the other hand THUMOS14 is an untrimmed dataset [11]
containing 1574 clips of the 101 actions from the UCF101
dataset. As the clips are untrimmed, the background activities
affect the recognition rate of most algorithms. For extracting
the action-vectors of clips in HMDB51, separate UAMs and

TABLE III
COMPARISON OF CLASSIFICATION ACCURACY OF PROPOSED APPROACH

WITH EXISTING STATE-OF-THE-ART METHODS

Method Accuracy (in %)
UCF101 HMDB51 THUMOS14

Supervised
Spatio-Temporal CNN [39] 93.0 68.2 -
Multi-skip feature [14] 89.1 63.9 -
Long-term CNNs +iDT [25] 92.7 67.2 -
Two-stream CNN [22] 88.0 59.4 -
Temporal segment networks (TSN) [33] 94.3 69.4 -
HOF + MBH + Event model + BoW [35] - 49.86 -
Objects + motion [10] - - 71.6
C3D features + iDT(fisher) [24] 90.4 - -
Traj-pooled deep CNN + iDT(fisher) [31] 91.5 65.9 -
VLAD3 + iDT(fisher) [16] 92.2 - -
iDT-FV + DNN Hybrid [2] 92.4 70.4 -
iDT+CNN [30] - - 62.0
iDT+FV [29] - - 63.1
Temporal linear embedding (TLE) [4] 95.6 71.1 -
Action-vector (HOG + HOF + MBH) + SVM 94.3 81.0 70.9
Action-vector (HOG + HOF + MBH) + PLDA 95.1 81.1 71.9

Unsupervised
Action-vector fusion (HOG + HOF + MBH) + cosine 91.1 79.3 67.8

corresponding T-matrices are trained for all the three features.
The action-vectors for untrimmed videos in THUMOS14 are
extracted using the best performing UAM (2048 mixtures
for all features) and corresponding ~T -matrix on the UCF101
dataset. This is done in accordance to the THUMOS14 chal-
lenge where the UCF101 dataset is used as the training set for
the THUMOS14 test clips [11].

Table III compares the classification performance of the pro-
posed method with the state-of-the-art techniques used for ac-
tion recognition on the UCF101, HMDB51, and THUMOS14
datasets. Some techniques like [39], [14], [25], [22] use long-
term features to represent the entire video with a single feature.
Other techniques use aggregation models like bag-of-words
(BoW) [35], Fisher vector [10], [24], [31], [2] or VLAD [16].
Notably, many of the methods augment CNN features with
iDT features to attain the high classification accuracy [25],
[31]. Some recent methods either use attention [18], saliency
[36], or weak supervision [32] to classify untrimmed clips.
Among the methods that use long-term features, temporal
linear embedding (TLE) networks [4] perform the best on
UCF101. The proposed action-vectors produces comparable
performance to TLE on UCF101 and comfortably outperforms
it by 10% on the slightly more challenging HMDB51 (accord-
ing to [13]).

For the untrimmed THUMOS14 dataset in particular, the
state-of-the-art approaches [10], [30], [10] use fixed-sized
windows to process untrimmed videos. Fixed-sized windows
cannot handle high variations in the duration of actions. To
mitigate this issue, fixed-sized windows of different tempo-
ral resolutions are used on the same clip their results are
aggregated for the final decision [31]. Such approaches add
to computational overhead as the same video is processed
multiple times whereas in the proposed approach we compute
a single action-vector for the entire video which outperforms
these methods.

D. Analysis on untrimmed videos

In Fig. 6, we show the similarity between action-vectors
obtained for the same action in two different datasets i.e.
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UCF101 and THUMOS14. The reason behind the similarity
is that the total variability matrix T can faithfully reconstruct
only the foreground actions that have been learned through
the UAM and not the arbitrary background movements. This
is important as the average length of the clips in THUMOS14
is around 3 minutes, but the duration of relevant actions is
only around 4-5 seconds.

Fig. 6. t-SNE plot shows similarity in action-vectors of UCF101 and THU-
MOS14 across two classes - WritingOnBoard (UCF101, ) (THUMOS14, )
and WallPushups (UCF101, ) (THUMOS14, )

In order to understand how action-vectors enhance the
mixtures belonging to the attributes of a specific action, an
untrimmed clip containing the action, blowing out candles
is presented in the form of an entropy plot of UAM poste-
riograms in Fig. 7. It is observed that during the action of
interest, the entropy value is low and this denotes that only
a few of the UAM mixtures get activated. These mixtures
represent the attributes which form a part of the action. Apart
from the actions of interest, the video also contains activities
which are not in the 101 actions of UCF101 and have not been
modeled by the UAM. During background activities of this
kind, higher entropy values are observed which shows that an
arbitrarily large number of mixture components get activated
simultaneously. Behavior of this kind is expected from any
action that is not modeled by the UAM because in that case
there will be no particular set of attributes (components) which
are affiliated with the action. It can also be observed that the
entropy values change gradually when the clip transitions from
the action to the background or vice-versa which is a result of
MBH features being extracted over a period of 15 frames.
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Fig. 7. Entropy plot for the number of UAM posteriors (using MBH features)
for an untrimmed clip of blowing candles in THUMOS14.

V. CONCLUSION

In this paper, we presented a technique to develop a
compact and low-dimensional representation of actions called
action-vectors. We first constructed a universal attribute model
(UAM) for all the different actions across datasets. Following
this, we used MAP adaptation on the UAM to retrieve super
action-vector (SAV) representation for each clip. Subsequently,
we employed factor analysis for obtaining action-vectors from
SAV. The action-vector extraction process does not require
labels and performs on-par with supervised techniques on both
trimmed datasets HMDB51 and UCF101. Compared to exist-
ing fixed dimensional representations like Fisher vectors and
VLAD, action-vectors perform better at action classification.
The efficacy of action-vectors for classification of untrimmed
videos of THUMOS14 shows that it is suitable even when
the action is present for a relatively small amount of time
in the entire clip. In addition, we also demonstrated state-of-
the-art performance with intermediate latent dimension fusion
of action-vectors using PLDA. In future, we would like to
incorporate sequence information by replacing the UAM with
a time-dependent hidden Markov model or recurrent neural
networks.
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