
1

DiP-SVM : Distribution Preserving Kernel
Support Vector Machine for Big Data

Dinesh Singh, Student Member, IEEE , Debaditya Roy, Student Member, IEEE and C.
Krishna Mohan, Member, IEEE

Abstract—In literature, the task of learning a support vector machine for large datasets has been performed by splitting the dataset
into manageable sized “partitions” and training a sequential support vector machine on each of these partitions separately to obtain
local support vectors. However, this process invariably leads to the loss in classification accuracy as global support vectors may not
have been chosen as local support vectors in their respective partitions. We hypothesize that retaining the original distribution of the
dataset in each of the partitions can help solve this issue. Hence, we present DiP-SVM, a distribution preserving kernel support vector
machine where the first and second order statistics of the entire dataset are retained in each of the partitions. This helps in obtaining
local decision boundaries which are in agreement with the global decision boundary, thereby reducing the chance of missing important
global support vectors. We show that DiP-SVM achieves a minimal loss in classification accuracy among other distributed support
vector machine techniques on several benchmark datasets. We further demonstrate that our approach reduces communication
overhead between partitions leading to faster execution on large datasets and making it suitable for implementation in cloud
environments.

Index Terms—Distributed SVM, Big Data, Distribution Preserving Partitioning, Distributed Computing, Clustering.

F

1 INTRODUCTION

SUPPORT vector machine is based on the statistical learn-
ing theory developed by Vapnik et al. [1]. The core of

training a support vector machine (SVM) involves solving
a quadratic programming problem which demands more
computing power for large datasets. Quadratic program-
ming is a type of mathematical optimization problem which
optimizes a quadratic function of several variables sub-
ject to linear constraints on these variables. The quadratic
programming problem solver separates support vectors
from the rest of the training data. For moderately sized
datasets, support vector machine (SVM) has long been used
extensively for classification and regression problems in
many areas like genomics, e-commerce, computer vision,
cyber security, etc. due to its generalization capabilities.
However, classification of high volume data in the form
of text, images or videos into meaningful classes using
support vector machine is quite challenging [2]. Various
implementations of SVM are available such as LIBSVM [3],
LS-SVM, SVMlight [4] and so on. LIBSVM is the most
popular among them because it utilizes a highly optimized
quadratic solver. However, training a kernel SVM is still
difficult for large datasets where the sample size reaches
more than one million instances. The bottleneck stems from
the high computational cost and memory requirements of
computing and storing the kernel matrix, which in general is
not sparse. The time complexity for standard SVM training
is O(n3) and the space complexity is O(n2), where n is
the size of training dataset [5]. This calls for a distributed
approach for applying support vector machine for large

• D. Singh, D. Roy and C. Krishna Mohan are with the Visual Learning &
Intelligence Group (VIGIL), Department of Computer Science and Engi-
neering, Indian Institute of Technology, Hyderabad, TS, 502205 India e-
mail: (cs14resch11003@iith.ac.in, cs13p1001@iith.ac.in, ckm@iith.ac.in).

datasets.
Distributed environments like a high-performance com-

puting [6] and cloud clusters [7] are widely used for solving
data-intensive and time-consuming problems. However, se-
quential minimal optimization (SMO) [8], the most success-
ful quadratic programming (QP) solver used extensively in
SVM implementations cannot leverage the benefits of these
distributed environments because there is high dependency
among the parameters used for optimization. So far, there
is no true parallel or distributed algorithm in literature
that solves the constrained quadratic programming problem
used to identify the support vectors in the training data.
The existing state-of-the-art approaches for approximate
distribution of SVM training suffer from significant loss of
accuracy mainly because smaller partitions do not retain
the distribution of the entire dataset, which results in local
separating hyperplanes that may be completely contradic-
tory to the global separating hyperplane. Further, few of
the existing approached [9] do not rely on local support
vectors and instead transfer all the data points to next level
which leads to very high communication overhead. The lo-
cal support vectors (LSVs) are the support vectors resulting
from individual SVM training over the smaller partitions
(i.e support vectors from local SVM models), while global
support vectors (GSVs) are the support vectors of final SVM
model obtained by training over assembled local support
vectors.

We hypothesize that the twin issues of loss of accu-
racy and high communication overhead can be effectively
addressed using a distribution preserving partitioning ap-
proach which retains the first and second order statistics
(mean and variance) of the entire data in each of the
partitions. To achieve this goal, we propose DiP-SVM, an
efficiently distributed SVM approach for big data which is

2

also well suited for training in the cloud environment due to
its low communication overhead. Our approach emphasizes
on the twin goals of minimal loss of classification accuracy
and low communication overhead. At first, distribution pre-
serving data partitioning approach is used to split the data
in such a way that each subset is a sparse (i.e. distribution
preserving) representation of the entire dataset. As these are
reasonably sized partitions, sequential SVMs are trained on
these partitions over multiple virtual machines (VMs) using
enhanced version of the algorithms used in [9], [10], [11],
[12]. We demonstrate that this approach reduces the loss of
accuracy and produces only relevant local support vectors
which are in agreement with the global separating hyper-
plane. Further, transferring only these relevant points to
next level reduces the communication overhead on several
large datasets like kddcup99, MNIST8M, etc.

The rest of the paper is organized as follows. Section 2
presents related work. The details of DiP-SVM are presented
in section 3. Section 4 discusses the experimental setup and
results. We conclude in section 5 with future directions.

2 RELATED WORK

Many parallel and distributed implementations of SVM
have been proposed in the literature [2], [13]. Broadly, we
can group them into four categories, namely, parallel [14],
distributed [15], [16], heterogeneous (MapReduce based)
[10], [11], [17], [18], [19], [20], and GPU based [21]. In [22],
Vazquez et al. propose a distributed support vector machine
in which local support vectors (LSVs) are calculated on each
subset. The set of global support vectors (GSVs) is the union
of all the LSVs. Then the GSVs are merged with each train-
ing subset and the process is repeated until convergence
(i.e. no change in the empirical risk). However, the size of
the subsets increases with the number of iterations which
contributes to increased learning time. Also, at each time,
LSVs are collected from each node to form the GSVs and
then these GSVs are broadcasted to all the nodes which
further increases the communication overhead. This also
results in high redundancy among LSVs across all the nodes.
Similar approaches have been proposed by Lu et al. [16]
for strongly connected networks (SCNs). Catak et al. [17]
proposed a MapReduce-based implementation of the same
methodology in the cloud environment in order to improve
scalability and parallelism of training phase by splitting
training dataset into smaller subsets as shown in Fig. 1.

Fig. 1. Schematic of Cloud SVM architecture [17].

In [23], Graf et al. proposed cascade SVM, where the
training samples are divided hierarchically into subsets and
the training starts at the top nodes where each subset is then
trained a sequential SVM (referred to as a subSVM). The
support vectors of two smaller subSVMs are then passed
down as input to next level subSVM and this process is
repeated until we reach the final SVM at the bottom where
the global SVM model is obtained as shown in Fig. 2. Sun
et al. [10] implemented the same cascade SVM architecture
with the help of MapReduce and Twister. A similar ap-
proach is taken by Vazquez et al.’s [22], where the size of
training data at each node increases with each subsequent
iteration causing high communication overhead. The com-
munication overhead is the amount of data transfer over the
communication network from one node to another during
the training process.

Fig. 2. Training flow of cascade SVM [23].

Hsieh et al. [9] instead propose a divide-and-conquer
(DC-SVM) approach to solve the kernel SVM problem. DC-
SVM is similar to cascade SVM with two major differences:
1) It usesK-means clustering to partition the dataset instead
of sequential or random partition. 2) It passes all of the
training vectors and solutions from one level to next level,
instead of only SVs. However, the disadvantage of DC-
SVM is that at the last level, it operates a single SVM on
the whole training dataset which is essentially quite slower
and non-scalable for larger datasets. A similar approach is
also proposed by Alham et al. [11] [19] [20] for large scale
image annotations using MapReduce. The entire training
data is partitioned into smaller subsets and each of these
subsets are allocated to separate Map tasks. Each Map task
optimizes the partition in parallel. The outputs, Lagrangian
multiplier α arrays and bias b values, obtained from each
Map task are then joined in the Reduce task in order to
produce the global Lagrangian multiplier α array and the
average bias b. Even though this model reduces training
time, the blind partitioning of the sample dataset results in
different classification performance with different initializa-
tion for the partitions.

To reduce the communication involved in the methods
discussed above, You et al. [12] propose a communication
avoiding SVM (CA-SVM) for shared memory architecture
by combining several approaches like the cascade SVM,
DC-SVM etc. Basically, a divide and conquer filter selects
the LSVs and their corresponding Lagrange multipliers α

3

values from one level in order to initialize next level La-
grange multipliers α in cascade SVM which results in faster
convergence. The partitions are obtained as the clusters re-
sulting from a balanced k-means clustering algorithm. This
approach performs better when the dataset contains well-
separated clusters and each cluster contains points from the
corresponding classes. However, its performance degrades
in the case of overlapping clusters and also if a cluster
contains examples belonging to only one class.

Yu et al. [24] make an attempt to train the SVM on a large
dataset which is suitable only for well separated low dimen-
sional data. This method uses a hierarchical clustering based
tree called CF-tree where data at the root of the tree is first
used to train an initial model which is refined successively.
This refinement is carried out at each subsequent lower level
by considering the clusters near to the decision boundaries
in the upper level to train an SVM from the beginning.
This is in stark contrast to our proposed approach where
the Lagrangian multipliers of the SVM in a lower level are
initialized from the upper level Lagrangian multipliers that
is empirically shown to help in the faster convergence of the
SVM.

In our proposed DiP-SVM, with distribution preserving
partitioning approach, we aim to address the performance
degradation issue in overlapping clusters. To reduce com-
munication overhead, we only pass LSVs as in [23]. We
show that if the LSVs are in strong agreement with the
GSVs, this methodology works without any significant loss
of accuracy.

3 DETAILS OF PROPOSED APPROACH

The proposed DiP-SVM approach operates in two distinct
phases, namely, distribution preserving partitioning (DPP)
phase and distributed learning phase. In the DPP phase, the
entire dataset is divided in such a way that the first and
second-order statistics of the dataset are preserved in every
partition. In the distributed learning phase, each partition is
trained in parallel within a distributed environment and the
global decision boundary is obtained by hierarchically com-
bining local decision boundaries. The detailed discussion of
these two phases is given below:

3.1 Distribution Preserving Partitioning (DPP) Phase

This phase revolves around balanced partitioning of data
points while preserving the statistical properties of the entire
dataset. A dataset D consisting of N data points can be
expressed as

D = {(xn, yn)}Nn=1, (1)

with mean µD and variance ΣD. In this phase, we divide
D into P balanced partitions D1,D2, ...,DP , each of size
Np =

⌈
N
P

⌉
such that the pth partition can be expressed as

Dp = {(xπ(n), yπ(n))}
Np

n=1, (2)

with mean µDp
and variance ΣDp . The mapping function

π(n) gives the corresponding index in D of a point at index
n in Dp. These partitions are created in such a manner that
the first and second order statistics (mean and variance) of

each partition is approximately close to the given dataset D
which can be expressed as the following objective functions:

min
P∑
p=1

||µDp
− µD|| and (3)

min
P∑
p=1

||ΣDp
−ΣD||. (4)

Also, we want each partition to retain the ratio of the
number of points in each class as in the complete dataset
D. So, we use the partitioning approach separately on each
of the constituent classes Dc instead of D. To formalize this
idea more clearly, we represent D as a collection of C classes:

D = {Dc}Cc=1, (5)

where the cth class contains Nc data points. The research
work proposed in [25] attempts to achive similar objective,
however, this method is highly dependant on the initial sets
chosen and thus may lead to partitions whose distribution
may not be balanced. In order to solve the objective func-
tions stated in Equation 3 and Equation 4, we employ K-
means clustering on each of the classes separately whose
objective is defined as

argmin
Dc

K∑
k=1

∑
x∈Dck

‖x− µck‖
2
, (6)

where K is the number of clusters, Dck is the kth cluster
of the cth class and µck is the mean of points in Dck. From
each cluster Dck having Nck points, P balanced partitions
{Dp

ck}Pp=1 are created, each containing Np
ck =

⌈
Nck

P

⌉
points

selected according to uniform distribution. This is carried
out for all the C classes using Algorithm 1. The flowchart
for this process is shown in Fig. 3.

Fig. 3. The flowchart of proposed distribution preserving partitioning
(DPP).

4

Algorithm 1 Distribution Preserving Partitioning (DPP)
Input:
D: {(xn, yn)}Nn=1, xn ∈ Rd, yn ∈ {c = 1, 2, ..., C}
N : #instance (vectors) in D
d : #dimensions
C : #classes in the dataset
P : #partitions
K : #clusters
U(Np

ck, Nck) : generate Np
ck random indexes in range

[1−Nck]

Output:
{Dp}Pp=1: partitions

1: {Dc}Cc=1 ← groupClasswise(D,K); //where Dc is the
set of points belongs to cth class.

2: for c = 1→ C do
3: {Dck}Kk=1 ← kmeans(Dc,K); //where Dck is the

kth cluster of the cth class.
4: for k = 1→ K do
5: for p = 1→ P do
6: Np

ck ←
⌈
Nck

P

⌉
;

7: Dp
ck ← Dck[U(Np

ck, Nck)]
8: Dp ← Dp ∪Dp

ck;
9: Dck ← Dck −Dp

ck;
10: Nck ← Nck −Np

ck;
11: end for
12: end for
13: end for
14: return {Dp}Pp=1;

(A) (B)

Fig. 4. (A) MNIST [26] dataset containing 60,000 samples. (B) A sample
partition generated using Algorithm 1. Colors represent various classes.
Best viewed in color.

Fig. 4, gives an example of entire dataset D and one
of its partition Dp obtained by using Algorithm 1 for the
MNIST dataset. It can be observed that partition Dp is a
sparse representations of the entire training data set D.
Also, the statistical properties of the partitions {Dp}Pp=1

are approximately close to the statistical properties of entire
dataset D. This can be formally stated as below:

From the maximum likelihood estimation (MLE), it is
intuitive that mean and variance of the entire dataset D
containing N samples (N is very large) will be approxi-
mately close to mean and variance of its partition Dp for
sufficiently large size Np, i.e. µDp

u µD and ΣDp u ΣD.
In order to justify this statement, we empirically show that

for K number of clusters (K is large), mean and variance
of partitions obtained using Algorithm 1 are approximately
close to the entire dataset.

10 20 50 100 500 1000

K

57.985

57.987

57.989

57.991

57.993

57.995

||
µ
D
-
µ
D

p

||

10 20 50 100 500 1000

K

26.305

26.307

26.309

26.311

26.313

26.315

||
µ
D
-
µ
D

p

||

(A) gisette (B) cifar

10 20 50 100 500 1000

K

113.205

113.225

113.245

113.265

113.285

113.305

113.325

||
Σ

D
-
Σ

D
p

||

10 20 50 100 500 1000

K

62.60

62.61

62.62

62.63

62.64

62.65

62.66

||
Σ

D
-
Σ

D
p

||

(C) gisette (D) cifar

Fig. 5. Comparison of deviation in the means (A & B) and variances (C &
D) of partitions from the mean and variance of the full dataset on gisette
and cifar dataset for different values of K.

Fig. 5 presents the effect of various values of K on
different datasets. It can be observed that the high values
of K reduces the deviation in the means and variances of
partitions from the the mean and variance of full dataset.
Empirically, it was found that over all datasets, setting a
large value of K(≈ 1000) caused the least distortion in
mean and variance between the resulting partitions and the
original dataset leading to better distribution preservation.
One such result is shown in Table 1 where a comparison
is made between the mean and variance of the partitions
formed using the proposed approach and random partition-
ing approach [10], [11] on the kddcup99 dataset (K = 1000
and P = 100). It can be seen that the partitions formed using
DPP are up to 103× closer to the mean and variance of the
entire dataset than the random partitions (all distances are
scaled by the product of norms in order to show the relative
differences).

TABLE 1
Distortion in the Distributions of Partitions for Random Partitioning vs.
proposed Distribution Preserving Partitioning on kddcup99 Dataset

Min Mean±Deviation Max
Random ||µD∗

p
− µD|| 1.76e-06 1.21e-05±9.15e-06 4.84e-05

Random ||ΣD∗
p
−ΣD|| 1.14e-05 4.63e-05±2.78e-05 1.83e-04

Proposed ||µDp
− µD|| 7.53e-08 1.10e-07±1.99e-08 1.60e-07

Proposed ||ΣDp −ΣD|| 1.02e-06 1.32e-06±1.90e-07 1.78e-06

Fig. 6 & 7 show the comparison of classification per-
formance for individual partitions and the average clas-
sification of all the partitions formed by using random
partitioning and distribution preserving partitioning (DPP)
on the datasets ijcnn1 and kddcup99. The results clearly

5

show the superiority of DPP over random partitioning.
On the ijcnn1 dataset, all the partitions (partition number
denoted on x-axis of both Fig. 6 and Fig. 7) generated using
random partitioning produce lower classification accuracy
than the partitions generated using DPP. This trend can also
be observed on the kddcup99 dataset as the classification
performance of each partition produced using DPP is almost
consistent while the partitions generated using random
partitioning shows high deviation (see Fig. 7). These results
indicate that DPP causes each partition to contain either
global support vectors or points which are very close to the
global support vectors.

1 2 3 4 5 6 7 8 9 10 Avg.
91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

P
e
rf

o
rm

a
n

c
e
 o

f
C

la
s
s
if

ic
a
ti

o
n

 (
%

)

Random

DPP

Fig. 6. A comparison of classification performance (%) for the partitions
generated using random partitioning and proposed distribution preserv-
ing partitioning (DPP) for ijcnn1 dataset.

1 2 3 4 5 6 7 8 9 10 Final
98.0

98.5

99.0

99.5

100

P
e
rf

o
rm

a
n

c
e
 o

f
C

la
s
s
if

ic
a
ti

o
n

 (
%

)

Random

DPP

Fig. 7. A comparison of classification performance (%) for the partitions
generated using random partitioning and proposed distribution preserv-
ing partitioning (DPP) kddcup99 dataset.

3.2 Distributed Learning Phase
After data partitioning, we use a modified cascade SVM
for distributed learning of support vectors. This learning
approach differs from the usual cascade SVM [23] in:

1) The proposed framework uses distribution preserv-
ing partitioning (DPP) approach given in Algo-
rithm 1, to partition the dataset instead of sequen-
tial/random partition as used in cascade SVM or
clusters as partitions used in DC-SVM [9] and CA-
SVM [12]. Due to this, the local support vectors
(LSVs) in each of the partitions are shown to be
in agreement to the global support vectors (GSVs)
as shown in Fig. 9, which helps in maintaining
classification accuracy.

2) The proposed approach passes only relevant train-
ing vectors R

(l)
p for partition p from level l to l + 1

instead of only LSVs as in cascade SVM or all the
training vectors as in DC-SVM. Relevant training
vectors are those vectors whose distance from the
local hyperplane is less than threshold Tγ . This
results in a significant reduction in communication
overhead than DC-SVM.

3) As the Lagrangian multipliers α(l+1) in the next
stage are initialized from previous level Lagrangian
multipliers α(l) similar to DC-SVM, the method
achieves early convergence. Also, the number of
Lagrangian multipliers α(l) passed from level l to
level l + 1 is significantly lower than DC-SVM.

Start

{𝐷𝑝}, 𝑇𝛾 , 𝑃, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑙 0

𝐹𝑜𝑟 𝑝 = 1…𝑃

𝑺𝑝
(𝑙)
svm_train(𝑫𝑝

(𝑙)
, 𝑝𝑎𝑟𝑎𝑚𝑠)

Is
P=1?

S𝑹1
(𝑙)

return S

𝐹𝑜𝑟 𝑝 = 1…𝑃

𝜸𝑝
(𝑙)
 svm_score(𝑺𝑝

(𝑙)
, 𝑫𝑝

(𝑙)
)

𝐑𝑝
(𝑙)
𝑫𝑝

(𝑙)
(𝜸𝑝

(𝑙)
> 𝑇𝛾)

End

If

p>
𝑃

2
?

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑹
𝑝+

𝑃
2

(𝑙)
𝑓𝑟𝑜𝑚 𝑉𝑀

𝑝+
𝑃
2

𝑫𝑝
(𝑙+1)

 combine 𝑹𝑝
(𝑙)
, 𝑹

𝑝+
𝑃
2

(𝑙)

𝑃
𝑃

2
, 𝑙 𝑙 + 1

𝑆𝑒𝑛𝑑𝑺𝑝
(𝑙)

𝑡𝑜 𝑉𝑀
𝑝−

𝑃
2

yes

yes

no

no

Fig. 8. Flow chart of DiP-SVM training phase.

For each partition Dp obtained using Algorithm 1, a
sequential SVM model is trained independently at level l
(=0 initially) which results in local support vectors S

(l)
p . The

sequential SVM can be used for each of these partitions
separately as the sequential minimal optimization (SMO)
rapidly converges for small datasets. The sequential min-
imal optimization (SMO) is an algorithm for solving the
quadratic programming (QP) problem that arises during the
training of support vector machines as shown in Equation 7.
At level l for pth partition, SMO solves the following dual
objective function as defined in [1]:

max
α

(l)
p ,b

(l)
p

Np∑
i=1

αi −
1

2

Np∑
i=1

Np∑
j=1

αiαjyiyjK(xTi ,x), (7)

subject to conditions:

1)
Np∑
i=1

αiyi = 0, and

6

Algorithm 2 DiP-SVM Learning
Input:
D : {(xn, yn)}Nn=1, xn ∈ Rd, yn ∈ {−1,+1}
N : #instance (vectors) in D
d : #dimensions
P : #partitions
K : #clusters
Tγ :Threshold
params : {KernelFunction,KernelParameters}

Output:
S : Global support vectors
α : Global Lagrangian Multipliers

1: {Dp}Pp=1 ← DPP (D, P, K);
2: Level l← 0;
3: α

(l)
p ← 0;

4: while true do
5: for p = 1→ P{Parallelly over cluster} do
6: {α(l)

p , b
(l)
p } ← svm train(D

(l)
p ,α

(l)
p , params);

7: S
(l)
p ← D

(l)
p {α(l)

p > 0};
8: if P = 1 then
9: S← S

(l)
1 ;

10: return S;
11: else
12: γ

(l)
p ← svm score(S

(l)
p ,α

(l)
p , b

(l)
p , D

(l)
p);

13: R
(l)
p ← D

(l)
p (γ

(l)
p ≥ Tγ);

14: if p > dP/2e then
15: Send {R(l)

p ,α
(l)
p } to V Mp−dP/2e;

16: else
17: Receive

{R(l)
p+dP/2e,α

(l)
p+dP/2e} from VMp+dP/2e;

18: D
(l+1)
p ← combine(R

(l)
p , R

(l)
p+dP/2e);

19: α
(l+1)
p ← combine(α

(l)
p , α

(l)
p+dP/2e);

20: end if
21: end if
22: end for
23: P ← dP/2e
24: l← l + 1;
25: end while

2) 0 ≤ αi ≤ C ,

where, αi ∈ α(l)
p , {(xi, yi)}

Np

i=1 ∈ D
(l)
p , and b

(l)
p is the bias.

At pth virtual machine (VM), the local support vectors S
(l)
p

are those points having αi > 0 i.e.

S(l)
p = D(l)

p {α(l)
p > 0}, (8)

α(l)
p = α(l)

p {α(l)
p > 0}. (9)

The distance γxi
of each point (xi, yi) ∈ D

(l)
p from the

hyperplane is calculated as

γxi
=

∑
(x,y)∈S(l)

p ,α∈α(l)
p

(
αyK(xT ,xi) + b(l)p

)
. (10)

All those points having γxi
> Tγ are considered as relevant

vectors R
(l)
p .

R(l)
p = D(l)

p {γ(l)
p ≥ Tγ}, (11)

α(l)
p = α(l)

p {γ(l)
p ≥ Tγ}. (12)

Here, Tγ is the threshold on distance from the local hyper-
plane. For Tγ = 1, only vectors which are on or within
the margin are selected. If Tγ < 1, the number of points
transferred over the network reduces but it may increase
the loss of accuracy as some key points may be missed. For
Tγ > 1, more points than the points which are on or within
the margin are passed over the network which may reduce
the loss of accuracy incurred.

These relevant vectors R
(l)
p at level l are then collected

and used as training data to learn an SVM model in the next
level. The training data for partition p at level l+ 1 (D(l+1)

p)
and the Lagrangian multipliers α(l+1)

p are calculated as
follows:

D(l+1)
p = {R(l)

p , R
(l)
p+dP/2e}, (13)

α(l+1)
p = {α(l)

p ,α
(l)
p+dP/2e}. (14)

This process is repeated L − 1 times. Finally, at level l =
L, it produces the final model which constitutes the global
support vectors S, global Lagrangian multipliersα, and bias
b. This is explained in Algorithm 2. Fig 8 gives the flowchart
of the DiP-SVM training process. We make adjustments to
Tγ to achieve a trade-off between communication overhead
and loss of accuracy.

3.3 Empirical Evaluation
To show that the LSVs obtained from DiP-SVM are very
close to the global support vectors in comparison to other
recent methods for partitioning in [9], [12], we consider
two cases that can arise: 1) data that can be well clustered
and 2) data that has considerable overlap. In the first case,
we use a synthetic dataset, which is a mixture of four
2D Gaussian distributions and is well separable into two
clusters. In Fig. 9, we can see the two clusters obtained by
the methods in [9], [12] contain data from both the classes.
The local support vectors obtained from both the partitions
are dissimilar causing the local decision hyperplanes to
completely contradict each other. The final global decision
hyperplane also shows high deviation from the decision
hyperplane produced using a sequential SVM. On the other
hand, the proposed DiP-SVM method produces local and
global decision hyperplanes which show high correspon-
dence to each other as well as to the decision hyperplane
of sequential SVM (cosine similarity ≈ 1). This shows the
suitability of the DiP-SVM over the existing clustering-based
methods in [9], [12] for well-separated clusters.

The second case is more realistic as the features obtained
from most of the datasets create overlapping clusters for
distributed processing. This is demonstrated in Fig. 10,
where clustering based partitioning schemes are not able
to produce isolated clusters. In this experiment, we use a
synthetic dataset, which is a mixture of four 2D Gaussian
distributions and has significant overlap between the two
classes. In such a case, clustering-based methods in [9], [12]
generate partitions which produce LSVs that are in strong
disagreement (cosine similarity ≈ 0) to each other as well

7

−6 −4 −2 0 2 4 6 8 10 12
−5

0

5

10

(A)−Existing Clustering Based Approach

−1

1

Support Vectors

−6 −4 −2 0 2 4 6 8 10 12
−5

0

5

10

(B)−Proposed DiP−SVM Approach

−1

1

Support Vectors

Local SVM−2

Local SVM−1

Local SVM−2

Global SVM

Sequential SVM

Local SVM−1

Global SVM

Sequential SVM

Fig. 9. Comparison of DiP-SVM with the existing clustering based methods in [9] [12] for local and global solutions on well separable clusters
having points from both the classes. (Best viewed in colors)

−4 −2 0 2 4 6 8
−4

−2

0

2

4

(A)−Sequential SVM

−1
1
Support Vectors

−4 −2 0 2 4 6 8
−4

−2

0

2

4

(B)−Local SVM on Cluster−1

−4 −2 0 2 4 6 8
−4

−2

0

2

4

(C)−Local SVM on Cluster−2
Existing Clustering Based Approach

Clustering Based Approach

−4 −2 0 2 4 6 8
−4

−2

0

2

4

(D)−Global SVM

−4 −2 0 2 4 6 8
−4

−2

0

2

4

(E)−Local SVM Partition−1

−4 −2 0 2 4 6 8
−4

−2

0

2

4

(F)−Local SVM Partition−2
Proposed DiP−SVM Approach

−4 −2 0 2 4 6 8
−4

−2

0

2

4

(G)−Global SVM

Fig. 10. Comparison of DiP-SVM with the existing clustering based methods in [9] [12] for local and global solutions using linear kernel. (Best
viewed in colors)

as to sequential SVM as shown in Figures. Even if the
partition contains points from both the classes (green star
and red plus), most of the support vectors obtained from
the two clusters do not contribute to global support vectors.
Further, the points which would have contributed to the
GSVs according to the sequential SVM implementation as
shown in Fig. 10-(D) are already eliminated at the local level.
Fig. 10-(E),(F)&(G) also demonstrate the suitability of the
DiP-SVM over the the existing clustering-based methods
in [9], [12] on the same dataset using linear kernel. The

local and global decision hyperplanes produced by DiP-
SVM show high cosine similarity to each other as well as
to the decision hyperplane produced by sequential SVM
(cosine similarity u 1).

The case for DiP-SVM grows stronger in a case of over-
lapping clusters as it not only produces decision boundaries
at the local level which are in strong agreement among
themselves but also preserves the LSVs which contribute
to the global decision boundary. Fig. 11 demonstrates the
suitability of the DiP-SVM over the existing clustering-based

8

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(A)−Sequential SVM

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(B)−Local SVM on Cluster−1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(C)−Local SVM on Cluster−2
Existing Clustering Based Approach

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(D)−Global SVM

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(E)−Local SVM on Partition−1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(F)−Local SVM on Partition−2
Proposed DiP−SVM Approach

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(G)−Global SVM

−1

1

Support Vectors

Hyperplane

Fig. 11. Comparison of DiP-SVM with the existing clustering based methods in [9] [12] for local and global solutions using non-linear kernel. (Best
viewed in colors)

methods in [9], [12] for overlapping clusters using Gaussian
kernel. In order to show the effectiveness of the selected
local SVs at any level we use the relevant SV index defined
as

Relevant SV Index =
|Sl ∩ Sl+1|
|Sl|

.

This index measures the number of SVs at level l which are
also considered as SVs at level l + 1.

In this experiment, we use a synthetic dataset, which is
a mixture of four 2D Gaussian distributions. We compare
the relevant SV index of the local SVs produced by various
clustering based approaches with the GSVs produced at the
last step as shown in Fig 11. It can be seen in Fig 11(B),(C)
and (D) that a large number of LSVs produced by the
existing clustering based SVMs [9], [12] are not included in
GSVs. This makes the relevant SV index between final GSVs
and the LSVs quite low (< 0.5). On the other hand, the
LSVs produced by DiP-SVM as shown in Fig 11(E),(F) and
(G) are in close agreement. A high relevant SV index of u 1
confirms this proposition. Further, the GSVs produced in
Fig 11(G) is closer to the sequential SVM based SVs (relevant
SV index of u 1) than the GSVs produced in Fig 11(D).

4 EXPERIMENTAL EVALUATION

In literature, most of the existing distributed SVM imple-
mentations are based on OpenMPI [6] or Hadoop. In our
approach, we use OpenMPI architecture which is a default
standard for multi-core systems programming and makes it
suitable for comparison with other distributed approaches
like Hadoop. OpenMPI program can easily be integrated
into the cloud environment using tools like StarCluster [27].
StarCluster is an open source cluster computing toolkit
for Amazons EC2 [7] released under the LGPL license.

StarCluster has been designed to automate and simplify the
process of building, configuring, and managing clusters of
virtual machines on Amazons EC2 cloud. StarCluster allows
anyone to easily create a cluster computing environment
in the cloud, suited for distributed and parallel computing
applications and systems. The local SVMs as well as the
global SVMs were trained using LIBSVM [3].

4.1 Results and Discussion

In order to evaluate the proposed approach, we conducted
experiments on several real-world datasets from the do-
mains like computer vision, cyber security, economics, text
classification, etc. Table. 2 gives the statistics for each of
these datasets.

TABLE 2
Details of the Datasets Used

Dataset Application Domain #Dim. #Train #Test
gisette [12] Digit Classification 5000 6000 1000
adult [12] Economics 123 32561 16281
ijcnn1 [12] Text Classification 22 49990 91000
cifar [9] Visual Recognition 3072 50000 10000
webspam [9] Spam Detection 254 280000 70000
covtype [9] Forest Classification 54 464810 116202
kddcup99 [9] Intrusion Detection 123 4898431 311029
mnist8m [9] Digit Classification 784 8000000 100000
url URL Classification 2396130 3131961 100000

Fig. 12 shows the comparison of classification perfor-
mance of the proposed DPP-based partitioning with ex-
isting random partitioning approach. Fig. 13 presents the
comparison of training times taken by the proposed DPP-
based distributed SVM with random partitioning based
distributed SVM. The results in these plots clearly indicate
that the proposed distributed SVM is able to maintain its

9

TABLE 3
Comparison of Classification Performance (in %) and Average Runtime (in Sec.)

Method Parameters LIBSVM DC-SVM CA-SVM Proposed Change
Dataset C γ B h Acc. Time Acc. Time Acc. Time Acc. Time Acc. Scale
gisette 1 2e-4 2 1 97.70 125 97.60 299 96.00 81 97.90 29 +0.20 4×
adult 32 2−7 2 2 85.08 761 84.79 78 83.00 121 84.01 58 −1.07 13×
ijcnn1 32 2 2 5 98.69 20 98.53 318 90.16 121 98.61 3 −0.08 7×
cifar 8 2−22 2 4 89.50 13892 80.15 22330 63.94 2143 89.49 2378 −0.01 6×
webspam 8 32 2 10 99.28 15056 99.28 10485 99.11 3093 99.15 1942 −0.13 8×
covtype 32 32 2 10 96.01 31785 95.95 17456 75.04 34025 93.07 3919 −2.94 8×
kddcup99 256 0.5 2 10 99.57 37684 99.49 23346 NA NA 99.53 3170 −0.04 12×
mnist8m 1 2−21 2 10 99.91 ≈ 106 99.91* NA NA NA 99.99 99874 +0.08 11×
url 100 3e-7 2 10 96.75 486559 NA NA NA NA 96.88 53374 +0.13 9×

Acc.-Accuracy (%), Change-with respect to LIBSVM, NA - Not Available, *taken from [9]

1(2) 2(4) 3(8) 4(16) 5(32) 6(64) 7(128)
97.0

97.2

97.4

97.6

97.8

98.0

98.2

98.4

Level of Distribution (#Nodes)P
e
rf

o
rm

a
n

c
e
 o

f
C

la
s
s
if

ic
a
ti

o
n

 (
%

)

DPP

Random

Fig. 12. Level wise comparison of classification performance (%) for
random partitioning and distribution preserving partitioning (DPP) for
ijcnn1 dataset.

1(2) 2(4) 3(8) 4(16) 5(32) 6(64) 7(128)
10

15

20

25

30

35

40

Level of Partition

T
ra

in
in

g
 T

im
e
 (

S
e
c
o

n
d

s
)

DPP

Random

Fig. 13. Level wise comparison of training time for random partitioning
and distribution preserving partitioning (DPP) for ijcnn1 dataset.

performance at the various level of distribution while the
performance of existing random partitioning degrades at
higher levels of distribution.

Table 3 gives the performance comparison of DiP-SVM
with Sequential LIBSVM, DC-SVM [9], CA-SVM [12] on the
datasets as listed in Table. 2. All results are calculated in
a cluster of 11 virtual machine where one virtual machine
acts as a master node and remaining 10 virtual machines
act as worker nodes. The SVM parameters C and γ for
each dataset are selected using grid evaluation. It can be
observed from the Fig. 14 that the DiP-SVM achieves better

performance consistently irrespective of the distribution of
the data. The performance is evaluated in terms of loss of ac-
curacy with respect to sequential SVM. Each dataset shows
the only small change in the accuracy which is comparable
to sequential SVM (less than 0.5%), and better than existing
methods DC-SVM [9] and CA-SVM [12] as shown in Fig. 15.
However, many times, it also shows small improvements
too. This reduction in loss of accuracy is because of the pro-
posed distribution preserving partitioning approach. Fig. 16
presents the training time performance which shows that
the time take in training on various datasets by proposed
DiP-SVM is comparatively less than the sequential SVM and
existing distributed implementations of SVM. The results
show that the training of DiP-SVM is approximate 9× faster
than the training of sequential SVM for each dataset.

Fig. 17 shows the performance of the DiP-SVM (Levels
L = 10 with binary splitting) on kddcup99 dataset having
≈ 5 million records. It can be observed from the figure that a
large portion of the irrelevant data (≈ 96%) is eliminated at
first layer itself as shown in Fig. 17-(A)&(B). Thus from the
second layer onwards the amount of data remaining is quite
less for calculating the global decision boundary which
leads to low communication overhead. After the first level,
very less data is eliminated as most of the data points in
hand turn out to be support vectors in the subsequent levels
as shown in Fig. 17-(C). Fig. 17-(D) shows that the data in
all the nodes is evenly divided at each layer. Fig. 17-(E)&(F)
show the amount of data transferred over the network at
each level during training phase on respective datasets.
This shows that the amount of data transferred decreases
as the levels increase. Fig. 17-(G) shows the cumulative
data transferred. The total data transferred is ≈ 8% of the
entire dataset. Fig. 17-(H) shows the time taken to train
SVM model at each level for respective datasets. This figure
shows that as the SVs are combined at each successive level,
the computation time increases on an average. However, the
top level shows a reduction in the training time for this two
possible reasons are 1) the use of Lagrangian multipliers
from the previous level due to which it converges into
fewer iterations only, or 2) the size of training data is less
in comparison to the previous level. Fig. 17-(I) shows the
cumulative time taken to train SVM model at each level.
The entire training takes ≈ 30 minutes for training on the
kddcup99 dataset.

Further, the partitions generated using the proposed
distribution preserving partitioning (DPP) approach are

10

gisette adult ijcnn1 cifar webspam covtype kddcup99 mnist8m
0

10

20

30

40

50

60

70

80

90

100

P
e
rf

o
rm

a
n

c
e
 o

f
C

la
s
s
if

ic
a
ti

o
n

 (
%

)

LIBSVM

DC-SVM

CA-SVM

Proposed

Fig. 14. A comparison of the classification performance (%) of LIBSVM, DC-SVM, CP-SVM and proposed distributed SVM on publicly available
datasets.

gisette adult ijcnn1 cifar webspam covtype

0

5

10

15

20

25

30

L
o
s
s
 i

n
 C

la
s
s
if

ic
a
ti

o
n

 A
c
c
u

r
a
c
y
 (

%
)

DC−SVM

CA−SVM

Proposed

Fig. 15. A comparison of the loss in classification accuracy (%) of DC-
SVM, CP-SVM and proposed distributed SVM with respect to LIBSVM
on publicly available datasets.

suitable for mini-batch training of DiP-SVM algorithm. In
order to train SVM on a large dataset, mini-batches are
generated using DPP. The initial SVM model is trained
using first mini-batch. Then, the distance from the decision
boundary is calculated for each point in the second mini-
batch using Equation (10) and only points closer to the
decision boundary are selected and merged with the sup-
port vectors obtained in the previous step. For these new
points, the Lagrangian multipliers are set to zero whereas
for the existing support vectors, the old values are retained.
Fig. 18 presents the results of classification performance
for the mini-batch training of DiP-SVM, in which labels
1-10 on the x-axis correspond to 10 mini-batches, label 11
corresponds to distributed training of DiP-SVM and label 12
corresponds to the sequential SVM. It can be observed from
the figure that using DPP, even the first mini-batch produces
results which are quite close to the final classification results.

gisette adult ijcnn1 cifar webspam covtype
0

2

4

6

8

10

12

T
ra

in
in

g
 T

im
e

(s
ec

o
n

d
s)

[l
o

g
 s

ca
le

]

LIBSVM

DC−SVM

CA−SVM

Proposed

Fig. 16. A comparison of the training time (seconds) of LIBSVM, DC-
SVM, CP-SVM and proposed distributed SVM on publicly available
datasets.

Also, the accuracy increases as new points are introduced
in incremental training. The use of previous Lagrangian
multipliers and advanced elimination of irrelevant points
before including them into the dataset for next SVM training
also result in improved training time.

All the experiments performed with DiP-SVM confirm
its suitability in comparison to existing approaches for
distributed SVM training both in terms of scaling to large
datasets and the performance of classification.

5 CONCLUSION

While distributed SVMs have generally proven to be much
faster than sequential SVMs on large datasets, loss of clas-
sification performance and high communication overhead
are still challenging issues. Through DiP-SVM, we aimed
at solving both these issues by introducing a distribution
preserving kernel SVM approach for a distributed environ-
ment. It was empirically shown that preserving the first

11

1 2 3 4 5 6 7 8 9 10 11
0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

(A)

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

(B)

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

(C)

1 2 3 4 5 6 7 8 9 10 11
0

5,000

10,000

15,000

(D)

2 4 6 8 10
0

30,000

60,000

90,000

120,000

150,000

(E)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

(F)

1 2 3 4 5 6 7 8 9 10 11
2

4

6

8

10

(G)

1 2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

1000

(H)

1 2 3 4 5 6 7 8 9 10 11
0

500

1000

1500

2000

(I)

(%) Ratio of SV to DV

(#) Min DV

(#) Max DV

(#) Min SV

(#) Max SV

(#) Data Transfered (%) Data Transfered

Cumulative Data Transfered Min Time (Seconds)

Avg Time (Seconds)

Max Time (Seconds)

Cumulative Training
Time (Seconds)

(#) Data Vectors (DV)

(#) Support Vectors (SV)

(%) Data Vectors (DV)

(%) Support Vectors (SV)

Fig. 17. Computational and communication efficiency of the proposed approach on the dataset kddcup99 consisting of ≈ 5M records.

1 2 3 4 5 6 7 8 9 10 11 12
84

86

88

90

92

94

96

98

100

P
e
rf

o
rm

a
n

c
e
 o

f
C

la
s
s
if

ic
a
ti

o
n

 (
%

)

gisette

adult

ijcnn1

cifar

webspam

kddcup99

Fig. 18. Performance of classification for mini-batch training of DiP-SVM.

and second order statistics of the entire dataset in each
of the partitions helped in obtaining local support vectors
which were shown to be in agreement with the global
decision boundary. This also helped the proposed approach
to achieve comparable classification performance to a se-
quential SVM while having the computational gains of a

distributed approach on benchmark datasets. A comparison
with state-of-the-art distributed approaches revealed that
owing to the better distribution of data, DiP-SVM performs
at-par or better on all the datasets tested. We also showed
that the communication overhead between partitions was
greatly reduced making it suitable for high latency cloud
environments.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[2] X. Ke, R. Jin, X. Xie, and J. Cao, “A Distributed SVM Method
based on the Iterative MapReduce,” in Proc. of the IEEE Int. Conf.
on Semantic Computing (ICSC), Anaheim, CA, USA, 7–9 Feb 2015,
pp. 7–10.

[3] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for sup-
port vector machines,” ACM Trans. on Intelligent Systems
and Technology, vol. 2, pp. 1–27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[4] T. Joachims, “Making large-Scale SVM Learning Practical,” in
Advances in Kernel Methods - Support Vector Learning, B. Schölkopf,
C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1999,
pp. 169–184.

[5] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core VectorMachines:
Fast SVMTraining on Very Large Data Sets,” J. of Mach. Learning
Res. (JMLR), vol. 6, no. 1, pp. 363–392, 2005.

[6] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain,
G. Bosilca, and A. Lumsdaine, “Open MPI: A high-performance,
heterogeneous MPI,” in Proc. of the IEEE Int. Conf. on Cluster
Computing, Barcelona, Spain, 25–28 Sep 2006, pp. 1–9.

12

[7] “Amazon Elastic Compute Cloud (Amazon EC2).” [Online].
Available: http://aws.amazon.com/ec2

[8] J. C. Platt, “Fast training Support Vector Machines using parallel
sequential minimal optimization,” in Proc. of the Int. Conf. on
Intelligent System and Knowledge Engineering, 2008, pp. 997–1001.

[9] C.-J. Hsieh, S. Si, and I. Dhillon, “A Divide-and-Conquer Solver
for Kernel Support Vector Machines,” in Proc. of the Int. Conf. on
Machine Learning (ICML), vol. 32, no. 1, Beijing, China, 21–26 Jun
2014, pp. 566–574.

[10] Z. Sun and G. Fox, “Study on Parallel SVM Based on MapRe-
duce,” in Proc. of the Int. Conf. on Parallel and Distributed Processing
Techniques and Applications, 2012, pp. 16–19.

[11] N. K. Alham, M. Li, S. Hammoud, Y. Liu, and M. Ponraj, “A
distributed SVM for image annotation,” in Int. Conf. on Fuzzy
Systems and Knowledge Discovery (FSKD), Yantai, Shandong, China,
10-12 Aug 2010, pp. 2983–2987.

[12] Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc, “CA-
SVM: Communication-Avoiding Support Vector Machines on Dis-
tributed Systems,” in Proc. of the IEEE Int. Parallel and Distributed
Processing Symposium (IPDPS), Hyderabad, India, 25-29 May 2015,
pp. 847–859.

[13] X. Wang and S. Matwin, “A Distributed Instance-weighted SVM
Algorithm on Large-scale Imbalanced Datasets,” in Proc. of the
IEEE Int. Conf. on Big Data (ICBD), 2014, pp. 45–51.

[14] L. Zanni, T. Serafini, and G. Zanghirati, “Parallel software for
training large scale support vector machines on multiprocessor
systems,” J. of Mach. Learning Res. (JMLR), vol. 7, pp. 1467–1492,
2006.

[15] A. Bordes, L. Bottou, and P. Gallinari, “SGD-QN: Careful Quasi-
Newton Stochastic Gradient Descent,” J. of Mach. Learning Res.
(JMLR), vol. 10, pp. 1737–1754, 2009.

[16] Y. Lu, V. Roychowdhury, and L. Vandenberghe, “Distributed Par-
allel Support Vector Machine in Strongly Connected Networks,”
IEEE Trans. on Neural Networks, vol. 19, no. 7, pp. 1167–1178, 2008.

[17] F. Ö. Çatak and M. E. Balaban, “CloudSVM: Training an SVM
Classifier in Cloud Computing Systems,” in Pervasive Computing
and the Networked World - Joint International Conference, ICPCA/SWS,
Istanbul, Turkey, 28–30 Nov 2012, pp. 57–68.

[18] K. Xu, C. Wen, Q. Yuan, X. He, and J. Tie, “A MapReduce based
Parallel SVM for Email Classification,” J. of Networks, vol. 9, no. 6,
pp. 1640–1647, 2014.

[19] N. K. Alham, M. Li, Y. Liu, S. Hammoud, and M. Ponraj, “A
distributed SVM for scalable image annotation,” in Proc. of the Int.
Conf. on Fuzzy Systems and Knowledge Discovery (FSKD), Shanghai,
China, 26-28 Jul 2011, pp. 2655–2658.

[20] N. K. Alham, M. Li, Y. Liu, and S. Hammoud, “A MapReduce-
based distributed SVM algorithm for automatic image annota-
tion,” Computers and Mathematics with Applications, vol. 62, no. 7,
pp. 2801–2811, 2011.

[21] S. Herrero-lopez, J. R. Williams, and A. Sanchez, “Parallel mul-
ticlass classification using SVMs on GPUs,” in Proc. of the 3rd
Workshop on General-Purpose Computation on Graphics Processing
Units - GPGPU ’10, Pittsburgh, PA, USA, 14 Mar 2010, pp. 2–11.

[22] A. Navia-Vázquez, D. Gutiérrez-González, E. Parrado-Hernández,
and J. J. Navarro-Abellán, “Distributed support vector machines,”
IEEE Trans. on Neural Networks, vol. 17, no. 4, pp. 1091–1097, 2006.

[23] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik,
“Parallel Support Vector Machines : The Cascade SVM,” In Ad-
vances in Neural Information Processing Systems, pp. 521–528, 2005.

[24] H. Yu, J. Yang, J. Han, and X. Li, “Making svms scalable to large
data sets using hierarchical cluster indexing,” Data Min. Knowl.
Discov., vol. 11, no. 3, pp. 295–321, 2005.

[25] X. Zeng and T. R. Martinez, “Distribution-balanced stratified
cross-validation for accuracy estimation,” J. Exp. Theor. Artif. Intell.,
vol. 12, no. 1, pp. 1–12, 2000.

[26] L. Deng, “The MNIST database of handwritten digit images for
machine learning research [best of the web],” IEEE Signal Process.
Mag., vol. 29, no. 6, pp. 141–142, 2012.

[27] “StarCluster.” [Online]. Available:
http://star.mit.edu/cluster/index.html

Dinesh Singh is currently pursuing Ph.D. de-
gree in Computer Science and Engineering from
Indian Institute of Technology Hyderabad, India.
He received the M. Tech degree in Computer
Engineering from the National Institute of Tech-
nology Surat, India, in 2013. He received B.
Tech degree from R. D. Engineering College,
Ghaziabad, India, in 2010. He joined the De-
partment of Computer Science and Engineering,
Parul Institute of Engineering and Technology,
Vadodara, India as an Assistant Professor from

2013 to 2014. His research interests include machine learning, big data
analytics, visual computing, and cloud computing.

Debaditya Roy is currently pursuing his Ph.D. in
Computer Science and Engineering from Indian
Institute of Technology Hyderabad, India. He
graduated with a Master of Technology in Com-
puter Science and Engineering from the National
Institute of Technology Rourkela, India, in 2013.
He received his Bachelor of Technology in Com-
puter Science and Engineering from West Ben-
gal University of Technology, Kolkata, India in
2011. His research interests include deep learn-
ing, feature selection, and visual intelligence.

Dr. C. Krishna Mohan received Ph.D. Degree in
Computer Science and Engineering from Indian
Institute of Technology Madras, India in 2007.
He received the Master of Technology in Sys-
tem Analysis and Computer Applications from
National Institute of Technology Surathkal, India
in 2000. He received the Master of Computer
Applications degree from S. J. College of Engi-
neering, Mysore, India in 1991 and the Bache-
lor of Science Education (B.Sc.Ed) degree from
Regional Institute of Education, Mysore, India

in 1988. He is currently an Associate Professor in the Department
of Computer Science and Engineering, Indian Institute of Technology
Hyderabad, India. His research interests include video content analysis,
pattern recognition, and neural networks.

