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Deep Spatio-Temporal Representation for Detection
of Road Accident using Stacked Autoencoder
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Abstract—Vision-based detection of road accidents using traffic
surveillance video is a highly desirable but challenging task.
In this paper, we propose a novel framework for automatic
detection of road accidents in the surveillance videos. The
proposed framework automatically learns feature representation
from the spatiotemporal volumes of raw pixel intensity instead of
traditional hand-crafted features. We consider the accident of the
vehicles as an unusual incident. The proposed framework extracts
deep representation using denoising autoencoders trained over the
normal traffic videos. The possibility of an accident is determined
based on the reconstruction error and the likelihood of the deep
representation. For the likelihood of the deep representation,
an unsupervised model is trained using one class SVM. Also,
the intersection points of the vehicle’s trajectories are used to
reduce the false alarm rate and increase the reliability of the
overall system. We evaluated out proposed approach on real
accident videos collected from the CCTV surveillance network of
Hyderabad City in India. The experiments on these real accident
videos demonstrate the efficacy of the proposed approach.

Keywords—Accident Detection, Anomaly Detection, Deep learn-
ing, Stacked Autoencoder.

I. INTRODUCTION

Smart cities are using various innovative technologies to im-
prove the peoples quality of life [1], [2]. European Commission
in 2010 [3] has launched one such highly visible and important
initiative named European Initiative on Smart Cities. In smart
cities sustainable transportation is a critical dimension where
the goal is to build 1) intelligent public transportation systems
based on real-time information, 2) traffic management systems
for congestion avoidance, and 3) safety and green applica-
tions [4]. However, the growing size of cities and increasing
population mobility have determined a rapid increase in the
number of vehicles on the roads, which has resulted in many
challenges for road traffic management authorities among them
road accidents require immediate attention to reduce the loss
of life and properties. Traffic accidents caused an estimated
1.2 million deaths in 2004, with 50 million people injured [5].
Due to various security concerns, all the main cities across the
world already installed a significant number of cameras for
traffic monitoring purpose. The use of these already existing
surveillance camera networks will be a viable solution, but
these systems mostly rely on human observation. For human
observers, it is almost impossible to monitor and recognize
unusual events without missing in such a large number of
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camera scenes in real time [6]. Thus, it raises the need for
automated solutions for accident detection.

Over the recent years, researchers from both industry and
academia have been working to develop automatic detection
methods using computer vision and pattern recognition tech-
niques, but the level of current technology is still limited to
apply them in the real world. Devising vision-based algorithm
for this task is very challenging. In practice, the performance
of computer vision based traffic accident detection algorithms
can be challenged by many factors [7]–[9]. These factors
include imaging conditions (varying illumination and chang-
ing weather conditions), environments (urban, highways), as
shown in Fig. 1.

Night Early Morning Sun

Fig. 1. The sample video frames, showing various difficulties in the collected
video dataset for accident detection. The major challenges are the low visibility
in the night videos, poor quality of videos, traffic congestion, occlusions, etc.

As also pointed out by Yun et al. [10], the existing meth-
ods for traffic accident detection developed till date can be
categorized into three approaches:
• Modeling of traffic flow patterns: In this category,

the typical law-full traffic patterns (namely, go-straight,
U-turn, right-turn, etc.) are modeled as baseline [11],
[12] and any deviation from this model is considered
as an abnormal traffic event. This approach will work
only when the normal traffic pattern appears at a fixed
region repeatedly, thus unable to detect collisions which
are essential to accident detection.

• Analysis of vehicle activities: The methods in this
categories first detect the moving vehicles and then
extract motion features such as the distance between
two vehicles, acceleration, direction, etc. of a vehicle
from moving vehicles’ tracks [12]–[18]. However, unsat-
isfactory tracking performance in crowded traffic scenes
becomes their bottleneck and limits their usage.
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• Modeling of vehicle interactions: These methods have
been inspired by sociological concepts and model the
interaction among vehicles and detect accidents [19],
[20]. However, a large number of training data and use
of speed change information alone limit the performance
of these methods.

Deep learning techniques have recently been applied to
various computer vision tasks such as image classification [21],
[22], semantic segmentation [23], [24], object detection [25],
human action/activity recognition [26], visual traking [27]–
[30] etc. Such great success of deep learning techniques is
mostly attributed to their outstanding performance in represent-
ing visual data. In this work, we exploit the deep learning for
accident detection. We introduce an unsupervised deep learn-
ing framework to automatically learn discriminative features
for accident detection in the surveillance videos. We propose
a new approach to learning appearance and motion features as
well as their correlations similar to what Xu et al. [31] used
for anomaly detection in pedestrian. Deep learning methods
for combining multiple modalities have been investigated in
previous works [32], [33]. However, to our knowledge, this
is the first work where multimodal deep learning is applied
for accident detection. A double fusion scheme is proposed
to combine appearance and motion features for discovering
abnormal activities [34]. However, these techniques are not
applied for accident detection till date. The proposed method
is validated on challenging real accident videos and the results
obtained are very motivating.

The rest of the paper is organized as follows. Section II
presents related work. We present the proposed approach in
Section III. Section IV discusses the experimental setup and
results. We conclude in Section V with future directions.

II. RELATED WORK

This section presents the state-of-the-art for accident detec-
tion and enlightens the pros and cons of these methods.

Ki et al. [18] detects accidents by setting a predefined
threshold on the certain parameters such as position, acceler-
ation, and direction of vehicles. Moving objects are obtained
by taking the difference between two successive frames. A
similar approach also presented by Hui et al. in [13] where
the parameters are computed from the trajectories of the
moving vehicles obtained through background modeling using
Gaussian mixture model (GMM) and tracking using mean shift
algorithm. This method is simple and easy to implement and
deploy but not suitable in unconstrained environments like a
frequent change in traffic pattern and weather conditions since
it relays only on the change in position and speed parameters.
Also, the dependence only on the change in speed and position
can easily lead to false alarms like a sudden movement of a
vehicle.

Akoz et al. [16] obtained moving vehicles using moving
blob detection and tracking using Kanade-Lucas-Tomasi (KLT)
Tracker. The trajectories of various vehicles for normal traffic
are clustered using continuous hidden Markov model (C-
HMM) to set up a baseline of normal traffic which requires a
large amount of training data to acquire all possible activity

paths. If a given unseen trajectory shows significant deviation
from baseline trajectories, then an accident is declared. Al-
though, this method does not rely on speed parameters but the
whole trajectory of a vehicle. Sadek et al. [15] use histogram
of flow gradient to obtain the orientation of flows. From
the optical flow or velocity obtained, the Euclidean distances
between the centers of gravity of patterns are calculated, and
then logistic regression is used to predict the probability of
the occurrence of an accident. But, this method uses logistic
regression, the interpretation of which is merely a probability.

The tracking of vehicles is a key component in the accident
detection but tracking in the dense traffic and abrupt motion is
a challenging problem because the scenario typically contains
abrupt changes in the appearance and motion of the target.
A significant research is carried out in tracking under abrupt
motion. Kwon et al. [35] proposed a robust tracking method by
alleviating the motion smoothness constraint in abrupt motion
using Wang-Landau Monte Carlo (WLMC) sampling method
in tracking algorithm. Lim et al. [36] handle the tracking under
abrupt motion by applying optimised swarm-based sampling
strategy for proposal selection. Su et al. [37] used visual
saliency model integrated with a particle filter for recovering
lost track due to abrupt motion by detecting the target region
from salient regions obtained from the saliency map of current
frame.

These existing methods make use of motion or track of
moving objects and simply try to define a normal baseline
(many time using pre-decided threshold only) and any un-
known event not obeying this baseline is simply declared as
an accident. Although, the deviations in motion parameters
gives useful pre-collision information but do not sufficient for
accident detection.

III. PROPOSED FRAMEWORK FOR ACCIDENT DETECTION

The course of accident can be divided into three stages:
pre-collision, collision, and post-collision. Each stage gives us
a significant amount of information but also involves several
difficulties as discussed below.

Pre-collision: The pre-collision case is the most vital infor-
mation to explain an accident scenario. Also, this information
may become a good evidence for crime scene investigation.
The pre-collision situation is a clear violation of traffic rules by
any/both the vehicles, which include violation of traffic lane,
violation of signals at intersections, violation of speed limit
at congested roads, abrupt motion on the road, etc. Finally,
we can say that pre-collision stage is an unusual activity and
thus can be easily detected by applying anomaly [31], [38]
detection methods based on the various parameters, such as
speed, trajectories, position, etc.

Collision: The collisions are essential to accident detection,
but it is very complicated to detect and cannot be directly
detectable by any general purpose computer vision technique.
One way to detect a collision is to identify the joints of the
trajectories of the vehicles over spatiotemporal dimensions.
However, the major challenge is the discrimination between
collision and occlusion. For this we use the trajectories over
space-time interest points [39] and improved dense trajecto-
ries [40], [41].
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Fig. 2. The architecture of the proposed framework for accident detection. (A) Overview of the framework. It consists of two streams, one for the generation of
the collision score using the trajectories of the moving vehicles and the other one for generation of abnormality score using deep representation. (B) A detailed
diagram of abnormality detection using deep stacked autoencoder on three modalities, namely, appearance, motion, and joint representation.

Post-collision: As stated above that the collision and occlu-
sions are hard to classify and may lead to false alarms. These
false alarms further can be refined by considering the post-
collision scene. The two most common post-collision scenes
include: 1) Fallen objects at the collision point: As we stated
that the intersection of the trajectories of two vehicles might
be a collision or an occlusion. However, after the intersection,
if both the trajectories are continued, and no abrupt or zig-
zag motion resulted. Then, the intersection is merely an
occlusion, not a collision. However, if some abrupt motion
or discontinued trajectories have occurred, then the possibility
of a collision is high. Measure the time for which the object
remains static. 2) Crowd attention towards the collision point:
The last and final stage of the accident is the crowded road or
pedestrians running towards the collision point.

As shown in Fig. 2 the proposed framework for automatic
detection of accident incident composed of abnormality de-
tection using the deep representation of spatiotemporal video
volumes (STVVs) and collision detection using intersection
points of trajectories. The anomaly detection works in two
steps, the first step is the automatic training of the deep
features and the second step is to determine the outlier score
for unknown incidents. The separately stacked denoising au-
toencoder (SDAE) trained over STVVs from the previously
seen normal traffic video one for each representation is used
to generate the deep representation for the STVVs from
the unseen traffic video. The possibility of an accident is
determined based on the reconstruction error and the likelihood
of the deep representations for which outlier score is generated
using one-class SVM. All these individual scores (a.k.a. local
score) are then fused to compute the final decision to declare
an incident as an accident. We present the detail description

of these steps in the following subsections.

A. Spatio-Temporal Volume Generation
In order to localize the accident incident, we divided the

entire video into several smaller size volumes called spatiotem-
poral video volumes (STVVs) similar to [26], with different
scales in both space and time as well as across the modalities
such as appearance, motion, and joint representations. Fig. 3
shows a STVV at a pixel p(x, y, z) in a 3D video volume.
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Fig. 3. The generation of the spatio-temporal video volumes (STVVs). The
STVVs are the pixels in the immediate vicinity of a point p(x, y, z) covered
by a 3D sliding window of size (w, h, t).

Lets, v ∈ RW×H×T given continuous video sequence where
point v(x, y, z) ∈ R gives the intensity of the pixel (x, y, z)
for all x ∈ [0,W ], y ∈ [0, H], and z ∈ [0, T ]. Here, v(0 :
W, 0 : H, z) represents the zth frame. The v(x− w−1

2 : x+
w−1

2 , y−h−1
2 : y+h−1

2 , z− t−1
2 : z+ t−1

2 ) is a space-time video
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volume (STVV) of size w × h × t around the pixel (x, y, z).
These STVVs are then normalized and vectorized into a vector
x ∈ Rwht. Finally, we have a datasets X = {xi}, i = 1, 2, ···, n
where n is total number of such STVVs.

B. Stacked Denoising Autoencoder (SDAE)

A denoising autoencoder (DAE) is a simple one-hidden-
layer neural network with unsupervised learning using back-
propagation algorithm. The objective of a DAE is to transform
given partially corrupted samples into a compressed represen-
tation to learn latent patterns by minimizing the amount of
distortion in reconstructed samples. The denoising autoencoder
consists of two processes:

1) Encoding: The encoder takes a nonlinear mapping
denoted as fe(xi|W,b) from the partially corrupted
input to a hidden representation. For a given corrupted
input x̃i, a compressed hidden layer representation hi
can be obtained as below:

hi = fe(x̃i|W,b) = σ(Wx̃i + b). (1)

Typically, corrupted inputs are obtained by drawing
samples from a conditional distribution p(x|x̃), for
example the Gaussian white noise or salt-pepper noise.

2) Decoding: The decoder is used to map the hidden
representation back to a reconstruction representation
through a similar transformation fd(hi|W′,b′). For a
given hidden representation hi, a reconstructed repre-
sentation x̂ is computed as below:

x̂i = fd(hi|W′,b′) = s(W′hi + b′). (2)

Here, < W, b >, and < W′, b′ > denote the weights and
the bias terms of the encoder and decoder, respectively. The
σ(·) and s(·) are activation functions. Typically, the sigmoid
function σ(z) = 1

1+e−z is used as the activation function. The
network can learn a more stable and robust representations of
the input using this encoder/decoder structure. An stacked de-
noising autoencoder (SDAE) is a cascade of several denoising
autoencoders (DAEs) as shown in Fig. 4.

The parameters (W,W′,b,b′) are learned for a given train-
ing set X = {xi}ni=1 by minimizing the following regularized
least square optimization problem:

min
W,W′,b,b′

N∑
i=1

‖xi − x̂i‖22 + λ(‖W‖2F + ‖W′‖2F ), (3)

where ‖ · ‖F denotes the Frobenius norm. The first term∑N
i=1 ‖xi − x̂i‖22 is the average reconstruction error, while

the second term (‖W‖2F + ‖W′‖2F ) is the weight penalty for
regularization. The importance of these two terms is balanced
by parameter λ. Typically, sparsity constraints are also imposed
on the output of the hidden units to discover meaningful
representations from the data.

Reconstruction Error

Intermediate Representation

Fig. 4. The network topology of the proposed stacked autoencoder used
to model the baseline for the normal traffic. The network consists three
decoder layers followed by three decoder layers. The reconstruction error is
the Euclidean distance of the input and output layers. The output of the middle
layers is the latent intermediate representation.

C. Detection of Intersection points in Trajectories

First, we detect moving objects by subtracting background
images, and then the moving objects are tracked. In an STVV,
if two tracks are intersecting each other then it represents
either a collision or an occlusion as shown in Fig. 5. In
the presented frame, we found that the trajectories of the
bike and car intersect each other. Also, the trajectories of
several other vehicles touch each other several time. Since the
trajectories continue in the subsequent frames, they are simply
considered as the occlusions, not collisions. But, there is no
further progress in the trajectories of the bike and car so this
is considered as a collision. The collision scores C of a STVV
is the simple count of such points in that STVV.

Fig. 5. The intersection of two trajectories during an accident. The trajectories
of the motorcycle and car intersect each other also there is no further progress
in the trajectories of the motorcycle and car, thus considered as a collision.
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D. Accident Score Generation
We use one-class SVM to generate the outlier score γ of

intermediate representation h for a given STVV. One-class
SVM requires only one class data and fits an outer boundary
around this data. In this case, we use only STVVs from normal
traffic for building model. The outlier score γ for a given h is
computed from one-class SVM as below:

γ = f(h) =

m∑
i=1

αiK(hi,h)− ρ, (4)

where, {hi, · · · ,hm} are the m support vectors with their
respective Lagrange multipliers αi, ρ is the threshold value. If
the weighted density of a feature vector with support vectors is
above a threshold ρ then feature vector is classified as normal
and abnormal otherwise. The values of these parameters are
computed by solving below dual problem for n training points
{hi, · · · ,hn}:

max
ᾱ

1

2

n∑
i=1

n∑
j=1

αiαjK(hi,hj) (5)

subject to

n∑
i=1

αi = 1 and 0 ≤ αi ≤
1

vn
,

where v ∈ (0, 1) control the penalty imposed on the nonzero
slack variables.

For a STVV x the reconstruction error ξ is computed as
below

ξ = ‖x− x̂‖2F . (6)

where, x̂ is the reconstruction of the STVV x and ‖· ‖F is the
Frobenius norm. The high reconstruction error shows that the
particular STVV is less likely drawn from the previously seen
patches and thus increases the likelihood that it may belong to
an accident scene.

For each STVV v, we extract three representation: (i)
appearance representation xA based on still frames, (ii) mo-
tion representation xM based on optical flow, and (iii) joint
representation xJ by early fusion (concatenation) of both
appearance and motion representation. For each representa-
tion, we extract deep representation using stacked denoising
auto-encoder and compute anomaly scores γA, γM , γJ using
Equation (4) and reconstruction errors ξA, ξM , ξJ using Equa-
tion (6). Also, the collision score C is computed as discussed
in previous section. Finally, we use post-fusion of scores to
get single final score. We consider the linear combination to
keep less number of parameters and reduced computation in
comparison to a non-linear combination. The computation of
non-linear transformation leads to a large number of parame-
ters and increased computation time. The final accident score
s is given as below:

s = β1γ
A+β2γ

M +β3γ
J+β4ξ

A+β5ξ
M +β6ξ

J+β7C, (7)

where, β1, β2, β3, β4, β5, β6, and, β7 are free parameters to
control false alarms. The final decision of whether v corre-
sponds to an accident or not is taken based on the threshold

sT which is given as.

Decision =

{
Accident, for s > sT
Normal, otherwise.

(8)

The parameters in Equation (7) are computed using lin-
ear regression on a small amount of manually labeled
data as follows. Let, X be the set of STVVs with
corresponding label set y, where yi = {−1,+1},
and S = [γA,γJ ,γM , ξA, ξJ , ξM ,C] be the set of
corresponding scores. Then the parameters set β =
[β1, β2, β3, β4, β5, β6, β7]

T is given by

β = (STS+ λI)−1STy, (9)

where λ = 10−6 is the regularization parameter. While the
best performing threshold sT is decided empirically.

IV. EXPERIMENTAL EVALUATION

The experiments are conducted on a machine running
Ubuntu 16.04 Xenial Xerus having specification Intel(R)
Xeon(R) CPU E5-2697 v2 @ 2.70GHz×48 processor, 128GB
RAM with NVIDIA Corporation GK110GL [Tesla K20c]×2
GPUs. Programs for feature representation are written in
Python − 2.7.11, where for video processing we use
OpenCV − 2.4.9, for implementing auto-encoder we use
Keras− 1.1.1, for one class SVM we use fitcsvm function
of MATLAB.

A. Dataset Used
Since there is no public video dataset available for ac-

cident detection, we collected own dataset from the CCTV
surveillance network of Hyderabad City in India. Video clips
collected from City surveillance network are captured at 30
frames per second. Fig. 6 presents samples from the collected
dataset. Each video clip starts few minutes before the incident
of an accident and contains several minutes after the incident.
First few minutes of video which contains normal situation are
used for training the model and remaining for testing. There
are total 127138 normal frames, and 863 frames contain partial
or full accidents labeled manually. For training 94720 normal
frames are used. For testing we used 33280 frames 32417
normal and 863 accident frames. The dataset is made public
for the research community for further comparison 1.

B. Results and Discussion
The STVVs are generated at various scales in both space

and time. For experiment we generate STVVs of spatial scale
of 11×11, 13×13, and 15×15 pixels. For each spatial scale,
we generate three temporal scales of 3, 5, and 7 frames. Thus
finally we generate 9 STVVs at each spatiotemporal point.

The denoising stacked autoencoder projects high dimen-
sional data onto a lower dimension where it forms a manifold
as shown in Fig. 7. The projections of the unknown patterns
which are drawn from the similar class patterns from which

1https://sites.google.com/site/dineshsinghindian/iith accident-dataset
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Fig. 6. Sample frames from the video dataset used to evaluate the performance
of proposed approach. The dataset contains videos of accidents during the
various environmental conditions such as high sunlight, night, early morning
as well as from different cameras and view angles.

the SDAE is trained are very close to the other points in
the manifold and very far otherwise. Thus the one-class-SVM
with RBF kernel generates the score based on how likely an
unknown pattern is drawn from the normal traffic patterns.
A high deviation score confirms that the particular pattern
belongs to some unusual/unseen/abnormal/outlier event, which
further increases the possibility of an accident as an accident
is also a rare event.

(A) Input (B) Layer-1

(C) Layer-2 (D) Layer-3

Fig. 7. The 2-D visualization of the distribution of the STVVs data generated
from a sample video. The STVVs during normal and accident are shown using
the green cross and red dot, respectively. [Best viewed in color]

Since the proposed method is an unsupervised method and
the final classification is based on a threshold. Changing the
threshold results into a change in the performance. Thus to find
the optimal threshold we computed various performance scores

on hundred different threshold values. The trade-off between
the sensitivity (i.e., true positive rate) and the specificity (i.e.,
false positive rate) is shown via ROC curve. In a ROC curve,
the red dotted line shows the random prediction (50%) line,
and the solid black line is the equal error rate (EER) line. We
analyzed the discrimination ability for all three representations
for reconstruction error at various layers of SAE as well as the
outlier score of the corresponding intermediate representations
using one-class-SVM. Fig. 8 illustrates the ROC curve for
the experiments conducted for various thresholds (sT ) for
reconstruction error at different layers of the stacked denoising
autoencoder. The area under the curve (AUC) increases with an
increase in the number of stacked autoencoders. But after stack
of two autoencoders, there is a very slight increment, and thus
the performance (AUC) for them is not changing significantly
than the performance of layer-2. The final performance (AUC)
of the accident detection based on the reconstruction error
alone are 76.54%, 51.57%, and 76.28 for appearance, motion,
and joint representations, respectively.
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Fig. 8. ROC curve for accident detection using reconstruction error at various
Layers. [Best viewed in color]

A similar phenomenon is also seen for outlier score us-
ing one-class SVM on the intermediate representation. The
performance increases with an increase in the number of
autoencoders. The final performance (AUC) of the accident
detection based on the intermediate representation using one-
class SVM is 77.54%, 62.87%, and 74.21% for appearance,
motion, and joint representations, respectively. Fig. 9 illustrate
the ROC curve for the experiments conducted for various
threshold sT for reconstruction error, one-class-SVM, and their
combination for the stack of three auto-encoders. The AUC for
the combined is more than both reconstruction error and one-
class-SVM alone.

However, the performance increases when we combine
both the scores. Fig. 10 illustrates the ROC curve for the
experiments conducted for various threshold sT for recon-
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Fig. 9. ROC curve for accident detection using reconstruction error (RE),
one class SVM, and their combination. [Best viewed in color]
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Fig. 10. ROC curve for accident detection using reconstruction error, one
class SVM, and their combination for the appearance, motion, and their joints
representations. [Best viewed in color]

struction error, one-class-SVM, and their combination for the
appearance, motion, and their joints representations. The AUC
using different modalities and methods is listed in Table I.
The AUC for the combined is more than both reconstruction
error and one-class-SVM alone. The final performance of the
accident detection based on the combined representation is
77.60%, 62.91%, and 81.06% for appearance, motion, and
joint representations, respectively.

Fig. 11 show the examples of the detected accident regions
using the anomaly scores from various samples from the

TABLE I. AREA UNDER CURVE (AUC) FOR VARIOUS MODALITIES
AND METHODS

Representation Recon. Error OneClassSVM Combined
Appearance Representation 0.7654 0.7754 0.7760
Motion Representation 0.5157 0.6287 0.6291
Joint Representation 0.7628 0.7421 0.8106

collected dataset. The red region is the predicted accident
regions using a single score either by appearance, motion, or
intersection of tracks while the green box shows the region
decided using final score. Here, the accident detection rate
using anomaly score is very high as it accurately detects almost
all the regions which are declared accident manually (i.e.
ground-truth). However, it also detects false accident in several
regions which are actually normal which leads to high false
alarms rate. Although, with the help of the complementary
information from the trajectories of the moving vehicle these
alarms are further refined.

Fig. 11. Accident detected using proposed approach for different videos.
The red region is the predicted accident regions using a single score either by
appearance, motion, or intersection of tracks while the green box shows the
region decided using final score. [Best viewed in color]
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Finally, the proposed method can localize the accident
events as we are using STVVs instead of entire frame or full
video clip. Also, on the collected video dataset of real accidents
which contains accidents in various lighting conditions as day,
high sun and night it is giving on average 0.775 detection rate
at equal error rate (EER) of 0.225.

C. Comparision with the existing methods
Instead of a highly desirable task, there is a limited work

done in this domain due to unavailability of the public
benchmark dataset. Since the existing methods use a small
private collection of datasets and do not make them public so
comparing them may not be fair at this stage. But still, we
listed the performance achieved by the existing methods on
individual datasets. ARRS [18] achieve 63% detection rate and
6% false alarms. RTADS [17] achieve 92% detection rate and
0.77% false alarms. The method of Sadek et al. [15] shows a
recognition rate 99.6% with false alarm rate at 5.2%. K. Yun et
al. [10] achieves 0.8950 AUC. However, all the above methods
can easily lead to over-fitting for limited samples and do not
guarantee the same performance for new scenarios. While, our
method is generalized, robust to the over-fitting, and tested
on the real traffic with various challenges in the videos. The
dataset is made public for the research community for further
comparison.

V. CONCLUSION

The incorporation of convolutional auto-encoder for deep
feature representation in proposed framework for accident
scene recognition outperforms the existing hand-crafted fea-
tures based approaches. The method is further strengthened
using complementary appearance and motion information to-
gether. The dual measures of the outlier scores and reconstruc-
tion error for detection of the accidents using complimentary
modalities based on appearance, motion, and joint representa-
tion increase detection rate of the accidents. The incorporation
of the collision of the intersection points of a vehicle’s track
reduce the false alarm rate, and thus enhances the reliability of
the overall system. Since we are using STVVs instead of entire
frame or full video clip, it not only detects the accident but also
able to localize the accident events. The proposed method is
able to detect on average 77.5% accidents correctly with 22.5%
false alarms on real accidents videos captured under various
lighting conditions. The experimental results are encouraging
and show the efficacy of the proposed approach. However,
challenges such as low visibility at night, occlusions, and large
variations in the normal traffic pattern still pose significant
challenges which need to be addressed in future
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