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Abstract

Abnormal activity recognition is a challenging task in surveillance videos. In this paper,
we propose an approach for abnormal activity recognition based on graph formulation of
video activities and graph kernel support vector machine. The interaction of the entities in
a video is formulated as a graph of geometric relations among space-time interest points.
The vertices of the graph are spatio-temporal interest points and an edge represents the
relation between appearance and dynamics around the interest points. Once the activity is
represented using a graph, then for classification of the activities into normal or abnormal
classes, we use binary support vector machine with graph kernel. These graph kernels
provide robustness to slight topological deformations in comparing two graphs, which may
occur due to the presence of noise in data. We demonstrate the efficacy of the proposed
method on the publicly available standard datasets viz; UCSDped1, UCSDped2 and UMN.
Our experiments demonstrate high rate of recognition and outperform the state-of-the-art
algorithms.

Keywords: Abnormal Activity Recognition, Video Activity Classification, Graph
Representation of Video Activity, Graph Kernel, Bag-of-Graphs (BoG)

1. Introduction

Nowadays digital video surveillance systems are ubiquitously deployed in public places
for safety purpose. According to the British Security Industry Association (BSIA), approx-
imately 4 million to 5.9 million cameras are deployed in UK [1]. This widespread use of
surveillance systems in roads, stations, airports or malls has led to a huge amount of data
that needs to be analyzed for safety, retrieval or even commercial reasons [2]. Anomalous
event detection in crowded scenes is very important, e.g. for security applications, where it
is difficult even for trained personnel to reliably monitor scenes with dense crowd or videos
of long duration [2]. An anomalous event in a crowd is an event which do not confirm the
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normal appearance or dynamics of crowd. An appearance-related anomaly would be, e.g.
a bicycle passing through a crowd. Moreover, sudden changes in velocity, like an abrupt
increase of its magnitude and the dispersion of individuals in the crowd indicates that some-
thing unusual and potentially dangerous may have occurred [2].

In order to detect abnormal activities in surveillance videos or crowd behavior analysis,
various kinds of activity modeling are proposed in the literature [3, 4, 5, 6, 7, 8, 9]. The
existing models consider the object motion as the key factor for activity representation. The
popular motion representation techniques are based on trajectory modeling, flow modeling,
or vision based. The widely used bag-of-words (BOW) approaches [10, 11, 12] show excellent
performance in action and activity recognition. A bag-of-words (BOW) approach computes
a unordered histogram of visual words occurrences that encodes only the global distribution
of low level descriptors, while it ignores the local structural organization (i.e. geometry) of
salient points and corresponding low level descriptors. However, use of such local structure
of salient points and corresponding low level descriptors should lead to discriminative video
representation which further leads to better recognition of video activities.

In this work, we propose a framework for abnormal activity recognition which includes
appearance and dynamics along with geometric relationships among various interactions of
the entities in a video activity. First, we extract the space-time interest points and treat
each interest point as a node of a graph. The edges of the graph are determined using
a fuzzy membership function on the basis of closeness and the similarity of the entities
associated with the interest points. If two points are close to each other, then there is a high
probability that some interactions take place between the corresponding entities. In order
to keep track of the objects, we also incorporate the appearance and motion of the entities
using histogram of oriented gradients (HOG) and histogram of oriented optical flow (HOF).
Second, a maximum margin classifier is trained on the basis of geometrical structure of the
graphs formed for normal and abnormal training videos. The graph kernels are used for
measuring the similarity between two graphs. The graph kernels provide robustness to the
slight topological deformation in comparing two graphs because they measure on the basis
of similar paths/walks. These deformations may occur due to various affecting factors like
presence of noise in data. The idea of formation of video activity as a graph and use of graph
kernel for their similarity measure is novel for abnormal activity recognition in surveillance
videos. Finally, the combined approach provides a robust framework for the recognition
of abnormal activities in surveillance videos. The experiments demonstrate the superiority
of the proposed work over the existing methods which are based on dense trajectories and
bag-of-words with various feature descriptors.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3
describes the proposed approach for abnormal activity recognition. Section 4 discusses the
experimental setup, datasets and results. The conclusions are provided in section 5.

2. Related Work

In the past decade, a considerable amount of literature is focused on the abnormal activity
recognition in surveillance videos [3, 4, 5, 13, 14, 15]. The detailed surveys in [6, 7] enlighten
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the progress on this topic in last decades. Wu et al. [14] model normal crowd patterns using
chaotic invariants of Lagrangian particle trajectories based on optical flow. Saligrama et
al. [15], presented a probabilistic framework for local anomaly detection by assuming that
they are infrequent with respect to their neighbors while did not consider the relationship
among local observations. Some tracking based techniques for video representation that
extract trajectories of the moving objects are proposed in [11, 16]. Wang et al. [11] describe
videos using dense trajectories that encode the shape of the trajectory, the local motion, and
appearance around the trajectory. Wang et al. later in [16] present an improved trajectory
that also takes into account camera motion. Yuan et al. [17] focus on different motion
properties (viz; magnitude and direction) in order to detect different crowd abnormalities.
They exploit the contextual evidences using structural context descriptor (SCD) to describe
the relationship of the individuals, which is a concept of solid-state physics. Then the
anomaly is detected by finding the large variation of SCD between newly observed frame
and the previous ones. The targets in different frames are associated using a robust 3-D
DCT multi-object tracker. However, it tracks only a few observers instead of analyzing the
trajectories during dense crowd. The trajectory based modeling of activities is ubiquitous
but unreliable in the situations where crowded scenes are present.

Some of the non-tracking based techniques are also proposed which include dense optical
flow, or some other form of spatio-temporal gradients [18, 19, 20]. Reddy et al. proposed
an algorithm to detect anomalies by inspecting motion, size and texture information [18]. It
estimates object motion more precisely by computing optical flow, only for the foreground
pixels. Motion and size features are modeled in small cells using computationally efficient ap-
proximated kernel density estimation technique and texture is represented using adaptively
grown vocabulary. Loy et al. used Gaussian process regression (GPR) for multi-object
activity modeling [19]. The non-linear relationship between decomposed image regions is
formulated as a regression problem. It is better to characterize spatial configurations be-
tween objects, as it predicts the behavior of current region based on its past complements.
However, it is unable to handle complex causalities in video scenes.

The approaches in [20, 2] consider both appearance based (spatial) and motion based
(temporal) anomalies. Mahadevan et al. [20] proposed mixtures of dynamic textures (MDT)
model to detect temporal and spatial abnormalities from unconstrained scenes. These ap-
proaches flag abnormal events based on independent location-specific statistical models but
the relationship between local observations is not taken into consideration. Kaltsa et al. [2]
incorporate swarm theory with histogram of oriented gradients (HOG) for detecting and
localizing anomalous events in videos of crowded scenes. Where both motion and appear-
ance information are considered. While histograms of oriented swarms (HOS) capture the
dynamics of crowded environments, the histogram of oriented gradients (HoG) capture the
appearance information. The descriptor build by combining HOS and HOG effectively
characterizes each scene. The appearance and motion features extracted only within spatio-
temporal volumes of moving pixels ensure robustness to local noise, increase accuracy in the
detection of local, non-dominant anomalies, and achieve a lower computational cost. Kim et
al. give space-time Markov random field (MRF) model for abnormal activity recognition in
videos [21]. The nodes in the MRF graph are the grid of local regions of the video frames
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where the neighbors in space and time are associated with links. At each local node, dis-
tribution of optical flow is captured to generate the model of normalcy using mixture of
probabilistic principal component analyzers (MPPCA). The degree of normality of an in-
coming video clip is decided using learned model and MRF graph. An incremental approach
is used to deal with the concept drift.

The most recent methods focus on both appearance and motion anomalies at local and
global scale. Space-time interest points have been explored recently for abnormal activity
recognition in surveillance videos [10]. In [10], Cheng et al. detect local and global anoma-
lies via hierarchical feature representation using bag-of-visual-words (BoVW) and Gaussian
process regression. The extraction of normal interactions from training videos is formulated
as the problem of efficiently finding the frequent geometric relations of the nearby sparse
space-time interest points (STIPs). In [11, 16], Wang et al. use a standard bag-of-features
approach to construct separate vocabularies of 4000 visual-words for each type of low level
descriptors. The low level descriptors encode information of trajectory shape, appearance
using HoG, local motion using HoF, and gradient of horizontal, and vertical components
of optical flow using motion boundary histograms (MBH). However, above methods use
bag-of-words based approach that do not consider the geometric relationships among salient
points.

Sekma et al. [22] used bag-of-graphs (BoG) for human action recognition that exploits
the geometric relationships among trajectories. The assumption made is that entities that
are related spatially are usually dependent on each other. The neighbour trajectory points
are linked using Delaunay triangulation method which is invariant to affine transforma-
tions like scaling, rotation and translation. The Hungarian distance method is used for
graph matching. A separate bag-of-graphs (BoG) is applied for each low level descriptor
(HoG,HoF,MBH and Trajectory Shape) with 3 graph scales (3-nearest neighbour,6-nearest
neighbour,9-nearest neighbour) resulting into 12 histograms that are concatenated after ap-
plying sum pooling and L1 normalization. For classification, support vector machine is used.
However, the proposed method is significantly different from this method. The first differ-
ence is in the process of generating graphs, where an edge between two points is decided
through a fuzzy membership function instead of considering fixed nearest neighbours. Sec-
ondly, instead of using Hungarian distance which finds the similar set of low level descriptors,
we use graph kernels for matching two graphs. The graph kernels find the similarity be-
tween two graphs which are more robust against the affine transformations as well as slight
geometric deformations.

3. Proposed Work

The proposed framework for abnormal activity recognition in surveillance videos is pre-
sented in this section. The block diagram of the proposed framework is shown in Fig. 1. The
proposed framework consists of three steps. In the first step, the incoming video feed is split
into video clips of size T and space-time interest points in each video clip are extracted. In
the second step, a set of undirected graphs of local activities is generated. The vertices of the
graphs are space-time interest points and an edge represents a possible interaction. In the
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third step, each activity is classified into normal or abnormal categories. Which is further
classified into local abnormal activity recognition and global abnormal activity recognition.
For local activity classification a max-margin classifier is trained using graph kernel SVM
from training videos. For global activity recognition, bag-of-graphs (BoG) feature vectors
are generated for a set of local activity graphs and a support vector machine model trained
from BoG feature vectors from training videos is used to declare the global behavior. Each
of these steps are discussed in detail below:

Figure 1: Block diagram of the proposed framework for abnormal activity recognition in surveillance videos.

3.1. Detection of space-time Interest Points

The space-time interest points [23] are salient points, which are the regions in f : R2 ×
R → R having significant eigenvalues h1,h2, and h3 of a spatio-temporal second-moment
matrix µ, which is a 3-by-3 matrix composed of first order spatial and temporal derivatives
averaged using a Gaussian weighting function g(.;σ2

i , τ
2
i ) with integration scales σ2

i (spatial
variance) and τ 2i (temporal variance). The value of µ is computed as

µ = g(.;σ2
i , τ

2
i ) ∗

( L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

)
, (1)

where Lx, Ly, and Lt are first-order derivatives with respect to x, y, and t of the linear
scale-space representation L : R2 × R × R2

+ → R of f constructed by convolution of f
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with an anisotropic Gaussian kernel g(.;σ2
l , τ

2
l ) with local scales σ2

l (spatial variance) and τ 2l
(temporal variance). The value of the L is computed as

L(.;σ2
l , τ

2
l ) = g(.;σ2

l , τ
2
l ) ∗ f(.). (2)

These interest points are detected using Harris3D corner function (H) for the spatio-
temporal domain by combining the determinant (det) and the trace of µ (trace) as follows:

H = det(µ)− k trace3(µ)

H = h1 h2 h3 − k(h1 + h2 + h3)
3, (3)

where k is a constant. Then around each salient point p(w, h, t), 72-dimensional HOG [24]
and 90-dimensional HOF [25] descriptors are extracted, which together represent an interest
point in the 3D space by a 162-dimensional feature vector f = R162 called STIP descriptor.
In this way, the STIP feature descriptors include the appearance information using HoG and
motion information using HoF around the salient points. Section 3.2 presents the process
of graph generation.

3.2. Graph Formulation of a Video

In previous step, we obtain a set of space-time interest points P = {pi|pi ∈ (x, y, t)ni=1

and their respective feature vectors F = {fi}ni=1 for a given video. In this step, we represent
the video as a graph G(P,E), where P is the set of space-time interest points detected from
previous step and E is the set of edge. An edge between two points pi and pj is decided
based on µij, which is a fuzzy membership score of the edge existence and is computed as

µij =
K(fi, fj)

||pi − pj||2
, (4)

where, K(fi, fj) is the similarity measure between the feature vectors fi and fj extracted at
points pi and pj, respectively. Any geometric kernel function can be used as a similarity
measure like linear kernel, polynomial kernel, RBF kernel, or sigmoid kernel. This similarity
is high if feature vectors fi and fj are belonging to similar events and/or similar object. This
shows that these points are either too close to each other so that they share lot of information
during feature extraction or over the time, object at point pi moved to point pj. The later
case is significant for modelling an activity, so geometric distance ||pi−pj||2 between points
pi and pj is in the denominator. Due to this, the value of µij becomes high for points which
are very close and too low for points at far distance and in both the cases we do not get
significant information. However, for the points at some distance, a high value of µij shows
significance towards the existence of an event between these points. Thus, if the value of µij

is explicitly high, then we consider them as similar point and represent them using a single
point which is the mid point of these points. And if the value of µij is explicitly low, then
there will be no edge. The adjacency matrix A of the grapg Gcan be written as

Aij =

{
0, ifµij < µT Threshold

1, otherwise
(5)
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Fig. 2(a) shows an adjacency matrix A of the graph generated from an abnormal video where
people are running abruptly in all directions. The space-time interest points are arranged
according to their location in 3D cube while traversing along the direction x followed by y
followed by t. The black dot at location Aij indicates an edge between salient points pi and
pj. The more number of black dots around diagonal in adjacency matrix confirms that as
the distance between two salient points increases, the possibility of an edge between them
decreases (see Fig. 2(d)). Fig. 2(b) shows the cube of graphs corresponding to the adjacency
matrix A. Each isolated graph shown in the cube corresponds to a local action/activity
in the video. The individual local activity may belong to some kind of abnormality, or a
group of these local activities together may correspond to an abnormal activities. Fig. 2(c)
illustrates the behaviour of an edge existence membership function, where it can be observed
that the frequency of points with low membership value is high while the frequency of the
high membership value is very low.

3.3. Activity Recognition

Once the video activities are represented using graphs then the next task is to classify
them as normal activity or abnormal activity. This section presents framework for detecting
both local and global activities.

3.3.1. Recognition of Local Abnormal Activities.

A surveillance video may contain multiple local activities occurring simultaneously. Each
local activity can be represented using a graph. A max-margin classifier is trained from the
collection of all the local activity graphs from the training videos. Then this classifier is
used to predict the behaviour of the local activities in the test videos.

Let {Gi, yi}ni=1 be the corresponding labeled graphs for n activities {Ai}ni=1 from N
training videos {Vi}Ni=1, where the label yi is −1 for graphs of normal activity and +1 for
graphs of abnormal activity. The problem for training the standard SVM [26] from the
dataset {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {−1,+1} can be formulated as:

min J =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xT
i ,x)−

n∑
i=1

αi, (6)

subject to
n∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C,

where C is the box constraint parameter. By solving this optimization problem we get m
support vectors (SV), their respective values of αi, and the value of bias b. These SVs give
a decision function of the form

f(x) = sign

(
m∑
i=1

αiyiK(xT
i ,x) + b

)
, (7)

where αi are Lagrange multipliers, x is the test tuple and f(x) = f(−1,+1) is its prediction.
K(xT

i ,x) is a kernel function used for computation of the similarity between two vectors [27,
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Figure 2: A sample graph generated for a sample abnormal video from UMN anomaly dataset. (a) Adjacency
matrix of the graph generated. (b) 3D-Visualization of the sample graph. (c) Edge existence membership
for the sample graph. (d) Edge existence membership frequency for the sample graph.

28, 29, 30]. The similar max-margin classifier can be applied for graph classification using
a graph kernel. A graph kernel K(Gi, Gj) gives the similarity between two graphs Gi and
Gj i.e. K(Gi, Gj) ∈ [0, 1]. A wide range of graph kernels are proposed in the literature
like shortest path kernel and random walk kernel, which are the most widely used graph
kernels. However, we adopt random walk kernel because it is computationally efficient than
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other graph kernels. The random walk kernel [31] compares two graphs by counting number
of common random walks between them. The number of common random walks of length
k are calculated by taking direct product graphs because random walk on direct product
graph is equivalent to simultaneous random walk in the two graphs [31]. The kth power of
adjacency matrix of the resultant graph after direct product gives the number of common
walks. The direct product graph of two graphs is defined as given below:

Let G1(V1, E1) and G2(V2, E2) are two graphs, then G×(V×, E×) is the direct product
graph where the node and edge set of the direct product graph are defined as

V× = (vi1, v
r
2) : vi1 ∈ V, vr2 ∈ V

′

E× = ((vi, v
′

r), (vj, v
′

s)) : (vi, vj) ∈ E ∧ (v
′

r, v
′

s) ∈ E
′

Using the definition of direct product graph, Gartner et al. in [31] defined random walk
kernel as follows:

Let G1 and G2 be two graphs. Then for product graph G×, let V× be the node set of G× and
A× be the adjacency matrix for the graph product. With start probability p×, end probability
q×, and a sequence of weights (decaying factor) λ = λ1, λ2, ..., (λi ∈ R, λi ≥ 0 ∀i ∈ N), the
random walk kernel is defined as

K(G1, G2) =
∞∑
k=1

λkq
T
×Ã

k
×p×, (8)

where, Ã = AT [I.(AT .e)]−1 is the normalized matrix. The kernel in Equation (8) is a valid
positive semi definite (p.s.d.) kernel. This can be proved with the help of following technical
lemma:

Lemma 1. ∀k ∈ N : Ãk
×p× = vec[(Ãk

2p
′
)(Ãk

1p)
T ].

Lemma 2. If X ∈ χn×m, Y ∈ Rm×p, and Z ∈ χp×q, then

vec[X̃Y Z̃] = [Z̃T ⊗ X̃]vec(Y ) ∈ Rnq×1

where ⊗ represents Kronecker product and vec represent the vectorization. The proofs of
Lemma 1 and Lemma 2 can be found in [32]. Using Lemma 1 and Lemma 2 we can write

qT
×Ã

k
×p× = qT

×vec[(Ã
k
2p2)(Ã

k
1p1)

T ] Using Lemma 1

= (q1 ⊗ q2)
Tvec[(Ãk

2p2)(Ã
k
1p1)

T ] Because q× = q1 ⊗ q2

= vec[qT
2 Ã

k
2p2(Ã

k
1p1)

Tq1] Using Lemma 2

= (qT
1 Ã

k
1p1)

T (qT
2 Ã

k
2p2) (9)

Each individual term of Equation (9) equals Φk(G1)
TΦk(G2) for some function Φ, and is

therefore a valid p.s.d. kernel. The time complexity of computation of Equation (8) is O(n6).
A fast random walk kernel is proposed by Vishwanathan et al. in [33] which reduces the
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time complexity to O(n3) with the help of Sylvester equation and conjugate gradient (CG)
methods to solve the system of equations.

K(G,G
′
) = qT

×(I− λA×)−1p×. (10)

Using graph kernel, the standard support vector machine in Equation (6) can be rewritten
for finding a max-margin separating line between normal and abnormal graphs as

min J(α) =
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(Gi, Gj)−
n∑

i=1

αi, (11)

subject to
n∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C.

And the decision function in Equation 7 for a test graph G will be

f(x) = sign

(
m∑
i=1

αiyiK(Gi, G) + b

)
. (12)

Thus solving Equation (11) for the graphs representing local activities from the training
videos gives a model which is then used for making a decision of a local activity graph from
test video using Equation 12.

3.3.2. Recognition of Global Abnormal Activity.

The global activities are the set of multiple local activities. The local activities in a global
abnormal activity need not be abnormal. The co-occurrence of several normal local activity
can lead to an abnormal behaviour. After formulating all the local activities as graphs
representing geometric relations of interactions of entities, we build a high level vocabulary
V = {Gj}nj=1 of graphs using k-median clustering over the set of all graphs G = {Gi}ni=1 by
solving the objective function given below:

arg,min
Gj∈V

∑
Gi∈G

K−1(Gi, Gj). (13)

Then vocabulary V of graphs of local activities is used to generate x = {xi}ki=1, a high
level bag-of-graphs (BoG) representation for global activities. After this, a standard binary
support vector machine given in Equation (6) & (7) is used to classify the global activities
into normal or abnormal categories.

4. Experimental Evaluation

This section presents the experimental setup, benchmark datasets, and the outcomes
of the experiments. All the simulations are conducted on a machine having 2-Intel Xeon
processor with 12 core each, 2-Nvidia GPUs with 5GB device memory each, 128GB physical
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memory. The programs are written in C++ and CUDA with the use of opencv and armadillo
libraries. The λ in graph kernel is set to 1/d2, d being the largest degree in the graph dataset
which is a thumb rule. The value of box constraint C in SVM is set to 1. Three datasets,
namely, UCSDped1, UCSDped2, and UMN are used to validate the proposed approach.
Fig 3 shows samples of one normal and one abnormal activities from each of the three
datasets and their corresponding graph formulation. We compare the proposed approach
with other existing state-of-the-art methods like bag-of-words using STIP/SIFT and dense
trajectory based approaches. The details of the experimentation on each of the three datasets
are discussed in the following subsections:
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N
or

m
al

A
ct

iv
it

y
N

or
m

al
G

ra
p
h

0

100

200

300

0
20

40
60

80
100

0

50

100

150

200

Width

Time

H
e
ig
h
t

0
100

200
300

400

0 20 40 60 80 100

80

100

120

140

160

180

Width
Time

H
e
ig
h
t

0

100

200

300

400

10 20 30 40 50 60 70 80 90 100

0

50

100

150

Width

Time

H
e
ig
h
t

A
b
n
or

m
al

A
ct

iv
it

y
A

b
n
or

m
al

G
ra

p
h

0

100

200

300

0
20

40
60

80
100

0

50

100

150

200

Width
Time

H
e
ig
h
t

0
100

200
300

400

0
20

40
60

80
100

80

100

120

140

160

180

200

WidthTime

H
e
ig
h
t

0

100

200

300

0
20

40
60

80

0

50

100

150

200

Width

Time

H
e
ig
h
t

Figure 3: Illustration of normal and abnormal sample and corresponding graphs from all datasets.

4.1. Results on UCSDped1 Dataset

UCSDped1 [20]: UCSD anomaly detection dataset is a widely used standard dataset
for video anomaly detection. Videos are captured with a stationary camera mounted at an
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elevation, overlooking pedestrian walkways. The crowd density in the walkways ranges from
sparse to very crowded. The abnormal events are caused by either the circulation of non-
pedestrian entities in the walkways, or anomalous pedestrian motion patterns. This data
set contains videos captured in vertical view i.e. groups of people walking towards and away
from the camera, and there is some amount of perspective distortion. It contains 34 training
and 36 testing videos. The dataset contains crowd of people walking normally vertical to
camera. The anomaly includes fast motion, zig-zag motion, and appearance of vehicles. The
performance of classification on UCSDped1 dataset using the proposed approach is 97.14%,
where as the performance of existing bag-of-words approach using STIP features is 82.00%
on the same dataset. The performance of existing other bag-of-words approaches using
SIFT and dense trajectories give 80.00% and 85.71%, respectively, on the same dataset.
There is a significant improvement in the performance of the proposed approach due to the
deviation in the geometrical structure of the graphs generated during normal walking and
the graphs corresponds to the fast motion, zig-zag motion, and appearance of vehicles as
can be shown in fig 3. Thus the proposed approach is able to locate the evidence in order
to detect abnormal activities efficiently.

4.2. Results on UCSDped2 Dataset

Table 1: Comparison of classification performance (%) of proposed approach with existing bag-of-words
(BoW) approaches using STIP, SIFT and dense-trajectories (DT)

Dataset SIFT+BoW STIP+BoW DT+BoW Proposed BoG
UCSDped1 80.00 82.00 85.71 97.14
UCSDped2 77.62 75.82 88.86 90.13
UMN 85.00 85.00 81.00 95.24

UCSDped2 [20]: UCSDped2 dataset contains the scenes of pedestrian movement parallel
to the camera plane. It contains 16 training video samples and 12 testing video samples.
The dataset contains crowd of people walking normally vertical to camera. The anomaly
includes fast motion, zig-zag motion, and appearance of vehicles. The proposed approach is
able to extract significant evidence with discriminative ability in order to detect abnormal
activities efficiently because of incorporation of geometric structure along with motion and
appearance information. The geometrical structure of the graphs generated during normal
walking are deviating from the graphs corresponding to fast motion, zig-zag motion, and
appearance of vehicles see Fig. 3. The performance of classification on UCSDped2 dataset
using the proposed approach is 90.13%, where as the performance of existing bag-of-words
approach using STIP features is 75.82% on the same dataset. The performance of existing
other bag-of-words approaches using SIFT and dense trajectories give 77.62% and 88.86%,
respectively, on the same dataset.

4.3. Results on UMN Dataset

UMN [42]: UMN is also a publicly available dataset containing normal and abnormal
crowd videos from the University of Minnesota. Each video consists of an initial part of a
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Table 2: Performance comparison (%) of proposed approach with existing methods

Reference Method UCSDped1 UCSDped2 UMN
Adam et al. 2008 [34] Adam 61.10 54.20 -

Mehran et al. 2009 [35] SF 63.50 65.00 87.40
Kim et al. 2009 [21] MPPCA 64.40 64.20 -

Mahadevan et al. 2010 [20] MDT 75.00 75.00 96.30
Wu et al. 2010 [14] Chaotic Invar. - - 94.70

Cong et al. 2011 [36] Sparse 81.00 - 97.20
Raghavendra et al. 2011 [37] PSO 79.00 - -

Antic et al. 2011 [38] BVP 82.00 - -
Saligrama et al. 2012 [15] LSA 84.00 - 96.60

Roshtkhari et al. 2013 [39] Roshtkhari 85.00 - -
Lu et al. 2013 [40] 150fps 85.00 - -
Li et al. 2014 [41] H-MDT 82.20 81.50 96.30

Kaltsa et al. 2015 [2] Swarm 72.98 73.08 97.01
Chang et al. 2015 [10] GPR 76.30 - -

Proposed BoG 97.14 90.13 95.24

normal behavior and ends with sequences of the abnormal behavior. The dataset contains
11 training and 11 testing video scenes in different environments where a crowd of people
walking normally and after some time, they suddenly start running. Fig. 3 shows that
the geometrical structure of the graphs generated during normal walking (dense and bigger
graph) are deviating from the graphs generated during running (sparse and small graph). In
this way, the evidences obtained using the proposed approach contains significant informa-
tion in order to detect abnormal activities efficiently. The performance of classification on
UMN dataset using the proposed approach is 95.24%, where as the performance of existing
bag-of-words approach using STIP features is 85.00% on the same dataset. The performance
of existing other bag-of-words using SIFT and dense trajectories give 85.00% and 81.00%,
respectively, on the same dataset.

It is observed that the proposed approach achieves better performance when compared
to other bag-of-words approached using various descriptors like STIP (HoG+HoF), SIFT,
and dense trajectories on UCSDped1, UCSDped2, and UMN datasets. Table 1 gives the
performance comparison of the proposed approach with existing methods.

Table 2 presents the performance comparison of proposed approach with the existing
state-of-the art methods. It can be observed from the Table 2 that the proposed method
achieves consistent performance on all the three datasets used. Also, the proposed ap-
proach on UCSDped1 and UCSDped2 datasets outperforms the state-of-the-art methods
and achieves a comparable performance on UMN datasets. This may be due to the fact that
the performance of abnormal activity recognition depends on the nature/type of anomaly
present in the dataset. Overall, the proposed method achieves better performance across
datasets as it is able to detect a wide variety of abnormal activities in videos.
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5. Conclusion

In this paper, we present a novel framework for abnormal activity recognition in surveil-
lance videos. The graph formulation of activities captured in surveillance videos contain
significant discriminative ability to determine the behaviour of activities. The motion of
the objects/entities, their co-relation, and interactions to each others is subsequently repre-
sented by graphs. Finally, the graph formulation of the video activities convert the problem
of anomaly detection into a graph classification problem for this, we exploit support vector
machine together with graph kernel. The use of graph kernel for measuring similarity be-
tween two graphs provides robustness to slight deformations to the topological structures
due to presence of noise in data. The experimental results outperforms the existing widely
used methods like dense trajectories, bag-of-visual-words etc., which proves the efficacy of
the proposed approach.
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