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Abstract—Echocardiography is a widely used and cost-effective
medical imaging procedure that is used to diagnose cardiac
irregularities. To capture the various chambers of the heart,
echocardiography videos are captured from different angles
called views to generate standard images/videos. Automatic clas-
sification of these views allows for faster diagnosis and analysis.
In this work, we propose a representation for echo videos which
encapsulates the motion profile of various chambers and valves
that helps effective view classification. This variety of motion
profiles is captured in a large Gaussian mixture model called
universal motion profile model (UMPM). In order to extract
only the relevant motion profiles for each view, a factor analysis
based decomposition is applied to the means of the UMPM. This
results in a low-dimensional representation called motion profile
vector (MPV) which captures the distinctive motion signature
for a particular view. To evaluate MPVs, a dataset called ECHO
1.0 is introduced which contains around 637 video clips of
the four major views: a) parasternal long-axis view (PLAX),
b) parasternal short-axis (PSAX), c) apical four-chamber view
(A4C), and d) apical two-chamber view (A2C). We demonstrate
the efficacy of motion profile-vectors over other spatio-temporal
representations. Further, motion profile-vectors can classify even
poorly captured videos with high accuracy which shows the
robustness of the proposed representation.

Index Terms—Echocardiograph video classification, view clas-
sification, motion modelling, Gaussian mixture models, factor
analysis

I. INTRODUCTION

Cardiovascular diseases claim more lives than cancer and
lung diseases combined. It is the leading cause of mortal-
ity accounting for 43.8% of all deaths [1] and has a high
incidence and high mortality rate in individuals with low
income, low education and with socioeconomic deprivation
[2]. Early diagnosis and intervention have a great impact in
reducing the mortality. For example, a study showed that in
latent rheumatic heart disease over a follow-up of 7.5 years,
nearly 20% patients developed severe conditions requiring
surgery [3]. Recognition of such conditions is vital, or it
can lead to delayed presentation and poor outcomes. Among
the various investigations used to recognize heart diseases
(ECG, Echocardiography, Stress imaging, CT or MRI of the
heart, Myocardial perfusion scan, and Coronary angiography),
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echocardiography is the only imaging technology that is low-
cost, non-invasive, portable and can yield real-time dynamic
data that can diagnose a multitude of cardiac problems.

In echocardiography, the heart is examined from several
angles (views) to quantify the disease. Attaining the correct
“view” is quintessential before proceeding with the diagnosis.
Standard positions on the chest wall are used for the place-
ment of the transducer which are called “echo windows”.
Most commonly used echo windows are parasternal, apical,
suprasternal, and subcostal positions. Tilting the probe at these
echo windows yield several cross-sections of the heart called
“views” - several views are taken delineating various parts of
the heart, and then various calculations are done in each view.
For the sake of standardization, certain views shown in Figure
1 are considered standard such as PLAX (Parasternal long
axis view), PSAX (Parasternal short axis view), A4C (Apical
four chamber view), A2C (Apical two chamber view), GA
(Great arteries view), A5C (Apical five chamber view), A3C
(Apical three-chamber view), Suprasternal, and Subcostal. For
example, to attain the PLAX view, the transducer is positioned
on the left sternal edge; 2nd to 4th intercostal space, with
the marker dot direction pointing towards the right shoulder.
Almost all echocardiography procedures are started with the
PLAX view which gives information about the left ventricle
(LV), aortic valve, mitral valve (MV), and left atrium (LA)
[4].

The process of collecting echocardiographs described above
is low-cost, time-efficient, and non-invasive but suffers from
being subjective. The quality of the acquired view and after
that the calculations varies highly from experienced sonogra-
phers to novice ones. Errors can creep in calculations such
as left ventricle volume, regurgitant jet area calculation, and
improper gating of doppler, resulting in over or underesti-
mation of the parameters. Automation of echocardiography
will help not only in generating high-quality videos but also
in the interpretation of videos based on the latest guidelines
which will reduce the burden on practicing physicians. It will
be of tremendous help in hospitals with heavy patient load
and lack of experienced echocardiographers. Further, reducing
operator dependency, subjectivity, and variable measurements
is particularly important in certain conditions such as heart
failure, valvular lesions, and cardiomyopathy wherein even a
small change in parameters can lead to changes in treatment
modality.

The first step in automation of echocardiography is identi-
fication of views. Only once a proper view is attained, further
examination (M-mode/Doppler/Color) and calculations can be
done. To automate view classification, a dataset created with
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Fig. 1. Different echocardiograph views - (a) Parasternal Long Axis (PLAX), (b) Parasternal Short Axis (PSAX), (c) Apical Four chamber (A4C), and (d)
Apical Two chamber (A2C), (e) Parasternal view at Great arteries level, (f) Subcostal view (g) Suprasternal view, (h) Inbetween View. The Inbetween views
cannot be truly classified or can be classified into more than one group. All the views are from ECHO 1.0 database which consists of images from more than
200 patients that includes normal as well as pathological states.

good quality views according to the guidelines is of paramount
importance [5]. Most of the works in the past consider images
for view classification [6], [7]. However, in videos, there is a
clear delineation of endocardial borders and the direction of
opening of valves and movement of the wall can be clearly
seen. We hypothesize that this characteristic motion is vital to
the recognition of the view. In order to verify this hypothesis,
we conducted a study with 33 echocardiographers. Among
the participants, 84.8% (28 out of 33) found identification
of views with videos better than images and more ‘intuitive’
while the rest 15.2% (5 out of 33) were non-committal.
Hence, we introduce a dataset called ECHO 1.0 which contains
around 637 annotated video clips of the four major views :
a) parasternal long-axis view (PLAX), b) parasternal short-
axis (PSAX), c) apical four-chamber view (A4C) and d)
apical two-chamber view (A2C). In addition, there are 66
videos where the views cannot be identified easily even by
trained physicians. These videos mimic the echocardiography
performed on patients with poor echo windows resulting from
obstructive airway disease, obesity, or recent cardiothoracic
surgery [8].

To recognize the different views, we propose a represen-
tation for echocardiography videos which encapsulates the
motion profile of various chambers and valves that allows
for effective view classification. At first, a large Gaussian
mixture model called universal motion profile model (UMPM)
is trained to capture the variety of motion profiles for each
valve and chamber. As each view captures a different motion
profile, factor analysis is used to extract only the motion
profiles relevant to that view. This results in a low-dimensional
representation for each video which is called as a motion
profile vector. Such a representation can capture the distinctive
motion signature for a particular view. We demonstrate the effi-
cacy of motion profile-vectors over other deep representations.
Further, motion profile-vectors are able to classify even poorly
captured videos which shows the robustness of the proposed

representation.

II. RELATED WORK

One of the first automatic cardiac view recognition system
proposed in [9] used a part-based method. At first, every heart
chamber was spatially located using a Markov Random Field
based relational graph which was verified by classification
using a support vector machine (SVM). However, this method
had limited robustness to noise and image transformations.
[10] used a LogitBoost network and Haar-like rectangular
features. But this study used only two-view classification and
also needed human intervention to handle contradicting results.
[11] also employed a multi-class LogitBoost algorithm which
consisted of an left ventricle (LV) detector for each view by
incorporating Haar wavelet type local features. The individual
classification results from each view detector were then used
by a boosted classifier to yield the final classification.

Histogram of Oriented Gradients (HOG) as a discriminatory
feature was used by [12] to encode spacial arrangement of
edges and then an SVM classifier was used. Though scale-
invariant, their study considered only two views, i.e. PLAX
and PSAX and still misclassfied images with poor con-
trast. Similarly, [13] used edge filtered scale-invariant motion
features (encoded using local spacial, textural and kinetic
information). The classifier used was a pyramid matching
kernel based SVM but there was high misclassification among
similarly looking views.

Another approach to view classification involves the seg-
mentation of the different heart chambers. The relative size of
the segmented chambers are compared to determine the view.
Database guided segmentation of the left ventricle (LV) was
demonstrated in [14] where structure detection was done using
boosted cascade of weak classifier and shape inference was
done using a feature selection procedure. The final segmenta-
tion was attained by nearest-neighbour approach based on the
sample based representation of the joint distribution. In [15]
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left auricle (LA) segmentation and calculation of LA volume
was used to identify LA diseases. [16] used a multi-stage clas-
sification algorithm to classify apical views using supervised
dictionary learning approaches and also demonstrated the
advantage of using spatio-temporal feature rather than spacial
features alone.Principal component analysis in conjunction
with ground truth LA segmentation contours were employed
to train and classify the apical view. However, the approach
lacked multi-view classification using LA segmentation. [17]
modified the same approach to generate an algorithm called
Scan Assistant which was implemented for real-time use and
helped the echocardiographer during acquisition.

The first use of motion features was introduced by [18]
using the 3D KAZE detector. A Fisher vector-based represen-
tation called the Histogram of Acceleration (HOA) was derived
for the classification of echo videos. [19] used motion of the
heart in each cardiac cycle along with spatial information.
They used an Active Shape Model (ASM) to track every
cardiac cycle and the output of the ASM was projected onto
an eigenmotion feature space of each view class for matching.
However, this method was prone to errors in ASM detection
or tracking as well as the sequence fitting score.

Lately, many classification approaches have been developed
using deep neural networks. A study comparing traditional
machine learning paradigm called Supervised Descent Method
(SDM) and Deep learning (ConvNet) showed similar results on
classification [20]. However, the training computational cost
was significantly low with SDM. In [6], a multi-layer convo-
lutional neural network was used with supervised learning to
simultaneously classify 15 views in still images. They used
occlusion testing and saliency mapping to demonstrate the
features used by echocardiographers to classify views. Their
method was not able to effectively discriminate between highly
similar views such as A3C and A2C. A fused deep learning
architecture was demonstrated by [21] where they used hand-
crafted features within a data driven learning architecture
by incorporating both spatial and temporal information that
performed better when compared to only a single spatial
ConvNet.

Deep learning was also incorporated into segmenta-
tion based view classification. Hierarchical segmentation of
echocardiography videos using views, states, and sub-states
of the heart was proposed in [22]. The structural information
was extracted using a histogram of oriented gradient (HOG)
descriptor. [23] classified normal and abnormal wall motion
abnormalities in strain imaging using both hand-crafted fea-
tures approach vs CNN and found comparable accuracy in
both the methods. Particle tracking to determine the longi-
tudinal strain useful for understanding recognition was used
in [24]. For view classification, a 13 layered ConvNet based
on the U-net architecture that consisted of contracting and
expanding paths was used by [25]. They also trained another
broader 22-class network with views from incomplete chamber
borders to increase accuracy. An additional neural network was
also trained for classification of all types of histogram patterns
over a full cardiac cycle. This network was used in reducing
the ambiguities among the views due to cardiac dynamics.
[26] demonstrated the use of CNN in real-time to improve

the quality of the image acquisition by the sonographer by
assessing the acquired image on a scale of 1 to 6. However
the study was limited to end-systolic frames from the apical
4 chamber (A4C) view.

Though ConvNets are shown to perform better than the
traditional feature representation based techniques, a large
annotated dataset is required for training. [27] proposed an
approach using automatic Kalman filter segmentation to pre-
train the neural network. The method achieved good accuracy
but it required training with a small set for expert annotations
for fine-tuning. This need for annotations to achieve either
segmentation or tracking of motion in the various chambers
motivated us to design an approach which can capture motion
patterns implicitly. It intuitively mimics the way echocar-
diographers analyze different views by combining it spatio-
temporal information across the various parts of the heart.

III. PROPOSED METHOD

As discussed above, each echocardiography view consists
of characteristic spatial and temporal attributes that need to be
captured to recognize that view.

A. Feature Extraction

First, feature points or interest points (like corners) are
densely sampled on a grid spaced by W = 5 pixels[28].
Feature points are then tracked using dense optical flow.
Once the dense optical flow field is computed, interest points
can be tracked. The trajectory of each tracked interest point
is described using three descriptors as shown in Figure 2:
histogram of oriented gradients (HOG) describes static appear-
ance information, histogram of optical flow (HOF) and motion
boundary histogram (MBH) capture the motion information
based on optical flow. The HOG, HOF, and MBH descriptors
are calculated for each tracked point within a space-time
volume aligned with the trajectory of size N ×N ×L pixels,
where N = 32 and L = 15 Figure 2.

To obtain local structural information describing the tra-
jectory, the space-time volume of N × N × L pixels is
subdivided into cells of size nh × nw × nt, where nh = 2,
nw = 2, and nt = 3 are height, width, and temporal segment
lengths. We compute HOG, HOF, and MBH in each cell
of the space-time volume. For HOG, orientation of spatial
information is quantized into 8 bins leading to 96 dimensions
(nh × nw × nt × 8). For HOF, orientations are quantized
into a total of 9 bins (one extra if no motion is detected)
leading to 108 dimensions(nh × nw × nt × 9). The MBH
descriptor encodes the gradient of the optical flow, which
results in the removal of locally constant camera motion
and the retention of information about changes in the flow
field (i.e., motion boundaries). The MBH descriptor separates
optical flow ω = (u, v) into its horizontal and vertical compo-
nents. Spatial derivatives are computed for each of them, and
orientation information is quantized into histograms, and the
magnitude is used for weighting. We obtain an 8-bin histogram
for each component (i.e., MBHx and MBHy). Both histogram
vectors are normalized separately with their L2 norm. The



0278-0062 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2019.2957290, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING 4

dimension obtained for both MBHx and MBHy is 96 (i.e.,
nh × nw × nt × 8).

The reason for quantizing the orientations into bins is to
compensate for variations introduced by rotation which is very
commonly encountered in echocardiographic videos. For HOG
and MBH, the entire 360 degrees is divided into 8 bins whereas
an additional 9th bin is used for HOF to account for optical
flow magnitudes that are lower than a threshold. As each bin
covers 45 degrees, the orientations will contribute to the same
bin and form the output histogram even if the video is rotated
(by any angle less than 45 degrees).

HOG HOF MBH

L

Fig. 2. HOG, HOF and MBH extraction from trajectories highlighted in
green. Adapted from [29]. Best viewed in colour.

Finally, the choice of spatio-temporal of 15 frames (L) is
found to be sufficient to represent valve and chamber motion
in echocardiographic videos. Every echocardiographic clip
recording contains 1 beat i.e 1 systole and 1 diastole which
encompasses the whole heart motion of 1 complete cardiac
cycle. Considering the average heart rate of 60/min, 1/2 of the
cardiac cycle (systole or diastole) is captured in 15 frames.

B. Universal Motion Profile Model (UMPM)

The descriptors extracted above cover all the local move-
ments and while some of them are unique to a particular view,
others are shared across different views. Since, it is difficult
and time-consuming to annotate each movement and whether
it is belongs to one or more views, a universal motion profile
model (UMPM) is constructed to capture all the movements. A
UMPM is large Gaussian mixture model which is built using
local descriptors where each Gaussian component captures a
motion profile. The sharing of motion profiles across views
also helps in the representation of those views which have
fewer videos available for training.

A UMPM model can be described as p(xl) =∑C
c=1 wcN (xl|µc,σc), where the mixture weights wc satisfy

the constraint
∑C

c=1 wc = 1 and µc,σc are the mean and
covariance for mixture c of the UMPM, respectively. The
covariance of a Gaussian component denotes the inter-patient

variation for that motion profile. A feature xl is part of a clip
x represented as a set of feature vectors x1,x2, · · · ,xL. A
separate UMPM is trained using each feature - HOG, HOF,
and MBH descriptor.

To capture the motion profiles in a particular clip, the
UMPM parameters need to be adapted using the features in
the clip [30], [31]. Given the feature vectors of a clip x, the
probabilistic alignment of these feature vectors into each of
the C mixture components of the UMPM is calculated as a
posterior p(c|xl) which is computed as

p(c|xl) =
wcp(xl|c)∑C
c=1 wcp(xl|c)

, (1)

where p(xl|c) is the likelihood of a feature xl being generated
from a mixture c.

The computed posterior probability p(c|xl) is then used to
calculate the zeroth and first order Baum-Welch statistics for
a clip x given by

nc(x) =
L∑

l=1

p(c|xl), (2a)

and

Fc(x) =
1

nc(x)

L∑
l=1

p(c|xl)xl, (2b)

respectively. The adapted parameters for every clip is the
convex combination of the UMPM and the clip-specific statis-
tics. The adapted weights and means for each mixture of the
UMPM are

ŵc = αnc(x)/L+ (1− α)wc (3a)

and
µ̂c = αFc(x) + (1− α)µc. (3b)

Concatenating the adapted means results in the super motion
profile vector (SMPV) for each clip as s(x) = [µ̂1µ̂2 · · · µ̂C ]

t.
The SMPV can represent varying length videos as a fixed high-
dimensional representation. However, each clip comprises of
only a few motion profiles from the UMPM which means a
low-dimensional representation can be extracted from SMPV.
Hence, we attempt the same in the next subsection.

C. Motion Profile Vector (MPV)

The super motion profile vector s can be represented as

s = m + Tw, (4)

where m is the patient-independent supervector that can be
directly obtained by concatenating the means of the UMPM,
T is the total variability matrix, and w is the low-dimensional
motion-profile vector (MPV) which describes the unique mo-
tion profiles present in the clip. As the prior distribution of
MPV is assumed to be standard Gaussian, the more meaning-
ful quantity is its posterior distribution after observing a clip
which is given by

P (w|x) ∝ P (x|w)N (0, I)

∝ exp

(
−1

2
(w − L(x))tM(x)(w − L(x))

)
,

(5)
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where Σ is a diagonal covariance matrix capturing the resid-
ual variance in patients and views not encapsulated in total
variability matrix and M(x) = I + Ttσ−1N(x)T. Also, the
matrix L(x) is actually a shorthand designated as

L(x) = I + TtΣ−1N(x)T
−1

(x)TtΣ−1s̃(x),

where N(x) is a diagonal matrix whose blocks are nc(x)I,
for c = 1, ..., C and I is the identity matrix. The supervec-
tor s̃(x) is the centered supervector because the posterior
distribution of MPV depends on the statistics of the clip
centered around the means of the UMPM. The centered
statistics are computed by subtracting the UMPM means from
the feature vectors. Hence, the centered first-order statistics
are F̃c(x) =

∑L
l=1 p(c|xl)(xl − µc) and the concatenated

first-order statistics gives the centered supervector s̃(x) =
[F̃1(x)F̃2(x) · · · F̃C(x)]

t.

From Equation 5, the mean and covariance matrix of the
posterior distribution are given by

E[w(x)] = M−1(x)TtΣ−1s̃(x) (6a)

and
Cov(w(x),w(x)) = M−1(x), (6b)

respectively. Using EM algorithm [32], the posterior mean and
covariance are iteratively estimated in the E-step and the same
are used to update T and Σ in the M-step.

In the E-step, m and Σ are initialized with the UMPM
mean and covariance, respectively. For T, a desired rank r is
chosen and it is randomly initialized. Then posterior mean and
covariance for MPV are computed according to Equations 6a
& 6b.

In the M-step, T is calculated as the solution of∑
x

N(x)TE[w(x)wt(x)] =
∑
x

s̃(x)E[wt(x)], (7)

that leads to a system of linear equations. For each c =
1, · · · , C, the residual matrix Σ is estimated for every mixture
as

Σc =
1

nc(x)

(∑
x

S̃c(x)−Mc

)
, (8)

where Mc denotes the cth diagonal block of
1
2

∑
x s̃(x)E[wt(x)]T t + TE[w(x)]̃st(x). Also S̃c(x)

is the centered second-order statistics of the clip that is given
as S̃c(x) = diag

(∑L
l=1 p(c|xl)(xl − µc)(xl − µc)

t
)

.

After the estimation of T and Σ, the MPV is given by the
mean of its posterior distribution

w(x) = (I + TtΣ−1N(x)T)−1TtΣ−1s̃(x). (9)

This entire process of computing the motion profile vector
is known as factor analysis [32]. The computational cost in
obtaining motion profile vector is O(CFD+D2) where C is
the number of the mixtures in the UMPM, F is the dimension
of the feature vector (HOG, HOF, or MBH), and D is the
dimension of the motion profile vector. Hence, MPV extraction
is computationally demanding for real-time applications.

IV. EXPERIMENTAL RESULTS

The proposed approach is evaluated on the ECHO 1.0
dataset which is described below.

A. Dataset Description: ECHO 1.0

The ECHO 1.0 ∗ dataset consists of Echocardiographic
clips recorded in Department of Non-invasive Cardiology,
Kamineni Hospital, King Koti, Hyderabad, India from May
2016 to Dec 2016 using the Philips Echo machine iE 33, x5-
1 Matrix probe after ethical clearance from hospital and after
anonymizing data that could identify patients. The raw dataset
consists of 703 videos from 200 patients which include all
possible modes and views including Color mode, M-Mode,
Transesophageal method, Pulsed wave, and continuous wave
Doppler method. The echocardiograms used in this study were
selected randomly from real echocardiograms from patients
with a range of ages, sizes, and hemodynamics. As the
dataset presents real-world training data, the proposed model is
broadly applicable to clinical applications. The total dataset of
637 videos is categorized into four major echo views - PLAX,
PSAX, A4C, and A2C consisting of 138, 155, 212, and 132
videos, respectively. These videos were manually labelled by
multiple reviewing echocardiographers each exhibiting more
than 90% confidence in their annotation. The dataset with the
4 views was randomly split into training, validation, and test in
a 70:10:20 ratio. This process was repeated 3 times to obtain
different splits of the same dataset for cross-validation.

B. Experimental Settings

The HOG, HOF, and MBH features were obtained for each
trajectory with temporal length (L) of 15. As the echocardio-
graphy video is captured at 25 frames per second, the motion
profile of all heart chamber and valves could be captured
in 15 frames. For the UMPM, the number of mixtures was
varied between 256, 512, and 1024 as any further increase
did not yield any benefit in terms of classification accuracy
but incurred significant training time. Also, it was empirically
determined that varying the dimension of motion profile vector
does not affect classification performance and hence for all our
experiments it was fixed to 200.

C. Motion profile vectors on ECHO 1.0

The classification performance of motion profile vectors
(MPV) is shown in Table I. It can be observed that varying
the number of UMPM mixtures does not yield any significant
change in performance. Both support vector machine (SVM)
and subspace discriminant analysis (SDA) yield comparable
results while k-NN lags behind. This shows that MPVs
perform better with subspace analysis based approaches than
distance based approaches. Also, the HOG descriptor performs
better than HOF and MBH descriptors which leads us to hy-
pothesize that deformation in shape of various heart chambers
over time provides the most conclusive evidence in identifying
the view accurately.

∗The dataset ECHO 1.0 can be requested from bm14resch11001@iith.ac.in
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TABLE I
CLASSIFICATION ACCURACY (%) ON ECHO 1.0 USING MOTION PROFILE VECTORS

Classifier
# UMPM mixtures

MBH HOF HOG
256 512 1024 256 512 1024 256 512 1024

k-NN 73.2 72.7 73.0 67.3 66.4 71.3 79.4 78.9 77.5
SVM 87.5 85.3 86.0 79.2 79.2 79.4 87.9 89.3 88.2
SDA 87.5 87.0 84.9 80.3 79.6 81.3 88.6 88.1 88.4

In literature it has been shown that HOG, HOF, and
MBH contain complimentary information [29]. In Table II,
the complimentary nature is exploited by concatenating the
MPVs from these descriptors. It can be observed that all the
combinations used for concatenation improve classification
accuracy with the best being the concatenation of all three
descriptors. We present the confusion matrices for the best
performing HOG MPV (512 UMPM mixtures) and the best
performing concatenate HOG+HOF+MBH MPV (512 UMPM
mixtures) in Figure 3. It can be seen that adding HOF and
MBH information to HOG helps in classifying the PSAX and
A2C views more accurately while reducing misclassification
among these views. This leads us to hypothesize that views
which may have some common shape deformations can be
better classified by using optical flow descriptors and their
derivatives.
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Fig. 3. Confusion matrices for best performing (a) HOG MPV (512 UMPM
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tures). Best viewed in color.

D. Comparison with other representations

We compare the performance of motion profile vectors
with deep learning based representation techniques. The most
widely used approaches in deep learning for video classifica-
tion are - a) classifying one frame at a time with a ConvNet, b)
using a spatio-temporal representation obtained directly from
the video, and c) extracting features from each frame with
a ConvNet and passing the sequence to a separate recurrent
neural network. To represent each of these variations, we
consider three representations - a) spatial CNN based on the
VGG-16 network as shown in [6], b) spatio-temporal 3DCNN
representation [33], and c) spatial CNN features extracted from
15 consecutive frames using the InceptionV3 network [34]
followed by a temporal long short-term memory (LSTM). The
LSTM network consists of a 4096-dimensional input layer
followed by a 1024-dimensional dense layer attached to the
output layer. For both the 3DCNN and LSTM, a temporal
length of 15 frames was considered to maintain consistency

with the proposed method. In order to evaluate the spatial
CNN, every testing video is assigned a label based on the class
where the majority of its constituent frames are classified.

In Table III, the comparison of MPVs with deep learning
based representations is presented. It can be observed that
imparting temporal context improves the classification per-
formance. Specifically, using a spatial CNN to summarize
the spatial information and then providing the same to learn
a sequence works better than directly extracting the spatio-
temporal information from the video. However, our approach
of extracting only specific motion profile information using
factor analysis proves to be more discriminative and comfort-
ably outperforms the other approaches.

V. DISCUSSION AND ANALYSIS

The results presented in the previous section show that
the proposed method shows no major confusion between
the various views. However, often very poor quality 2D
echocardiography are obtained due to improper placement
of probes. Hence, we wanted to test the robustness of the
proposed approach in such extreme conditions. During our
data collection, we found 66 very poor quality videos. A
comparison of these videos compared to the videos in ECHO
1.0 is shown in Figure 4. For these videos, a subjective
confidence of 25% or less is exhibited during annotation. Some
of the factors causing poor placement are restricted movement
of patients, high fat content in thoracic region of the patients,
relative inexperience of operator etc.

The 66 videos considered for evaluation are from the four
classes used in ECHO 1.0 but are denoted as - PLAX P,
PSAX P, A4C P, and A2C P, to avoid confusion. For eval-
uation, MPVs for these videos are obtained using the best
performing 512 mixture universal motion profile model of
HOG features described in the previous subsection. The SVM
classifier trained using the MPVs of HOG features from ECHO
1.0 (512 mixture UMPM), is used for testing. The confusion
matrix is presented in Figure 6 where it can be observed that
MPVs are still able to classify around 75% of the videos
correctly. This shows the robustness of the MPVs to different
aberrations in echocardiography videos that makes it a viable
approach for clinical applications.

The drop in the accuracy can be attributed to the very poor
quality echocardiogram where it was not possible to discern
the features even by the echocardiographers themselves. For
example, in Figure 5, the A4C view can easily be confused
for PSAX - as only one of the 4 chambers is seen and the
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TABLE II
CLASSIFICATION ACCURACY (%) ON ECHO 1.0 USING CONCATENATED MOTION PROFILE VECTORS

Classifier
# UMPM mixtures

MBH+HOF HOF+HOG HOG+MBH HOG+HOF+MBH
256 512 1024 256 512 1024 256 512 1024 256 512 1024

k-NN 75.4 74.1 76.2 78.5 79.4 79.8 78.4 77.1 76.2 77.1 77.9 78.2
SVM 87.2 86.3 87.4 89.2 90.7 90.8 89.8 89.1 89.1 90.5 90.8 90.1
SDA 87.9 85.3 86.7 89.7 89.8 89.4 90.0 88.4 90.3 87.4 87.9 87.1

TABLE III
COMPARISON OF CLASSIFICATION ACCURACY WITH OTHER

REPRESENTATIONS ON ECHO 1.0.

Representation Accuracy (%)
CNN(VGG-16) [21] 50.5

3DCNN [33] 85.4
CNN(InceptionV3) [34] + LSTM 87.5

MPV(HOG+HOF+MBH) 90.8

mitral valve motion which is hallmark motion in this view is
also not seen.

Though we achieve very good accuracy with the proposed
method, the time complexity of the proposed method makes
it challenging to achieve a real-time implementation of the
problem. Hence, our method is more suitable for analysis
of videos after they have been recorded. Further, we have
considered the standard views of 2D echocardiography as it
difficult to obtain videos of non-standard views which may be
of interest in some cases.

VI. CONCLUSION

In this work, we presented a representation called mo-
tion profile vector which encapsulates the motion profile
of echocardiography videos for effective view classification.
factor analysis to extract only the motion profiles of the
relevant areas and obtain a low-dimensional representation
called motion profile vector. Such a representation is shown to
capture the distinctive motion signature for a particular view.
We demonstrate the efficacy of motion profile-vectors over
deep learning based representations. Further, motion profile-
vectors are able to classify even poorly captured videos with
high accuracy which shows the robustness of the proposed
representation.
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