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Abstract

In this paper, an approach for human action recognition using genetic algorithms

(GA) and deep convolutional neural networks (CNN) is proposed. We demon-

strate that initializing the weights of a convolutional neural network (CNN)

classifier based on solutions generated by genetic algorithms (GA) minimizes the

classification error. A gradient descent algorithm is used to train the CNN clas-

sifiers (to find a local minimum) during fitness evaluations of GA chromosomes.

The global search capabilities of genetic algorithms and the local search ability

of gradient descent algorithm are exploited to find a solution that is closer to

global-optimum. We show that combining the evidences of classifiers generated

using genetic algorithms helps to improve the performance. We demonstrate

the efficacy of the proposed classification system for human action recognition

on UCF50 dataset.

Keywords: Convolutional Neural Network (CNN), Genetic algorithms (GA),

human action recognition, action bank features

1. Introduction

Inspired by biological neural networks, artificial neural networks were pro-

posed for function approximation. Shortly after their introduction, the failure of
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shallow neural network models to classify non-linearly separable data resulted in

the emergence of deep neural networks that contain more than two hidden layers5

but lacked an effective training algorithm due to vanishing gradient problem [1].

In the last decade, the advancements in computational capabilities and the in-

troduction of effective approaches to train deep neural network architectures has

lead to their wide usage to address various computer vision challenges. Some of

the well known machine learning tasks addressed by deep neural network models10

include MNIST handwritten digit recognition [2], ILSVRC object recognition [3]

and facial expression recognition in the wild [4]. A convolutional neural network

is the most popular approach among deep neural network model that generally

consists of an alternating sequence of convolution and sub-sampling layers.

In the recent years, human action recognition in videos has become a major15

domain of research due to its applications in video retrieval, sports analysis,

health monitoring, human computer interaction and video surveillance. Sev-

eral surveys papers were published in the literature, each one emphasizing a

particular characteristic of recognition. The various methodologies for recogniz-

ing actions performed by a single person are covered in [5] and [6] focuses on20

the approaches to classify full body motions by categorizing them into spatial

and temporal structures. Approaches for multi-view 2D and 3D human action

recognition are discussed in [7]. Several human action recognition datasets were

proposed in the literature [8] to address different types of problems like recog-

nition of realistic activities, interaction and multi-view analysis from varying25

sources. Most of the action recognition techniques rely on some extracted fea-

tures or descriptors for discriminative information for classification. Some of

the most commonly used features/descriptors for human action recognition are

bag-of-visual-words (BoVW) [9], histograms oriented gradient (HOG) [10], his-

tograms of optical flow (HOF)[10], motion boundary histograms (MBH) [11],30

action bank features [12] and dense trajectories [13]. Xiaodan Liang et al. [14]

proposed a hierarchical human action recognition system by modeling each ob-

servation as an ensemble of spatio-temporal compositions. The latent structure

of actions is represented by spatio-temporal and-or graphs with the leaf-nodes
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containing the spatial and temporal contextual interactions. The inability of35

these approaches to scale across multiple datasets has lead to the research on

learning from data. In the recent years, deep learning gained a lot of focus

due to its ability to learn features from data [15]. The effectiveness of convolu-

tional neural networks for object recognition was demonstrated in ILSVRC[3]

(IMAGENET large scale visual recognition challenge) [16][17] after which it40

was used to address various other visual recognition tasks like face recognition

[18], facial expression recognition[19][4], video quality assessment[20] and action

recognition [21][22][23].

The convolutional neural network (CNN) introduced by LeCun et al. in [24]

[25], is the most popular deep neural network model in use for computer vision45

problems. One of the major initial attempts to use CNN for action recognition

was by Baccouche et al. in [26]. In this work, a 3D convolutional neural net-

work is trained to assign a vector of features to a small number of consecutive

frames. The spatio-temporal evolution of these features is used by a recurrent

neural network for classification. In [21], Shuiwang Ji et al. extracted gray, gra-50

dient and optical-flow information along x and y directions from video frames

and used them as input to a 3D CNN model for human action recognition in

surveillance videos. Keze Wang et al. proposed a deep learning model for hu-

man activity recognition in [27] by extending a CNN to incorporate structure

alternatives by using latent variables in convolutional layers to manipulate the55

activation of neurons. The variation in temporal composition of activities dur-

ing recognition in handled through partial activation of network configuration.

A spatio-temporal CNN is used by Liang Lin et al. in [28] to decompose videos

into temporal segments of sub-activities. The model is iteratively optimized by

a learning algorithm with radius-margin regularization for human action recog-60

nition in RGBD videos. Guilhem Chéron et al. proposed a pose-based CNN

descriptor for human action recognition in [29], that extracts and aggregates ap-

pearance and flow information at characteristic positions obtained from human

pose. A differential recurrent neural network to model the temporal evolution of

state dynamics is proposed by Vivek Veeriah et al. in [30] for action recognition.65
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A differential gating scheme emphasizing the information gain caused by salient

motions between successive frames is used to learn spatio-temporal dynamics

associated with salient motion patters. Simonyan et al. proposed a two-stream

convolutional network for action recognition [31] that uses appearance from

still frames (spatial information) and motion between frames (temporal infor-70

mation) as separate recognition streams. The softmax scores of the two streams

are combined using late fusion for classification.

Deep learning aims to learn multiple levels of representation with an intent

to discover high-level abstractions for discrimination. In spite of the expres-

sive power of deep architectures [32], learning in deep architectures [33] is still75

a challenge. Since 2006, several deep learning algorithms like greedy layer-

wise training of deep networks [34] that initializes weights by greedy layer-wise

unsupervised training, a fast learning algorithm for deep belief nets [35] and

strategies for training deep neural networks [36] were proposed. There has been

studies on the difficulty of training a deep feed-forward neural network [37] and80

techniques to improve generalization like: 1) early stopping [38] to avoid overfit-

ting, 2) dropout [39] to avoid co-adaptation by randomly dropping neural units

during training, 3) use of rectified linear units [40] whose activation function

has linear response in a short range, 4) unsupervised pre-training for effective

initialization of weights in deep neural networks [41], and 5) the importance of85

a well-designed initialization of network in deep learning [42]. There are even

studies confirming that randomly chosen trails may be more effective than grid

search and manual search as they effectively search a larger and less promising

configuration space for hyper-parameter optimization [43].

To address these challenges in training deep neural networks, we explore the90

use of evolutionary algorithms (genetic algorithms in particular) for optimiza-

tion of weights of neural network. In literature, genetic algorithms (GA) were

used to optimize neural network systems by feature selection [44] [45], topology

selection [46] [47], weight selection [48][49]. GA is also used to optimize both

weights and topology simultaneously [50] [51] [52] [53]. Most of the existing95

evolutionary neural networks [54] [55] [56] [49] are shallow and a straightfor-

4



ward optimization of a deep neural network weights could be computationally

expensive. Some of the approaches using GA for training deep neural networks

includes the one proposed by David et al. [57] to optimize a sparse autoencoder

by learning the weights using GA assisted back-propagation. In [58], Oullette100

et al. used genetic algorithm to train the weights of a CNN without getting

trapped in a local minimum. The trained classifier is used for crack detection

and was evaluated on a dataset of 100 images. In [59], Fedorovici et al. pro-

posed the use of evolutionary optimization techniques like gravitational search

algorithm [60] and particle swarm optimization [61] to find the optimum weights105

of a convolutional neural network. The weights of CNN are further optimized

using back-propagation algorithm for optical character recognition. Koutnk et

al. proposed an online evolutionary training algorithm [62] for driving a race car

in TORCS racing simulator using recurrent neural network controller and max-

pooling convolutional neural network for feature extraction. The controller and110

CNN are simultaneously optimized using CoSyNE [63] using the images gener-

ated due to the turn and speed predictions of the controller.

In this work, we propose a hybrid search approach for training the weights

of a convolutional neural network classifier exploiting the efficient global and

local search abilities of evolutionary and classical optimization algorithms for115

the prediction of human actions in unconstrained videos. The novelty of the

proposed approach lies in: 1) modeling a convolutional neural network classifier

as a GA-chromosome and its use in improving classification performance, 2) the

use of genetic algorithms to explore different basins (weight initializations) in

the parameter space and steepest-descent algorithm to expedite the search for120

finding the local optimum in a given basin, and 3) combining evidences from

classifiers (that are generated by GA-framework) to overcome the limitation

of individual classifiers. The reminder of the paper is organized as follows:

Section 2 describes the proposed approach and its rationale. The details of the

experimental set up and performance analysis are discussed in section 3. Finally,125

the conclusions and future work are presented in section 4.
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2. Proposed approach

In this work, we present a hybrid approach to train a CNN classifier by ef-

fective utilization of global and local search capabilities of genetic and steepest-

descent algorithms, respectively. Training a neural network using gradient-130

descent algorithm may result in finding a solution that is stuck in a local min-

imum. As the performance of a trained neural network classifier depends on

its initial weights, we explore different sets of initial weights to find the opti-

mum weight initialization using genetic algorithms. The weights of masks in

convolution layers (that act as feature detectors) and the seed value used by the135

random number generator to initialize the fully-connected neural network are

considered as the GA chromosome, as shown in Fig. 1. The proposed approach

begins with the initialization of GA population, followed by the fitness evalua-

tion step in GA framework. During fitness evaluation, the fitness score of each

chromosome in the GA population is computed by decoding the chromosome to140

initialize the weights of a CNN classifier, as illustrated in step 2 of Fig. 1. The

classification accuracy of the CNN classifier, after being trained for p1 epochs

using steepest descent algorithm, is considered as the fitness value of the corre-

sponding GA chromosome. Using GA, several local basins were identified and

the steepest-descent algorithm is used to expedite the search to find the local145

optimum in a given basin. After executing the GA framework for several cycles

with a population size of n, the final GA-population is harvested to obtain n

sets of initial weights. These n sets of initial weights are used to initialize the

convolutional neural network (CNN) classifiers as shown in step 5 of Fig. 1.

The classification evidences of these n convolutional neural network classifiers is150

combined to improve the performance. The next subsection introduces genetic

algorithms and explains how the fitness of a chromosome (quality of solution)

improves over GA cycles.

2.1. Genetic algorithms

Genetic algorithm is an adaptive heuristic search method based on the evo-155

lutionary ideas of natural selection and genetics proposed by Holland [64]. In-
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spired by the Darwin’s Theory of evolution (survival of the fittest) [65], this

approach considers a population of GA chromosomes (candidate solutions) that

go through a series of changes due to selection, crossover and mutation (opera-

tions) resulting in a modified set of chromosomes at the end of each GA cycle.160

Assuming that the GA-chromosome captures the key characteristics of the sys-

tem being modeled, the average fitness of the population is expected to improve

over generations due to the use of fitness measure (quality of the solution) of

GA chromosome in GA-operations. Refer [66] for a comprehensive overview

of genetic algorithms. The next section describes the fusion of evidences from165

multiple classifiers for performance evaluation.
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2.2. Combining evidences from multiple classifiers

If o1, o2, . . . , oc are the binary decoded outputs of a classifier, then the

classifier is trained to output op = 1 and oj = 0, for all j �= p and 1 ≤ j ≤ c

for an observation of class p, where c represents the number of classes. During170

testing, an observation will be labeled as class p if op > oj , for all j �= p and

1 ≤ j ≤ c. The fusion (combination) of evidences across n classifiers involves the

use of a fusion function like Max -rule, across the same index of classifier outputs

to find the binary decoded output of the combined model. If o1i, o2i, . . . , oci

are the outputs of the ith classifier in the combined model, the jth output of the175

combined model is defined as fj=max{oj1, oj2, . . . , ojn}. An observation will be

labeled as class p by the combined model if fp > fj , for all j �= p and 1 ≤ j ≤ c.

Combining evidences across classifiers would generally result in a classifier that

correctly labels the observations which are misclassified by some classifiers (the

limitation of a single classifier). An overview of ensemble methods is given in180

[67]. The next subsection introduces the representation of videos as action bank

features and describes the architecture of CNN classifier used for human action

recognition.

2.3. CNN classifier for human action recognition

In this section, we describe the underlying principles in the computation of185

action bank features for a video. We will later explain some of the characteristics

and advantages of action bank features that motivated us in their use as input

features. Finally, the design of the convolutional neural network classifier for

human action recognition from action bank features is explained in detail.

2.3.1. Input features190

Introduced by Sadanand et al. in [12], the action bank representation of

videos is a high level representation used for activity recognition. An action

bank is a collection of multiple action detectors covering a broad semantic and

viewpoint space. An action detector is a template video of an action. Some

of the action detectors in the action bank are shown in Fig.2 with columns195
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depicting different types of actions and rows indicating different examples for

the corresponding action.

Figure 2: A screen-shot of 36 videos in the standard action bank with 205 elements. Best

viewed in color. (Fig. 2 in [12])

To generate action bank features for a video, the correlation video volume

of each action detector is transformed into a 73-dimensional response vector by

volumetric-max-pooling. Thus, if an action bank of size m is used for computing200

action bank features of a video, the generated action bank features will be of size

m× 73. Since, an action detector may have similar response vector for multiple

instance of the same action, their action bank representation may also have

similar local patterns. The action bank representation of boxing and running

videos from KTH dataset is shown in Fig. 3.205

It can be observed that videos of same action will have similar local patterns

corresponding to some action detectors, depending on their nature and extent

of similarity. Therefore, it is possible to discriminate actions by using a pattern

recognition approach that can learn local patterns associated with each action.

In this work, a convolutional neural network classifier capable of recognizing210

local patterns with some degree of noise is used to recognize human actions

from action bank features.
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(a) (b) (c) (d) (e) (f)

Figure 3: Action bank representation of boxing and running videos in KTH dataset: (a)(b)(c)

are for boxing and (d)(e)(f) are for running action

2.3.2. Configuration of CNN classifier

A convolutional neural network (CNN) classifier comprises of a convolutional

neural network for feature extraction and a classifier in the last step for classi-215

fication. The architecture of CNN classifier used for human action recognition

from action bank features is shown in Fig.4. To avoid padding during computa-

tion, the first 72 elements of action bank features are considered, resulting in an

input of size m× 72. Here, m represents the size of action bank used for gener-

ating action bank features. During training, the convolution masks are learned220

to recognize the necessary discriminative local patterns for classification. As

the local patterns in action bank features are horizontal and independent of its

vertical neighbors, only linear (horizontal) convolution masks are used in the

CNN classifier. A single convolution mask is considered in the first convolution

layer due to the simplicity of the pattern being recognized (a white line) and to225

minimize the computational complexity. We doubled the number of masks in

the respective succeeding layers and used two convolution masks in the second

convolution layer. In addition, to use the same mask size in both convolution

layers, we chose a mask size of 1× 21. The sub-sampling masks of size 1× 2 are

11



used to minimize the loss of data during sub-sampling. The deep convolutional230

features extracted by CNN are given as input to a fully connected, single layer

neural network for classification. The action labels are determined from the

binary decoded outputs of the classifier.

Figure 4: Architecture CNN classifier for human action recognition

As the convolution masks in CNN classifier act as feature detectors, optimal

initialization of these kernels is crucial for the design of an effective CNN clas-235

sifier. The next subsection explains the initialization and training of this CNN

classifier.

2.4. Training a CNN classifier using genetic algorithms and back-propagation

algorithm

One of the major limitation of training a neural network using steepest-240

descent algorithm is the possibility of solution getting stuck in a local optimum.

To overcome this problem, we use genetic algorithms whose solutions evolve

over generations. In this work, we explore the use of genetic algorithms to

identify the optimum weight initialization of the CNN classifier discussed in the

previous section. A genetic algorithm (GA) chromosome of 64 real numbers245

is used to represent the weights of CNN classifier, in which the first 63 real

numbers are used to encode the three convolution masks of size 1 × 21. The

last real number is for the seed value of the random number generator that

12



initializes the fully connected neural network classifier shown in Fig. 1. The

classification error of the CNN classifier initialized using a GA chromosome250

after training with back-propagation algorithm for p1 epochs is used as the

fitness value of the GA chromosome. The CNN classifier is trained using back-

propagation algorithm for a small number of epochs (p1) to avoid over-fitting the

data. As the performance of a gradient-descent algorithm depends on the initial

(starting) weights of the neural network, the use of genetic algorithm to explore255

different weight initializations may result in finding weight initializations that

would lead to a better solution than random initialization. Thus, by exploring

different basins (weight initializations) using GA, we aim to find a solution

that is closer to global-optimum. The use of steepest descent algorithm, to

quickly find the local optimum in a given basin, reduces the number of candidate260

solutions (initial weights) to be explored by GA to find local optimum of basins.

The next section discusses the experimental results.

3. Experimental results

The proposed CNN classifier approach is implemented by customizing the

deep learning toolbox [68] to use linear masks and using the native GA func-265

tionality available in Matlab. The range of weights in convolution masks is in

between -100 and 100. The range of seed value is 0 to 5000. The GA with a pop-

ulation size of 20 (n in Fig. 1) is run for 5 generations considering a cross-over

probability of 0.8 and mutation probability of 0.01. Low mutation probabil-

ity is used in the GA-framework as GA relies on the construction capability of270

crossover operator rather than on the disruptive power of mutation operator.

The optimum range of these parameters and GA configuration is determined

empirically. By expediting local-search using steepest-descent algorithm, we

aim to find an optimal solution even with a small number of GA-generations

and population size. The experimental results on UCF50 dataset are discussed275

below.
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3.1. UCF50 dataset

The proposed approach is evaluated on UCF50 dataset [69], that consists

of unconstrained realistic videos for 50 action categories taken from Youtube.

UCF50 dataset is selected due to its high number of action categories and the280

availability of pre-computed action bank features [70]. The use of pre-computed

action bank features in this work, facilitates the comparative study with existing

approaches. The evaluation is done using 5-fold cross validation. Here, k-fold

cross validation refers to splitting the dataset into k splits say S1,S2,. . . ,Sk

followed by using split Si for testing and the remaining (k-1) splits for training285

in Fold-i. This process is repeated k times as i is varied from 1 to k. During

fitness computation of GA-chromosomes, the initialized CNN classifier is trained

using back-propagation algorithm in batch mode for 50 (p1) epochs. A batch-

size of 10 is used for the first four folds and 8 for the fifth fold. The best and

mean fitness value (indicating the classification error in %) of population in each290

GA generation, for the 5-folds of UCF50 dataset (on training data) is given in

Table 1. The consistent decrease in mean and best fitness value of the population

over generations for the 5-folds of UCF50 dataset indicates the proper selection

of GA parameters. This also confirms the proper balance between exploration

(due to mutation) and exploitation (due to crossover). This completes step 3 of295

Fig. 1 and produces 20 (n) candidate classifier initializations for each fold.

As mentioned in steps 5 and 6 of Fig. 1, the candidate solutions are used

to initialize the CNN classifiers and their classification evidences are combined

to assign the class labels. The performance of the n CNN classifiers using

neural network and extreme learning machine (ELM) [71] classifiers is given300

in Table 2. From the average accuracy given in the last row of this table, it

can be observed that extreme learning machine (ELM) classifier gives better

performance than neural network classifier. This could be due to the better

generalization capability of ELM over gradient-based training algorithms.

As discussed in step 6 of Fig. 1, the n classifiers generated at the end of305

step 5 are used as base classifiers in an ensemble model and various fusion func-

tions are considered to combine their classification evidences. The performance
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Table 1: Best and mean fitness (classification error in %) of GA population across generations

for the 5 folds in UCF50 dataset.

Generation
Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Best Mean Best Mean Best Mean Best Mean Best Mean

1 9.21 59.57 3.18 45.7 8.67 64.9 6.15 44.5 5.79 41.6

2 5.57 38.78 3.10 23.8 3.47 51.2 3.04 11.6 5.79 32.5

3 3.49 33.19 2.95 5.8 3.47 35.2 1.82 4.2 3.73 8.0

4 2.67 5.66 2.87 3.6 2.18 18.4 1.52 3.1 3.04 3.8

5 2.45 3.45 2.80 3.4 1.81 2.4 1.44 2.8 3.04 3.5

on UCF50 dataset for various folds with different fusion functions using ELM

classifier is given in Table 3. It can be observed that the performance remains

the same irrespective of the fusion-rule. This may be due to the small deviation310

in performance of the classifiers used in the ensemble.

From Table 3, it can be observed that one observation gets misclassified irre-

spective of the fusion rule. Thus, a classification accuracy of 99.98% is achieved

by the proposed approach for 5-fold cross-validation of UCF50 dataset. The

confusion matrix of the proposed approach for UCF50 dataset is shown in Ta-315

ble 4. The labels on the vertical axis indicate the true class labels and the labels

on the horizontal axis indicate the predicted class labels. The diagonal elements

represent the correctly predicted test cases and the non-diagonal elements rep-

resent the misclassified test cases. It can be observed that one test instance

of WalkingWithDog is misclassified as RockClimbingIndoor by the proposed320

approach.

The performance of the CNN classifier when trained using back-propagation

algorithm (BPA), genetic algorithms (GA) and both is given in Table 5. It

can be observed that CNN classifiers whose weights are initialized using GA

and trained using back-propagation algorithm gives better performance than325

the rest of the approaches. As a set of solutions gets generated when GA is
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Table 2: Performance of candidate solutions (in %) generated from final GA population on

test data using neural network classifier and extreme learning machine (ELM) classifier for the

5-folds of UCF50 dataset. (Here Avg represents the average performance across all candidate

solutions)

Sol. Neural Network (NN) classifier
Extreme Learning Machine

(ELM) classifier
# Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
1 97.40 97.20 98.19 98.48 96.95 100.00 99.70 100.00 100.00 100.00
2 96.36 95.98 98.19 84.18 96.42 100.00 99.77 100.00 97.87 100.00
3 96.88 96.97 96.60 98.02 96.65 100.00 99.85 100.00 100.00 100.00
4 97.03 96.82 97.81 98.17 96.11 100.00 99.85 100.00 100.00 100.00
5 97.55 96.59 96.91 98.33 96.65 100.00 99.85 100.00 100.00 100.00
6 97.40 96.97 98.19 98.33 96.49 100.00 99.77 100.00 100.00 100.00
7 97.17 96.52 97.74 96.88 96.65 100.00 99.92 100.00 99.77 100.00
8 96.88 96.89 97.74 98.17 96.34 100.00 99.77 100.00 100.00 100.00
9 97.40 96.52 98.04 98.02 96.95 100.00 99.85 100.00 100.00 100.00
10 90.93 97.05 98.04 97.72 96.80 100.00 99.77 100.00 99.85 100.00
11 97.10 96.89 97.89 97.57 96.80 100.00 100.00 100.00 100.00 100.00
12 96.95 96.74 97.06 97.03 96.49 100.00 99.77 100.00 99.92 100.00
13 92.86 96.14 98.11 98.25 96.49 100.00 99.70 100.00 100.00 100.00
14 96.58 96.74 97.96 98.40 96.57 100.00 99.92 100.00 100.00 100.00
15 96.80 95.91 98.11 98.48 96.65 100.00 99.77 100.00 100.00 100.00
16 97.17 97.12 97.43 98.56 96.42 100.00 99.70 100.00 100.00 100.00
17 96.51 96.06 96.60 96.05 96.27 100.00 99.77 100.00 100.00 100.00
18 97.40 95.91 97.81 98.33 96.57 100.00 99.17 100.00 100.00 100.00
19 97.10 96.67 95.09 98.25 95.96 100.00 99.85 98.94 100.00 100.00
20 97.40 96.52 97.89 96.43 96.49 100.00 99.85 100.00 99.77 100.00
Avg 96.50 96.60 97.56 97.18 96.53 100.00 99.78 99.94 99.85 100.00

Table 3: Performance of the proposed classification system (in terms of # of misclassified

observations) using ELM classifier with various fusion functions for 5-fold cross-validation of

UCF50 dataset

data number of Fusion function Majority

fold observations Min Max Avg Prod Median voting

Fold-1 1345 0 0 0 0 0 0

Fold-2 1320 1 1 1 1 1 1

Fold-3 1325 0 0 0 0 0 0

Fold-4 1315 0 0 0 0 0 0

Fold-5 1312 0 0 0 0 0 0

Total 6617 1 1 1 1 1 1

Accuracy (in %) = 99.98 99.98 99.98 99.98 99.98 99.98
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Table 4: Confusion matrix of the proposed approach for 5-fold cross validation of UCF50

dataset
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Table 5: Performance of CNN classifier (in %) using back propagation algorithm (BPA),

genetic algorithms (GA) and both for 5-fold cross-validation of UCF50 dataset.

Training approach Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

CNN classifier with only GA

(i.e., initialized using GA)
2.22 1.87 2.18 1.98 1.87 2.02

CNN classifier without GA

(i.e., trained using BPA)
86.02 87.50 18.26 80.30 23.39 59.19

CNN classifier with GA

(using GA and BPA)
96.54 96.60 97.56 97.18 96.53 96.88

used for training, the average performance of the resulting classifiers is reported

in the table. Here, experiments for training using only GA were conducted

with population a size of 200 for 5 generations. Thus, training the CNN clas-

sifier initialized by GA with BPA finds an optimal solution in less number of330

generations even with a small population size. The performance of the pro-

posed classification framework using neural network (NN) and extreme learning

machine (ELM) classifiers is shown in Table 6. From the table, it can be con-

cluded that better performance can be achieved using ELM classifier compared

to NN classifier. From Table 3, it can be concluded that the performance of the335

proposed approach using an ensemble of CNN classifiers employing ELM clas-

sification is 99.98% as one observation among 6617 test cases got misclassified.

The performance of the proposed approach against exiting techniques for 5-fold

cross-validation on UCF50 dataset is given in Table 7.

It can be observed from Table 7 that an accuracy of 94.1% is achieved by340

Nicolas Ballas et al. in [77] by building an action model from salient regions

using spatio-temporal context and weighted SVM. In the proposed approach, a

classification accuracy of 99.98% is achieved using action bank features. The

improvement in classification performance using the proposed classification sys-

tem is indicative of the effectiveness of the proposed hybrid search approach to345
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Table 6: Performance of the proposed classification framework (in %) using neural network

(NN) and extreme learning machine (ELM) classifiers for 5-fold cross-validation of UCF50

dataset.

Classification methodology Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Average

Proposed framework

using NN classifier
96.54 96.60 97.56 97.18 96.53 96.88

Proposed framework

using ELM classifier
100 99.78 99.94 99.85 100 99.91

Table 7: Performance comparison of the proposed approach with existing techniques for 5-fold

cross-validation on UCF50 dataset

Approach Accuracy (in %)

Sadanand and J. Corso [12] 57.9

Kliper-Gross et al. [72] 68.51

Shi Feng et al. [73] 71.7

LiMin Wang et al. [74] 71.7

H. Wang et al. [13] 75.7

Qiang Zhou et al. [75] 80.2

Ijjina Earnest et al. [76] 94.02

Nicolas Ballas et al. [77] 94.1

Proposed approach 99.98
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find optimum initial weights of the CNN classifier. The next section analyzes

the results presented in this section.

3.2. Analysis

The two important issues in training a neural network using back-propagation

are: 1) over-fitting of training data, and 2) the possibility of solution getting350

stuck in a local minimum. When the neural network is over-fit due to excessive

training, the error on training set will be very low but on testing set will be high.

In this section, we analyze the classification error of CNN classifiers immediately

after weight initialization using GA, and also after training the CNN classifier

using back-propagation for 50 (p1) epochs. The weights of a CNN classifier is355

represented by a circle in a 2D plane with the x -axis representing the percentage

of classification error on training data and y-axis representing the percentage of

classification error on testing data.

The graph in Fig 5(a) shows the classification error of weight initializations

explored by GA for the first fold of UCF50 dataset. Fig 5(b) depicts the solu-360

tions in Fig 5(a) trained with back-propagation algorithm for 50 epochs. Each

circle in these graphs represents a CNN classifier whose weights are initialized

using GA. The location of the circle is determined by the classification error

of the CNN classifier for train and test data. The color of the circle indicates

when (the time) the weight initialization is explored during the GA-cycles. As365

shown by the scale in the right-hand of these figures, blue color is assigned to

solutions (weight initializations) explored in the first generation and yellow color

to the solutions explored in the last generation. The same convention is used

to represent the solutions for Fold-2, Fold-3, Fold-4 and Fold-5 in Fig 6. From

the sub figures in Fig 5 and 6, it can be observed that: 1) the proposed initial-370

ization of CNN classifiers using GA and post-training using back-propagation

algorithm significantly improves the performance of classification system, 2) the

location of circles closer to 45◦ diagonal line indicates the existence of similar

local-patterns for actions in both training and testing data. (This may be due

to the use of k-fold cross-validation), 3) the high concentration of circles in the375
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Table 8: Top 5 class labels predicted by the proposed approach using various fusion rules, for

the misclassified WalkingWithDog observation. (Here, RCI denotes RockClimbingIndoor,

WWD represents WalkingWithDog, P denotes Punch, L denotes Lunges, D represents

Diving, K denotes Kayaking and HR denotes HorseRiding action)

Top Fusion-rule

# Min Max Avg Prod Median

1 RCI RCI RCI RCI RCI

2 WWD WWD WWD WWD WWD

3 P L P P P

4 L P L L L

5 D K HR HR HR

top-right corner in graphs depicting the solutions initialized using GA indicates

the use of GA to identify optimum initial weights of the classifier rather than the

final weights used for fitness computation, and 4) the high concentration of yel-

low circles closer in the bottom left corner (area with low classification error) in

graphs with solutions trained using back-propagation algorithm demonstrates380

the improvement of solutions generated by GA over generations. The most

likely reasons for misclassification of WalkingWithDog observation in Fig 7 by

the proposed approach are the large variation is illumination conditions, change

in scale and the existence of camera shake. The predicted top-5 class labels for

this observation using the proposed approach with various fusion rules is given385

in Table 8. It can be observed that 100% prediction accuracy is achieved by

the proposed approach if top-2 predictions are used for performance evaluation.

The feasibility to extend this approach to solve problems in other domains, is

demonstrated by evaluating this approach for handwritten character recognition

on MNIST dataset.390

3.3. MNIST dataset

The recognition of hand-written characters using computer vision algorithms

is a challenging task with practical applications. The MNIST dataset [25] is
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(a) Solutions corresponding to weight initialization using GA chromosome

(b) Solutions in (a) after training with back-propagation algorithm

Figure 5: Solutions explored by the proposed approach for Fold-1 of UCF50 dataset: a) after

initialization using GA chromosomes and b) after training the classifier using back-propagation

algorithm for p1 epochs. Best viewed in color.
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(a) Sols. with weight initialization using GA (b) Sols. in (a) after training with BP algorithm

(c) Sols. with weight initialization using GA (d) Sols. in (c) after training with BP algorithm

(e) Sols. with weight initialization using GA (f) Sols. in (e) after training with BP algorithm

(g) Sols. with weight initialization using GA (h) Sols. in (g) after training with BP algorithm

Figure 6: Solutions explored by the proposed approach for Fold-2, Fold-3, Fold-4 and Fold-5

of UCF50 dataset. The sub figures (a), (b) correspond to Fold-2 ; (c), (d) are for Fold-3 ; (e),

(f) correspond to Fold-4 and (g), (h) are for Fold-5. (Here, BP represents back-propagation

algorithm and Sols represent solutions). Best viewed in color.
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Figure 7: Misclassified UCF50 WalkingWithDog observation. (Frames of

‘v WalkingWithDog g08 c02.avi’ in UCF50 dataset [69]).

one of the standard benchmark used to compare performance of different ap-

proaches. The proposed approach is evaluated on MNIST dataset, using GA395

with a population size of 10 (n) for 3 generation. The optimum size of convo-

lution and sub-sampling masks is empirically determined to be 5× 5 and 1× 1,

respectively. The CNN classifier is trained using back propagation algorithm in

batch mode with a batch size of 10 for 10 (p1) epochs. The average fitness value

of GA population decreases from 79.45 in the first generation to 14.56 in the400

last generation, suggests the convergence of GA.

The performance of the CNN classifier trained using back propagation algo-

rithm (BPA), genetic algorithms (GA) and both is given in Table 9. The table

shows the performance of CNN classifier without GA (i.e., trained using BPA)

against the average performance of solutions generated with GA (i.e., using405

GA and BPA). As the best performance and standard deviation of solutions

generated by with GA training approach are 96.92% and 22.91, respectively,

it can be concluded that CNN classifiers initialized by genetic algorithms and

trained with back propagation algorithm gives better performance than the rest

of the approaches. The performance of the proposed classification framework410

using neural network (NN) and extreme learning machine (ELM) classifiers is

given in Table 10. The performance of ensemble of CNN classifiers using ELM

classification is also shown in the last row of this table. The performance of the

proposed and existing approaches for character recognition on MNIST dataset

is given in Table 11. The table also shows the number of layers with trainable415

weights, the size and count of masks in the CNN architecture. From the ta-

ble, it can be observed that the proposed approach uses less number of layers,
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masks and training epochs to achieve comparable performance with the existing

approach. The performance can be further improved by considering deeper ar-

chitectures with more number of masks. The next section analyzes the solutions420

explored by the proposed approach for MNIST dataset.

Table 9: Performance of CNN classifiers using back propagation algorithm (BPA), genetic

algorithms (GA) and both for MNIST dataset.

Training approach Performance (in %)

CNN classifier with only GA

(i.e., initialized using GA)
12.58

CNN classifier without GA

(i.e., trained using BPA)
91.0

CNN classifier with GA

(using GA and BPA)
87.85

3.4. Analysis

We visualize the performance of solutions explored by the proposed approach

during the GA cycles, to validate the improvement of candidate solutions (GA

population) over generations. The solutions explored by the proposed approach425

by initializing the weights using GA and training the generated classifiers using

back-propagation algorithm for p1 epochs for MNIST dataset are shown in Fig

8 (a) and (b), respectively. Each circle in these graphs correspond to a CNN

classifier, with the error for training and testing data used as x and y coordinates

of the circle and the time at which the solution is generated during the GA430

cycles determines the color of the circle. From Fig 8 (b), it can be observed that

the classification error of the solutions initialized using GA and trained using

back propagation algorithms decreases significantly with generations. The next

section discusses the time complexity of this approach and its suitability for use

in real time applications.435
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Table 10: Performance of the proposed classification framework using neural network (NN)

and extreme learning machine (ELM) classifiers for MNIST dataset.

Classification methodology Performance (in %)

Proposed framework

using NN classifier
87.85

Proposed framework

using ELM classifier
96.74

Proposed approach

with ensemble of classifiers
97.9

Table 11: Performance comparison of the proposed approach with existing techniques on

MNIST dataset

Approach
Masks

count, size
Layers Accuracy (in %)

Convolutional net LeNet-5 [25] 22, 5×5 7 99.0

Proposed approach 3, 5×5 3 97.9
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(a) Solutions corresponding to weight initialization using GA chromosome

(b) Solutions in (a) after training with back-propagation algorithm

Figure 8: Solutions explored by the proposed approach for MNIST dataset: a) after initial-

ization using GA chromosomes and b) after training the classifiers using back-propagation

algorithm for p1 epochs. Best viewed in color.
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3.5. Computational complexity

The existing approach uses genetic algorithms and training of convolutional

neural network (CNN) classifier using back propagation algorithm, which can

be parallelized. By parallel evaluation of candidate solutions (population) in

genetic algorithms and use of efficient GPU based CNN implementation (like440

cuDNN [78]) to train CNN classifiers for p1 epochs results in a significant re-

duction in computation time. In this work, the CNN classifiers are trained

for a small number of epochs (p1) i.e., 50 epochs for UCF50 and 10 epochs

for MNIST dataset. Several efficient multi-GPU implementations of CNN were

proposed in the last few years like Berkeley’s Caffe, Torch and Theano. Several445

browser-based user-friendly platforms like NVIDIA’s DIGITS, Google’s Tensor

and Microsoft’s Azure are proposed to aid the design and deployment of CNN

classifiers for real-time applications. As inferencing is less expensive than train-

ing a deep neural network, trained CNN classifiers are used in many online

systems like mobile applications for speech processing, image recognition etc.,450

Thus, the proposed approach generates a set of optimized CNN classifiers, which

could then be deployed for real time online application. The computational com-

plexity of action back features restrict the feasibility to use this approach for

real-time human action recognition. The next section gives the conclusions of

this work.455

4. Conclusion and future work

In this paper, we proposed a deep learning algorithm inspired by hybrid

search approach of evolutionary and classical algorithms. As the performance

of a neural network classifier (after training) depends on its weight initialization,

we aim to optimize the initial weights using a GA framework. The proposed460

approach finds the weights of a convolutional neural network classifier that is

neither overfit for training data nor stuck in a local minimum. The fusion

across models identified using GA framework aims to overcome the limitations

of individual models, by combining evidences across classifiers. Experimental
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studies on UCF50 dataset to recognize human actions from action bank features465

suggests that the proposed approach achieves a recognition accuracy of 99.98%.

The future work will consider other spatio-temporal features like exmoves [79].
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