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In this paper, we propose a method for classification of human actions using pose based features. We 

demonstrate that statistical information of key movements of actions can be utilized in designing an 

efficient input representation, using fuzzy membership functions. The ability of stacked auto encoder to 

learn the underlying features of input data is exploited to recognize human actions. The efficacy of the 

proposed approach is demonstrated on CMU MOCAP and Berkeley MHAD datasets. 
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. Introduction 

Human action recognition is one of the major areas of research

n computer vision due to its wide range of applications in video

urveillance, ambient assisted living, robot vision, augmented real-

ty, video indexing and retrieval, to name a few. The introduction

f 3D cameras like Kinect and motion capture (MOCAP) systems

n the last decade widened the modalities available for human

ction recognition. Even though Kinect was a low-cost RGB-D

amera by Microsoft for their XBox gaming platform, it triggered

 huge interest in the computer vision research community [6] to

se RGB-D and pose based information for action and gesture

ecognition. The most common approach used for motion capture

s by tracking a wearable marker or by using a skeletal prediction

ramework utilizing RGB-D video stream. Recent studies con-

ucted to identify the relative importance of skeletal joints by Ofli

t al. [14] suggest that some joints provide better discriminative

nformation to recognize actions. Also, experimental study by

huang et al. [7] suggests that better discrimination among human

ctions can be achieved using high-level pose features compared

o mid-level and low-level features. This gives motivation for using

he pose based features for human action recognition. 

A majority of pose based action recognition approaches use

racking information of various skeletal joints to compute features

or action recognition. Features based on joint distance and joint

otion are evaluated by Yun et al. [23] to recognize human inter-

ction using support vector machine and multiple instance learn-

ng. It is observed that features computed from distance between
✩ This paper has been recommended for acceptance by Xiang Bai. 
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air of joints outperform other geometric features. A local view-

nvariant skeletal descriptor, skeletal quads is proposed by Evan-

elidis et al. [5] . A Gaussian mixture model (GMM) learnt on the

raining data is used to encode the quad as a fisher vector which

s inturn used by the support vector machine (SVM) for classifi-

ation. To capture the joint shape motion ques in a depth image,

ON4D, a descriptor for activity recognition using depth videos is

roposed by Oreifej and Liu [15] using SVM for classification. Mod-

ls with inhomogeneous symmetric bias are trained with examples

rom an action domain in [20] and [21] for correcting the esti-

ated human-pose. A framework for correcting human pose es-

imated from Kinect depth images, by combining the outputs of a

andom forest regression model and a pose prior model learned on

otion capture data (using von Mises–Fisher distribution) is pro-

osed by Shen et al. [19] . A hierarchical recurrent network fusing

he pose information from five parts of the skeletal structure is

roposed by Du et al. [4] to recognize actions from the temporally

ccumulated output. For action recognition in RGB videos, action-

ank features extracted from visual information are used to train

iscriminative dictionaries using ‘label consistent K-SVD’ algorithm

y Jiang et al. [9] to recognize human actions. Lin et al. [10] mod-

led human trajectories as heat sources to recognize group activ-

ties from the similarity of heat-maps. Prest et al. [18] combined

uman detection, object detection and tracking techniques to rec-

gnize human-human and human-object interactions. A 3D shape

etrieval model using auto encoder for learning features from 2D

rojections of 3D shapes is proposed by Zhu et al. [25] . Ji et al.

8] used gray-level, gradient and optical-flow information of RGB

ideos as inputs to a 3D convolutional neural network for recog-

izing human actions. Xia et al. [22] recognized human actions by

odeling the temporal evolution of pose associated with an action

y a hidden Markov model (HMM). 
ions using pose-based features and stacked auto encoder, Pattern 
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Fig. 1. Block diagram of the proposed approach for human action recognition. 

Fig. 2. Computation of input representation from values of fuzzy membership 

functions. 
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The effectiveness of human action recognition approaches is

significantly affected by the features used for recognition and

the computational complexity involved. Further, human action

recognition poses additional challenges due to: (a) the existence

of alternative limb movements for actions, and (b) the lack of

synchronization of movements involved in an action. In this

paper, we address these issues by considering MOCAP skeleton

information of a small number of joints for feature extraction

and a stacked auto encoder (to learn the underlying features) for

classification. The reminder of this paper is organized as follows:

Section 2 describes the proposed approach and the steps involved

in the computation of input representation utilizing the domain

knowledge of the actions. Section 3 elaborates the utilization of

domain knowledge through statistical analysis for representing

actions of MOCAP datasets. The classification results and analysis

of features learned by the stacked auto encoder are also presented.

Finally, Section 4 gives concluding remarks and the future work. 

2. Proposed approach 

In this work, we propose the use of pose based features com-

puted from motion capture (MOCAP) information for human ac-

tion recognition using stacked auto encoder. The block diagram of
Fig. 3. Architecture of the stacked auto

Please cite this article as: E.P. Ijjina, K.M. C, Classification of human act
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he proposed approach is shown in Fig. 1 . The MOCAP informa-

ion corresponding to the input observation is used to extract the

emporal variation of the subject’s pose during the execution of

he action. This pose information is used to compute pose-based

istances from a small number of skeletal joints. These distances

re evaluated by a set of fuzzy membership functions, that are

esigned to emphasize the unique motion pattern of each action.

he membership values from these functions is concatenated (with

ero data) to generate the input representation of the action, as

hown in Fig. 2 . In the figure, ‘ + ’ represents concatenation, black

trips represent zero data and the width of each vertical strip is

 pixels (i.e., values are duplicated). This representation of actions

s given as input to a stacked auto encoder for action recognition.

he architecture of the stacked auto encoder used for classifica-

ion is shown in Fig 3 . The first and second layers consists of 100

nd 50 neurons, respectively. The last layer consists on n neurons,

here n represents the number of action types (classes) to be rec-

gnized. The weights of the first two layers are initialized through

re-training. The last layer is a soft-max layer trained to gener-

te a binary output with 1 for the predicted class and 0’s for the

est. The next section covers the experimental evaluation of this

pproach on MOCAP datasets. 

. Experimental study 

As explained in the previous section, distances computed from

OCAP skeletal-joints are used in the computation of input rep-

esentation. The joints considered in this study are shown in

ig. 4 with red color. Following are the distances computed from

hese joints. 

a : displacement between the left and right hand 

b : height of right-hand above the ground 

c : height of left-hand above the ground 

d : height of pelvis above the ground 

p : height of right-leg above the ground 

q : height of left-leg above the ground 

The intuition behind considering these joints and distances will

e discussed in the experimental setup for each dataset. As MO-

AP information contains the tracking information of human-joints

ver time ( t ), the value of these distance variables changes with

ime. If x represents a distance variable, then its value at time t

s represented by x ( t ). The maximum, minimum and range of x in

n observation are denoted by x max , x min and x r , respectively. The

ext section covers the experimental evaluation of the proposed

pproach on CMU MOCAP dataset. 

.1. CMU MOCAP dataset 

The CMU MOCAP dataset [1] consists of motion capture

MOCAP) information corresponding to locomotion actions per-

ormed by various subjects. The locomotion activities and their

ariations considered is this evaluation are given in Table 1 . The

ext section describes the utilization of domain knowledge about

hese actions in the design of an effective input representation. 
 encoder used for classification. 

ions using pose-based features and stacked auto encoder, Pattern 
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Fig. 4. MOCAP skeletal structure depicting the pose based distances considered for 

action recognition. 

Fig. 5. Graphical representation of the membership function F θ ( t ). 

Table 1 

Variations in locomotion actions considered for evaluation. 

Action Variations 

Jump Jump 

Forward jump 

High jump 

Jump up and down, hop on one foot 

Run Run 

Run, sudden-stop 

Run, veer left/right 

Run, 90-degree left/right turn 

Run around in a circle 

Walk Walk 

Slow walk 

Walk, exaggerated stride 

Navigate-walk forward, backward, sideways 

Walk/wander 

Walk, veer left/right 

Walk, 90-degrees left/right turn 

Slow-walk, stop 

Walk with anger, frustration 

Walk stealthily 

Walk/ hobble 

Whistle, walk jauntily 

Muscular, heavyset persons walk 

Walk forward, turn around, walk backward 

Walk around, frequent turns, 

Cycling walk along a line 

Navigate-walk forward, backward on a diagonal 

Navigate-walk forward, backward, 

Sideways on a diagonal 

Walk around 

Table 2 

Observations considered to generate the training dataset. 

Action Sample P2P # Of window 

(subject:trial) Distance Slides 

Jump 13:40 36 9 

Run 09:01 92 23 

Walk 39:03 128 32 

Table 3 

Confusion matrix of the proposed approach for CMU 

MOCAP dataset. 

Predicted class label 

Jump Run Walk 

Actual class label Jump 17 

Run 41 5 

Walk 135 

Table 4 

Normalization of distance variables a , b , c and d. 

Measurement Normalization 

a Divided by the distance between the hips 

b Divided by the height of left shoulder 

c Divided by the height of right shoulder 

d Subtract and divide by the value of d in T-pose 
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.1.1. Input representation 

The domain knowledge for jump , run and walk actions suggests

hat these actions involve periodic movement of feet (lift-up and

ut-down the foot) and they only differ in the duration and rela-

ive (simultaneous or alternative) motion of the feet. For walk and

un actions, the left and right foot move alternatively, whereas for

ump action, the feet move at the same time. Similarly, the dura-

ion between successive foot movement is different for walk and

un actions. This domain knowledge suggests that the height of

he feet above ground i.e., distances p and q could be used in

he computation of an input representation, suitable for discrim-

nation. As the height of the feet above the ground may change

etween observations, they need to be normalized within each ob-

ervation. The normalization of these variables is achieved using

he fuzzy membership function F θ ( t ) given in Eq. (1) , whose plot

s shown in Fig. 5 . Here, θ represents the variable p or q . The plot

f F p ( t ) and F q ( t ) for a typical jump , run and walk action is given in

ig. 6 . The plots suggest that the nature of variation of these vari-

bles (i.e., synchronous or asynchronous change and the frequency)

s different for these actions. It also suggests the periodic nature

f these actions i.e., re-occurrence of the same foot movement.

he membership values are concatenated to generate the input

epresentation. 

 θ (t) = 

{ 

0 if , θ (t) ≤ 0 

θ (t) 
θmax 

if , 0 < θ (t) < θmax 

1 if , θ (t) ≥ θmax 

(1) 

The periodic nature of these locomotion actions can be used in

he design of a one-shot training model in which a single observa-

ion per class is used to train the model. We considered a tempo-

al window of 104 samples and shift it 4 samples at a time on the

raining observation, to obtain the training cases. The details of the

raining cases generated from each training observation is given in

able 2 . As jump action is performed only once, we considered 34

 α-cut at 0.7) as the P2P distance. Some of the training cases gen-

rated for these actions is shown in Fig 7 . All the observations of

ctions described in the second column of Table 1 , excluding the 3
ions using pose-based features and stacked auto encoder, Pattern 
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Fig. 6. Temporal variation of height of feet above ground for jump , run and walk actions. 

Fig. 7. Training cases for jump, run and walk actions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Features learned by the first layer of stacked auto encoder for CMU MOCAP 

dataset. 
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observations used in training, are used as the test dataset. The first

104 temporal samples of observations is used in the computation

of input representation. The next section covers the experimental

results and analysis. 

3.1.2. Results and analysis 

The representation discussed in the previous section is down-

sampled to a 26 × 10 representation and used as input to a stacked

auto encoder (SAE) with three layers for action recognition. The

number of neurons in first and second layer are 100 and 50, re-

spectively. The last layer is a soft-max layer trained to generate

a binary output with 1 for the predicted class and 0’s for the

rest. The model is trained for 500 epochs using conjugate gradi-

ent descent algorithm and evaluated on test dataset. The confu-

sion matrix of the proposed approach is given in Table 3 . The mis-

classification of 5 out of 198 observations results in a recognition

accuracy of 97.47%. We have also conducted experiments of the

proposed action representation using convolutional neural network

(CNN) classifier. The recognition performance using CNN classifier

is 94.44%, which is less than the performance of the proposed ap-

proach. The features learned by the 100 neurons in the first layer

of SAE classifier are shown in Fig. 8 . The high recognition accuracy

of the proposed approach suggests an efficient input representation
Please cite this article as: E.P. Ijjina, K.M. C, Classification of human act

Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.03.021
nd an effective recognition model. The next section covers the ex-

erimental evaluation of the proposed approach on MHAD dataset.

.2. Berkeley MHAD dataset 

The Berkeley MHAD dataset [13] consists of MOCAP information

f 11 actions performed by 12 subjects. We considered three joints

o compute 4 distances which are later used in input representa-

ion. As these distances are dependent on the height of the subject

nd the length of limbs, they are normalized using the reference

ose (T-pose) of the subject as explained in Table 4 . All future ref-

rences of a , b , c and d refer to these normalized distance variables.

he change in pose (MOCAP skeletal structure) for the actions

n Berkeley MHAD dataset along with the variation of the four

istance variables a , b , c and d is shown in Figs 9 and 10 . The front-

iew and side-view of some of the key poses that appear during

he execution of these actions are shown in these figures in blue
ions using pose-based features and stacked auto encoder, Pattern 
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Fig. 9. Variation in MOCAP skeletal structure and distance variables { a , b , c , d } when performing jump , jumping jack , bending , punching and wave 2 hands actions. 
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nd red color, respectively. The next section explains how these

our distances are used in the design of an input representation. 

.2.1. Input representation 

As explained in the previous section, four distance measure-

ents are used to recognize 11 actions in the MHAD dataset.
Please cite this article as: E.P. Ijjina, K.M. C, Classification of human act

Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.03.021
rom Figs. 9 and 10 , it can be observed that these actions differ

n the nature and range of limb (hand and leg) movement. Thus,

epresenting actions by their unique motion may result in an ac-

ion representation, more suitable for discrimination. The domain

nowledge about these action suggests that, jump related actions

ike jumping and jumping jack can be recognized by the height
ions using pose-based features and stacked auto encoder, Pattern 
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Fig. 10. Variation in MOCAP skeletal structure and distance variables { a , b , c , d } when performing wave 1 hand , clapping , throwing , sit and stand , sit down and stand up 

actions. 
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Fig. 11. The plot of range of minimum (in blue) and maximum (in red) values of the distance variables a , b , c , d for observations in MHAD dataset. (Best viewed in color). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. Graphical representation of the six membership functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Visualization of input representation for the 11 MHAD actions. (The repre- 

sentation is scaled-up by 3 time for better visibility). 
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of hands above the ground as it increases during the execution

of these actions. Similarly, the hand-waving actions like wave 1

hand and wave 2 hands can be recognized by the height of the

hands above the ground. It is critical to notice that both jump and

hand-waving actions can be recognized from the height of the

hands, but the range of variation of height is different for these

two categories. Similarly, clapping and jumping jack can be discrim-

inated from the range of variation of the distance between hands

( a ). The sitting based actions are characterized by the movement

in the lower body and thereby can be recognized using the height

of pelvis ( d ). This interpretation can be extended to recognize a

single action from the nature and range of variation of multiple

distance variables. The movements involved in these actions are

statistically analyzed by plotting the range of minimum and

maximum values of these four distance variables for the 11 MHAD

actions in Fig. 11 . For a distance variable x and an action class c ,

the region in blue represents the range of minimum value of x for

all observations of class c . Similarly, the region in red represents

the range of maximum value of x for all observations of class c i.e.,

the maximum value of the distance variable x , max ( x ( t )) for any

observation of class c will fall within the range corresponding to

the red region. From the figure, it can be observed that the range

of variation of these variables is not identical for these actions.

This analysis is utilized in the design of six membership functions

F 1 ( t ), F 2 ( t ), F 3 ( t ), F 4 ( t ), F 5 ( t ), F 6 ( t ) whose equations are given in

Eq. (2) to Eq. (7) , respectively, and their corresponding graphical

representation is shown in Fig 12 . The optimum value of the con-

stants a 1 , b 1 , b 2 , c 1 , d 1 and d 2 is empirically determined to be 0.5,

0.35, 0.95, 0.95, −0.31 and 0.05, respectively. From the equations,

it can be observed that the core function gets executed only when

there is a significant change in the value of the variable. During

the execution of these gestures, some additional movements may

be needed during the beginning and ending of the action, which

are not part of the key movements associated with an action. To

overcome this practical constraint, we omit the first and last 20%

of temporal samples of observations. The temporal variation of

the membership value of these 6 fuzzy membership functions is

concatenated and down-sampled to 26 temporal samples, resulting

in an input representation of size 26 × 13 (i.e., the width of each

vertical strip in Fig. 2 is 1 pixel). The typical input representation

of the 11 gestures is shown in Fig 13 . The next section describes
Please cite this article as: E.P. Ijjina, K.M. C, Classification of human act

Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.03.021
ow this temporal representation is used for action recognition

sing a stacked auto encoder. 

The membership functions are: 

 1 (t) = 

{ 

1 if , a (t) < 0 

1 − a (t) 
2 

if , 0 < a (t) ≤ a 1 
0 if , a (t) ≥ a 1 

(2)

 2 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if , b r < 0 . 02 

1 if , b r ≥ 0 . 02 , b(t) ≤ b min 
(b 1 −b(t)) 
(b 1 −b min ) 

if , b r ≥ 0 . 02 , b min < b(t) < b 1 
0 if , b r ≥ 0 . 02 , b(t) ≥ b 1 

(3)

 3 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if , b r < 0 . 02 

0 if , b r ≥ 0 . 02 , b(t) ≤ b 2 
(b(t) −b 2 ) 
(b max −b 2 ) 

if , b r ≥ 0 . 02 , b 2 < b(t) < b max 

1 if , b r ≥ 0 . 02 , b(t) ≥ b max 

(4)

 4 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if , c r < 0 . 02 

0 if , c r ≥ 0 . 02 , c(t) ≤ c 1 
(c(t) −c 1 ) 
(c max −c 1 ) 

if , c r ≥ 0 . 02 , c 1 < c(t) < c max 

1 if , c r ≥ 0 . 02 , c(t) ≥ c max 

(5)

 5 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if , d r < 0 . 02 

0 if , d r ≥ 0 . 02 , d(t) ≤ d 1 
d(t) −d 1 
d max −d 1 

if , d r ≥ 0 . 02 , d 1 < d(t) < d max 

1 if , d r ≥ 0 . 02 , d(t) ≥ d max 

(6)

 6 (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if , d r < 0 . 02 

0 if , d r ≥ 0 . 02 , d(t) ≤ d min 
d(t) −d min 

d 2 −d min 
if , d r ≥ 0 . 02 , d min < d(t) < d 2 

1 if , d r ≥ 0 . 02 , d(t) ≥ d 2 

(7)

.2.2. Results and analysis 

The representation described in the previous section is given as

nput to a stacked auto encoder to recognize the human actions.

he first hidden layer of the stacked auto encoder is trained to

earn the features necessary to reconstruct the input at its output.

 second hidden layer is trained to reconstruct the features learned

y the first hidden layer and a soft max layer at the end is used

or classification. The proposed approach is evaluated on MHAD

ataset using 5-fold cross validation. The stacked auto encoder is

rained using conjugate gradient descent algorithm [12] for 400
ions using pose-based features and stacked auto encoder, Pattern 
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Table 5 

Confusion matrix of the proposed approach for 5-fold cross validation on Berkeley MHAD dataset. 

Jump Jumping-jack Bending Punching Wave-2-hand Wave-1-hands Clapping Throwing Sit & stand Sit-down Stand-up 

Jump 100 

Jumping-jack 96.7 3.3 

Bending 1.7 96.7 1.7 

Punching 100 

Wave-2-hand 1.7 98.3 

Wave-1-hands 100 

Clapping 1.7 95.0 1.7 1.7 

Throwing 1.7 96.7 1.7 

Sit & stand-up 96.7 1.7 1.7 

Sit-down 100 

Stand-up 1.7 98.3 

Table 6 

Performance of different human action recognition approaches on 

Berkeley MHAD dataset. 

Approach Accuracy 

Bag of words by Foggia et al. [16] 72 .9 

Kernel SVM by Ofli et al. [13] 79 .93 

Modeling of styles by Cheema et al. [3] 89 .85 

Deep learning by Foggia et al. [17] 85 .8 

Conditional RBM by Mocanu et al. [11] 82 .42 

Cloud sequence by Zhang et al. [24] 85 .7 

Edit distance by Brun et al. [2] 87 .1 

SMIJ by Ofli et al. [14] 95 .37 

Proposed representation with CNN classifier 97 .27 

Proposed approach 98 .03 
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Fig. 14. Features learned by the first layer of stacked auto encoder for (a) the first 

split and (b) the second split, for 5-fold cross validation of MHAD dataset. 

t  

t  

v  

r  

w  

d  

d

pochs during unsupervised feature learning and fine-tuning of

eights. An average classification accuracy of 98.03% is obtained

sing the proposed approach whose confusion matrix is given in

able 5 . The performance comparison of various approaches for 5-

old cross validation on MHAD dataset is shown in Table 6 . From

his table, it can be observed that the performance of the pro-

osed approach is better than many approaches even when MO-

AP information of only 3 joints is considered in input represen-

ation. Even though the performance of proposed approach using

NN classifier is close to SAE, we prefer SAE classifier as its perfor-

ance is less sensitive to the initial weights (due to its layer-wise

re-training), when compared to a CNN classifier. This indicates

he effectiveness of input representations (utilizing statistical infor-

ation about actions) and the stacked auto encoder classification

ramework. 

The features learned by the first layer of stacked auto encoder

or the first two splits in 5-fold cross validation on MHAD dataset

s given in Fig. 14 . From the figure, it can be observed that similar

eatures are learned across both the folds. The input representation

nd the reconstructed input using the features learned by the first

ayer of stacked auto encoder, for some observations is given in

ig 15 . From the figure, it can be observed that the reconstruction

f input signal eliminates noise and normalizes the representation

cross observations, which could be the reason for the effective-

ess of stacked auto encoder. 

. Conclusion 

This paper presents an input representation based on pose fea-

ures for human action recognition using stacked auto encoder. It

s shown that an effective MOCAP action representation can be

uilt by utilizing the domain knowledge about the key movements

f the actions. The unsupervised feature learning capability of the

tacked auto encoder is exploited to learn the discriminative fea-
Please cite this article as: E.P. Ijjina, K.M. C, Classification of human act

Recognition Letters (2016), http://dx.doi.org/10.1016/j.patrec.2016.03.021
ures required for classification. The low misclassification error of

he proposed approach for CMU MOCAP dataset and 5-fold cross

alidation of MHAD dataset suggests the effectiveness of the input

epresentation and the stacked auto encoder classification frame-

ork. Future work will extend this approach to other multi-modal

atasets containing other modalities of data like acceleration, au-

io etc. 
ions using pose-based features and stacked auto encoder, Pattern 
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Fig. 15. Typical input representation and its reconstruction using the first layer of 

stacked auto encoder. (Here, IR is input representation, RCO is reconstructed output 

using the 1st layer of stacked auto encoder and SRCO is the scaled reconstructed 

output to to reach a maximum gray value of 255. (The representation is scaled-up 

for better visualization). 
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