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Abstract 

In this paper. we investigatt: the problem of video c1assifica­
lion imo predefined genre . by combining the evidence from 
multiple c1assillers. It is we ll known in the pattern recog· 
nit ion community [hal [he accuracy of classification ob­
Lained by combining decisions made by independent clas­
sifiers can be suhstantially higher than the accuracy of the 
individual classifiers. The c.:onventional method for com­
bining individual classifiers weighs each classifier equally 
(sum or Vale rule fusion). In t ltis paper, we study a method 
that estimates [he performances of the individual classifiers 
and combines the individual classifiers by weighing them 
according to their estimated performance. We demonstrate 
[he efficacy of the performance based fusion method by ap­

plying it to classilication of short video clips C:!O seconds) 
inro six populHr TV broadcilSt genre, namely canoon. com­

mercial. news. crickeL football. and tennis. The individual 
classifiers are trained using different spalial and temporal 

fealUres derived fmm lhe video sequences. and two differ­
ent classifier methodologies. namely Hidden Markov Mod­
els (HMMs) and Suppon Vector Machines (SVMs). The 
experiments were carried out on more than 3 hours of video 

data. A classillcation rate of 93.12% for all the six classes 
and 97.14% for sports category alone has been achieved, 
which is signifkllntly higher than the perfoml unce of the 
individual classifiers. 

1 Introduction 

Contel1l-based video classification deals with the problem 
of categorizing a given video sequence into one of certain 
predefined video genre. Wilh the availability of large digi­
tal video lihraries. it is desirahle to classify and categorize 
video content aUlOmmically. so that end users can search, 

ancl chose or verify a desired program based on the semantic 

content thereof. Also. efficient indexing of video data can 
be achieved. first by categorizing the video. and then em­
ploying the domain speci fie knowledge of the video genre. 

There are many approaches to content-based classifica-
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tion of video data. At the highest level of hierarchy, video 
collections can be categorized into different program gen­
res such as cartoon. sports. commercials. news and music. 
In a recent approach [1], Li et al ust:d PCA to reduce the 
dimensionality of the features (low-level audio and visual) 

of video, and they used Gaussian Mixture Model (GMM) 
based c1assilier models. In an another approach [2], Truong 

et al used semantic aspects of a video genre such as editing. 
motion and color features and C4.S decision tree algorithm 
\0 build the classifier. 

At the next level of hierarchy. domain videos such as 
sports can be classified into different sub�categories. In [3J. 
Xavier et al classify sports video imo four sub categories 
(ice hockey, basketball. football and soccer) by using mo­
tion and color features and HMM based classifier models. 
In an another approach [4l_ by llsing thc statistical analysis 
of camera motion patterns such as fix, pan, zoom and shake, 
sports videos are categorized into sumo. tennis. baseba ll, 
soccer and football. 

At a finer leveL a video sequence ilSelf can be seg· 
mented. and each segment can then be classified according 
to its semantic content. In lSJ. sports video segments are 
first segmented into shots. and each shot is then classilied 
into playing field, player, graphic. audience and studio shot 

categories . Parsing and indexing of news video [6] and se­
mantic classification of basketball segments into goal. foul 
and crowd categories [7] by using edge-based features are 

some of the other works carried out at this level. 
This paper is an extension.1o our earlier work [8], where 

we addressed the problem of video classilication using spa­
tial and temporal features, and support vector machines. 

This paper addresses the problem of combining evidence 
from multiple classifiers for video classification. It has been 
shown in the literature [9. la, I L 12l that the combination 
of several complementary classitiers will improve the per­

. formance of individual classifiers. There arc at leaSl two 
reasons justifying the necessity of combining mult iple clas­
sifiers : 

1 B7 

1. For any pattern recognition application, there afe a 

number of classification algotithms developed from 
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different theories and methodologies. For a specific 
appl ication problem, each of these classifiers could 
reach a certain degree of Success, but may be none of 
them is good enough to be employed in practice. 

2. Often there are numerous types of features which 
could be used to represent and recognize pat terns. 
These features are also represented in very diversified 
forms, and it is hard III lump them together for one sin­
gle classifier to make the decision. 

Given a classification task. there are numerous types of fea­
tures that can be extracted from the same raw data. Based on 
each of these features, a classi fier Of several different clas­
sifiers can be trained for the same classification task. As a 
result . we need schemes to c.:ombine the results from these 
classifiers to produce an improved result for the classifica­
tion task. 

The output information from various classification algo­
rithms can be categorized into three levels: 

I. Abstract level: Classifier outputs a unique label. 

2. Rank level: Classifier ranks all labels in a queue with 
the label at the top being the lirs\ choice. 

3. Measurement level: Classifier anributes to each class 
a measurement value that reflects the degree of confi­
dence that a specific input belongs to a given class. 

Among the three levels. the measurement level contains the 
highes t amount of information, while the abstract level con­
tains the lowest. Por this reason. We adopted a well known 
approach for combining the results of multiple classifiers, 
at the measurement level. The method is based on the 
weighted sum of measurements. where the weights are de­
termined by a Bayesian decision rule. In this paper, we 
address the problcn) of video genre classification for six 
classes: cartoon. commercial, news. cricket, football, and 

tennis. Five different types of spatial and temporal features 
are extracted from the video data. Two different classifter 

methodologies, namely Hidden Markov Models (HMMs) 
and Support Vector Machines ( SVMs) are been used to 
model each feature type. 

The rest of this paper is organized as follows: In Section 
2, the extraction of spatial and temporal visual features in­
herent in a video class is described . Section 3 gives a brief 
introduction to the classifier methodologies . Sec tion 4 de­
scribes the weighted Bayesian multi-classifier fusion tech­
nique based on the individual classi fier performance mod­
els. Section 5 describes experiments on video classification 
on six TV genre, and discusses the performance of the sys­
tem. Section 6 summarizes the study. 

2 Feature Extraction 

A feature is defined as a descriptive parameter that is ex­
tracted from an image or a video stream. TIle effectiveness 
of any classification scheme depends on the effectiveness of 
attributes in content representation. We extract five ditTer­
ent types of visual features (Fl. F'2. F3. F4 and F5) based 
on color, texture and motion in the video. The definitions of 
these features and their intuitive meanings are discussed in 
the following subsections. 

2.1 Color histogram moments (Fl) 

Color is an important attribute for image representation. 
Color histogram. which represents the color distribution in 
an image, is one of lhe most widely used color feature. 

Since it is not feasible to consider the complete histogram, 
for each frame in the video. we have considered the sec­
ond, third moments (variance. skewness respectively) and 
the dominant color bin value from each of the three his­
tograms for hue, saturation and value planes in HSV color 
space. 

2.2 Color coherence vector (F2) 

Color coherence vector is similar to color histogram but also 
takes spatial infomlation of the pixels into consideration. A 
color's coherence is defined as the degree to which pixels of 
that color are members or large similarly-colored regions. 
Color coherence vectors are computed as descri bed in lI3}. 
The RGB(888) color space is quantized into 64 colors by 
considering only the 2 most significant bits from each plane. 
For each frame of the video sequence , color coherence vec­
tor is obtained with 64 bins. We have considered only the 
top ten dominant color bin values as our feature from the 

coherence vector. 

2.3 Edge Features (F3 & F4) 

We have considered two differem features that can be de­
rived from edge information, namely. edge direction his­
togram and edge intensity histogram. Edge direction his­
togram is one of the standard visual descriptors defined in 
MPEG-7 for image and video, and lJrovides good repre­
sentation of the non-homogeneous textured images. This 
descriptor cap tures the spatial distribution of edges. A 
given image is first segmented into '2 x 2 sub-images. Tlte 
edge information is then calculated for each sub-image us­
ing Canny algorithm. The domain of the edge directions 
(0 - 180) is divided into;:' bins. Thus. an image partitioned 
in to 4 sub-images results in 20 bins. 

Also, we derive a 16 bin edge intensity histogram [F4) 
from the edge information as another type of feature . 
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2.4 Motion feature (FS) 

Motion is �n imporlant auribute or video. Different video 
genre present ditTerent motion pmterns. In this paper. we 

use a simple and effective technique where motion is ex­
tracted by pixel -wise differencing of consecutive frames . . 
We divide each frame into 5 sub-images (top-left. top-right. 
hOllom-lefl. hottom-right and center). each of size equal to 
half the width and height of the Original image. The motion 

information is computed by the equation: 

1 II' Ii 
M(t) = -2: 2: Pt(:J:,y) w*h. 

.,.= l y= l  
(I) 

. { 1 where P ':e. Ii) = t\ . � 0 
. if 11t(:1:.,1/) - It_l (:1:. y)1 > i3 

olherwisc 
(2) 

where {t(:r. y) and 1t-1(:I:.1I) are the pixel values at pixel 
location (J:. y) in ttl, and (t - I )"1 frames, respectively. (3 
is the threshold. and wand h are width and heighT of the 
sub-image. respectively. A 5 dimensional feature is derived 
from each consecutive frame pair. 

3 Classifier Methodologies 

There are a number of classifier algorithms reported in the 
literarure for various pattern recognition applications. We 
have chosen Hidden Markov models(HMMs) and Support 

Vector Machines rSVMs) for our classification task. Given 
the temporal nature of video. and HMMs being effective 
tools for modeling time-varying patterns 114J, we have cho­
sen HMM as one of the classi ncr algorithms for our study. 
SVMs are well-known for their good generalization perfor­
manct: [15]. and have been applied to many pattern recog­
nition problems in recent years. In the next subsections. we 
will give a brief discussion of the two classifier methodolo­
gies. 

3.1 Hidden Markov Model (HMM) 

A Markov model is a fmite state machine which changes 
the state once every time unit. and each time t that a slate 
(jj is emered. a vector Ot is generated with a probability 
density b'lj (od. Furthermore. the transition from state qi 
to state qj is also probabilistic. and is governed by the dis- . 

crete probability (!'JilJj' The joint probability that.the ob­
servation seq uence a = (0 1 02 . . , or) of length T is gen­
erated by the model), moving through the state sequence 
q "" (ql q2 . . . qr) is calculated as the product of the transi­
tion probabilities and the output probabilities. In practice, 
only the observation sequence 0 is known. and the underly­
ing state sequence q is hidden. Hence, it is called a hidden 
Markov model. 
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Given that the state sequence q is unknown, the probabil­
ity of 0 (given the model) is obtained by summing the joint 
probability over all possible stare sequence q as follows: 

P(O I,X,) = L 1fql bq1 (Od0'll'!" biN (02) . . . a<!T_lqr b'lT (OT) 
ql,q2 ... . ,qT 

(31 
where 7fq, is the initial state probability. The parameters 
{ (!qi 'Ij} and {bqj (Ot)} are known for each model ),. 

The following steps are implemented for the video clas­
sification in the HMM framework. 

1. Initialization of models. 

2. Baum-Welch Re-estimation of the models. for deter­
mining the parameters of HMM. Here independent 
model for each video genre is built . The model is re 
estimated until there is no change in the state transi­
tion probabilities, 

3. Testing of models: This involves testing video c lips 
against the model buill. 

3.2 Support Vector Machine Model (SVM) 

Support vector machines [16] for pattern classification are 
built by mapping the input patterns into a higher dimen­
sional feature space USing a nonlinear transformation (ker­
nel function). and then optimal hyperplanes are built in the 
feature space as decision surfaces between classes. Nonlin­
ear transformation of input patterns should be such that the 
pattern classes are linearly separable in the feature space. 
According to Cover's theorem. nonlinearly separahle pat­
terns in a multidimensional space, when transformed into 
a new feature space are likely to be linearly separable with 
high probability. provided the transformation is nonlinear. 
and the dimension of the feature space is high enough [171· 
The separation between the hyperplane and the closest data 
point is called the margin of separation. and the goal of a 
support vector machine is to find a optimal hyperplane for 
which the margin of separat ion is maximized. Fig. I illus­
trates the geometric construction of a [lyperplane for two di­
mension input space. The support vectors constitute a small 
subset of the training data that lie closest to the decision 
surface, and are therefore the most diffic ult to classify. 

The separating hyperplane is defined as a linear function 
of the vectors drawn from the feature space. Construction of 
this hyperplane is perforn1ed in accordance with the princi­
ple of structural risk minimizat ion that is rooted in Vapnik­
Chervonenkis (VC) dimension theory 07]. By using an op­
timal separating hyperplane the VC dimension is m inimized 
and generalization is achieved. The number of examples 
needed to learn ,1 class of interest reliably is proportional to 
the VC dimension of that class. Thus. in order to have a less 
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Figure I: IlIustration of the idea of support vectors and an 
optimal hyperplane for linearly sep arable patterns. 

complex classiticarion system. it is preferable to have those 

fealUres which leaello lesser number of support vectors. 
The optimal hyperplane is defined by: 

N" 

L oidi K(x. Xi) = (j (4) 

where Ns is the total # of support vectors which lie on ei­
ther side of the hyperplane. {od i�1 are the Lagrange mul­

tipliers. {d;} ;�sl are·the desired classes and K(x, x;) is the 
inner-product kerneL and is detined by: 

K(x. xd 
nil 

L 'Pj(X)'P) (x,). i = 1.:.! . . . . , Ns (5) 
)=0 

where x is a vector of dimension IIIU drawn from the input 
space. and {'Pj(x)}j:;) denotes a set of nonlineartransfor­
mations from the inpm space to the fe·ature space. 'Po(x) = 

L for all x. In I is the dimension of the feature space. From 
(4) it is seen that the construction of the optimal hyperplane 
is hased on the evaluation Df an inner-product kernel. The 

inner-product kernel K (x, Xi ) is used to construct the opti­
mal hyperplane in the feature space without having to con­
sider the feature space itself in explicit fornl. The desi gn of 
a support vector maclline involvcS'[jnding an optimal hyper­
plane . In order to lind an optimal hyperplane. it is necessary 
to lind the optimal Lagrange multipliers which are obtained 
from the given training samples {(Xi, di)} :\',;1' 

The performance of the pattern classification problem 
depends on the type of kernel funct ion chosen. Possible 
cllOices of kernel functioll include; polynomial, Gaussian 
and sigmoidal . In this work. w e have used Gaussian kernel. 
since it was empiric ally observed to perfonn belter than the 
other two. SVMs arc originally designed for two class clas­
sification problems. In our work. multi-class (M = 6) clas­
sification 'task is achieved using one-against-rest approach. 

where an SVM is constructed for each class by discriminat­
ing that class against the remaining l1H - 1) classes. 

4 Combining Evidence 

4.1 A classifier 

Consider a classifier that distinguishes L different classes, 

or labels, in a label set 1\ = {I . . . .. f. }. Any pattern classi­
fication application involves two important stages; Training 
and testing. From a machine learning perspective, the pro­
cess of learning the patterns involved in the training data for 
various classes is known as training the classifier. The sel 
of all samples that truly belong to class i is denoted by Gi• 

so the a priori ground truth .. �: is truly in class i" is w ritten 
as 

.1: E Ci (6) 
When a test sample:t: is given to the �:tI, classifier. it outputs 
measurement/confidence values 

to express, what is the probability that the given sample be­
longs to class 1. When the kth classifia assigns sample :J: to 
class j, it is written as 

hd�:) = j, wh ere j = argmax Pi,(:t: E C', I :r) (8) 
':E/\ 

The goal now is to combine the evidence from all lhe 
J, classifiers, and to come up with a final measure­
ment/confidence value 

K 

PH(x E CJ 1 :1') = ){ L H:k x Pk(:l: E Ci 1·1'). i = 1. .. . , L 
k=1 

(9) 
where Hrk is the weight assigned to the ktll classifier based 
on its estimated perfom1ance. and a final hypothesis is made 
based on 

H(:t) = j, where j = arg lIlax PH(:t: E C; 1 :)') (10) 
"IE 1\ 

4.2 Classifier performance estimation 

The performance of a classifier c an be described by the 
probabilistic dependencies between its decisions and actual 
data memberships. written as conditional probabilities such 
as 

P(hd:r:) = j 1.1: E c,) (11) 
to express, for examp le, the probahility that a classifier k 
assigns a sample x 10 class j. when in fact 2' belongs to 
class i. 

For a given test set of samples with known classifica­
tions. the classification behavior of the classifier /; can be 
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expressed by its confusion matrix N". The number of rows 
and columns of this matrix equals the number of classes L. 
Each row corresponds to one class that a sample can be in. 
Each column represents a c1assiller decision. The entries of 

LV), are·the Co-occllrrences. of classifier decisions and aCHm! 
class memherships. 

I1k.i,} = # {:r:I:r E C'" hJ.(:d = j} (12) 

In other words, each of the entries nk.i.j of Nk is the num­
ber of samples :r from class i which classifier k assigned 
to class j. Given these values. one can estimate the condi· 
tional probabilities that describe the classification behavior 
oI a classifier. From its confusion matrix. the probabiliiy 

that a sample :r from class i is classified by classifier k as 
belonging to class j is estimated as 

Proceedings of 
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the individual classifiers arc weighed based on their perfor­
mance. 

TIle weights are derived from the average classifier per­
formance values given by equation ( 15) as: 

Now, the weighted Bayesian estimation values of tIle com­
bined classifier H are obtained as 

l\ 
PH (3.: E Ci 1 x) = ){ L Hi/.: x P" (�: E Ci 1 :l'), i = 1 , ... , L 

"=1 
(18) 

#{a: ! x E Ct II h,,(,l:) = j} 5 Experimental Results 

"nk,i.,j 
!tk.i,. 

#{J; I x E Cd 
(13 ) 

where the dcnominator is the row sum of the ith row of N/", 
I.e,. 

L 

n/,.,._ = L Hld,j 
j=! 

(14) 

For computational pUl1Jose. we estimate the average perfor­
mance of each c las si fier as 

L 
Ak=LP(hd�:)=il:rEOi,Nd, 1-.-=1, . . . ,]( 

( 15) 
where P(hk(.1:) = i \1: E OJ. N,,) represents, the probabi l­
ity ·that a sample :1; from class i is classified by classifier k 
as belongil1g to class i, and is obtained from equation( 13}. 

4.3 Multi-classifier decision fusion 

For combining the classiiication results on the same 3.: by 
all K classifiers, a simplc approach generally followed is 
to use the average measurement value as an estimation of 
combined dassilier H: 

1 K PH (:1: E C; I :r) = [( L FJ.;(;I: E C, 11:). i = 1, . . . . L 
�;=1 

(16) 
The combined classifier H with the newly estimated post­
probabilities is called an averaged Bayes classifier, The dis­
advantage with this approach is lhat, it gives equal prcfer­
en� to all the clas�it1ers. This will be useful only when 
all lhe classitiers perform egually well. But. this is nO! the 
case with most of t�le pattern recognition applications. So 
we propose a weighted Bayesian decision classifier, where 

The experiments were carried out on more than :3 hours of 
video data (I':> 600 video clips e,\c.h of 20 seconds captured 
at 25 frames per second) comprising of cartoon (Ca). com­

mercial (Co), news (Ne), cric.ket (Cr). football (Fo) and tcn­

nis (Te) video categories, The dar.a was collected from dif­

ferent TV channels on different dates and at ditTerent times 
to ensure tile variety of dam. For eadi video genre, 4U clips 
were used [or training , :.W clips were used to estimate the 
performance of the individual classiikrs. and the remaining 

40 were used for final testing. A f, SlHte HMM, and a Gaus­
sian kernel based SVM were constructed for each feature 
type and for each class. 

During testing phase, the HMMs wi ll output the log 
probabilities, given a test dip, representing the a posteri­
ori probability that this clip belongs to a particular class. 
Given a pattern vector to an SVM model, the result will be 
a measure of the distance of the pattern vector from the hy­
per plane constructed as a decision boundary between this 
Class and rest of the classes. The performance of HMM and 
SVM based classiliers computed as described in Section 4. 
for each of the five types of features is given in Table I. 
For concatenated features (PI to F!'J). the HMM and SVM 
classifiers resulted in 700/" and 8,".% classification accuracy. 
respectively. The performances of the avemgc Bayesian 
HMM classifier and SVM c1assitier are 80.E>% and 90.::1%. 
respectively. 

Table I: Performance ofHMM and SVM classifier models 
for each of the five t ype s of features (in %). 

II Fl F2 F3 F4 FS 
HMM II 57.49 41 77.33 62.35 36,84 
SVM II 76.11 45 83.8 72.5 57.1 
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As explained in Section '2, the individual class ifiers arc 
weighted and outputs are combined. The weighted com­
bine perfomlance of HMM classifier is 81.78% and of SVM 
classifier is 91.5'1.,. The measurement values from the two 
final weigllted classi fier are normalized to the range 0 to 
1. Finally these normalized measurement values from the 
weighted HMM and weighted SVM are combined. and a 
classification perfomlance of 93.12% for all the six classes 
and a performance of 97.14'70 for sports category alone. has 
been achieved. The t:Onfusion matrix for the final classifier 
(combined HMM and SVM) is given in Table 2. 

Table 2: Confusion matrix of video classification resulis us­
ing combined HMM and SVM classifier (in %). 

Ca Co I Nc I Cr Fo Tc 
ea 77.42 19.35 0 3.23 0 0 

Co 0 100 0 0 0 

Nc 0 10 82.5 7.5 0 0 

Cr 0 0 0 lJ7,44 2.56 0 

Fo 0 2.63 0 0 97.37 0 

Te 0 0 0 3.57 96.43 

6 Conclusion 

We have presented a novel approach to combine evidence 
from multiple classifiers for video classification based on 
spalial and temporal fCalures. and llidden Markov Mod­
els and Support Vector Machine models. A video database 
of TV broadcast programs containing six popular genre 
namely cartoon. commercial, news. cricket. football and 
tennis was used for training and testing the models. A 
correct classification fate of 93.12'7" percent was achieved. 
Experimental results indicate that the combined classifier 
out-performs the individual classifiers. claSSifiers trained 
with concatenated features. and average Bayesian classifier. 
However. in order to achieve berter classification perfor­
mance. evidence from visual features alone may not be suf­
ficienL Evidence from other modalities in a video like au­
clio and text need to be combined with the visual evidence. 
which will be our future elTon. 
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