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Abstract

In ihis paper. we investigate the problem of video classifica-
tion into predefined genre. by combining the evidence from
multiple classifiers. It is well known in the pattern recog-
nition cemmunity that the accuracy of classification eb-
Lained by combining decisions made by independent clas-
sifiers can be substantially higher than the accuracy of the
individual classificrs. The conventional method for com-
bining individual classifiers weighs each classifter equally
(sum or vole rule tusion). In this paper, we study a method
that estimates the performances of the individual classifiers
and combines the individuval classifiers by weighing them
according 1o their estimated performance. We demonstrate
the efficacy of the performance based fusion method by ap-
plying it to classification of short video clips (20 seconds)
into six popular TV broadcast genre, namely cartoon. com-
merclal. news. crickel. football. and tennis. The individual
classifiers are trained using difterent spatial and 1emporal
features derived from the video seguences. and two differ-
ent classifier methodologics. namely Hidden Markov Mod-
els (HMMSs) and Support Vector Machines (SVMs). The
experiments were carried out on more than 3 hoars of video
data. A classification rate of 93.12% for all the six classes
and 97.14% for sports category alene has been achieved,
which is significantly higher than the performance of the
individual classificrs.

1 Introduction

Content-based video classificalion deals with the problem
of categorizing a given video sequence into one of certain
predefined vicleo genre. With the availability of targe digi-
tal video libraries. it is desirable to classify and calegorize
video content automatically. so that end vsers can search,
and chose or verify a desired program based on the semantic
content thereof. Also. efficient indexing of video datacan
be achieved. first by categorizing the video. and then em-
playing the domain specific knowledge of the video genre.

There are many approaches to conteni-based classifica-
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tion of video data. At the highest level of hierarchy, video
collections can be categorized into clifferent program gen-
res such as cartoon. sports. commercials. news and music.
In a recent approach [1], Li et al used PCA to reduce the
dimensienality of the features (low-level audio and visual)
of video, and they used Gaussian Mixture Model (GMM)
based classifier models. Inan another approach [2], Truong
et a] uscd semantic aspects of a video genre such as editing.
motion and ¢olor features and C4.5 decision tree algorithm
10 build the classifier.

At the next fevel of hierarchy. domain videos such as
sports can be classified into different sub-categories. In [3].
Xavier et al classily sports video into four sub categorics
{ice hockey, basketball. football and soccer) by using mo-
tion and color features and HMM based classifier modets.
In an another approach [4]. by using the statistical analysis
of cameramotion patterns such as fix, pan, zoom and shake,
sports videos are categorized into sumo. tennis. baseball,
soccer and football.

At a finer level. a video sequence irsell can be seg-
mented, and each segment can then be classified according
to its semantic content. In [5]. sports video segments are
first segmented into shots. and each shot is then classiticd
into playing field, playcr, graphic. audience and studio shet
categories. Parsing and indexing of news video [6] and se-
mantic classification of basketball segments into goal. foul
and crowd categories [7] by using edge-based features are
sonie of the other works carried out at this level.

This paper is an extension to our earlier work (8], where
we addressed the problem of video classification using spa-
tial and temporal features, and support vecter machines.
This paper addresses the problem of combining evidence
from multiple classifiers for video classification. It has been
shown in the literature [9. 10, 1 1. 12] that the combination
of several complementary classifiers will improve the per-

‘formance of individual classifiers. There are at least iwo

reasons justifying the necessity ol combining multipk clas-
sifiers:

1. For any pattern recognjtion application, there are a
number of classification algorithms developed fram
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different theories and methodologies. For a specific
application problem, each of these classifiers could
reach a certain degree of success, but may be none of
them is good enough 1o be employed in practice.

[ 3]

. Often there are numerous types of features which
could be used to represent and recognize paiterns.
These features are also represented in very diversified
forms, and it is hard 1o lump them together for one sin-
tle classifier 1o make ihe decision.

Given a classification task. there are numerous types of fea-
tures that can be extracted from the same raw data. Based on
cach of these features, a classificr or several different clas-
sifiers can be trained for the same classification task. As a
resuli. we need schemes 10 combine the results from these
classifiers to produce an improved result for the classifica-
tion task.

The output information from various classification algo-
rithms can be categorized into three levels:

1. Abstract level: Classifier outputs a unique label.

2. Rank level: Classifier ranks all labels in a queue with
the label at the top being the first choice.

3. Measurement level: Classifier auributes to each class
a measurement value that reflects the degree of confi-
dence that a specific input belengs to a given class.

Among the three levels. the measurement level contains the
highest amount of information, while the absiract level con-
tains the lowest. For this reason. we adopted a well known
approach for combining the results of multiple classifiers,
al the measurement level. The method is based on the
weighted sum of measurements. where the weights are de-
termined by a Bayesian decision rule. In this paper, we
address the problemy of video genre classification for six
classes: cartoon. commercial, news. cricket, football, and
tennis. Five different types of spatial and temporal features
are extracted from the video data. Two different classifier
methodologies, namely Hidden Markov Models (HMMs)
and Support Vector Machines (SVMs) are been used to
model each feature type.

The rest of this paper is organized as follows: In Section
2, the extraction of spatial and temporal visual features in-
herent in a video class is described. Section 3 gives a brief
introduction to the classifier methodologies. Section 4 de-
scribes the weighted Bayesian multi-classifier fusion tech-
nique based on the individual classifier performance mod-
els. Section 5 describes experiments on video classification
on six TV genre, and discusses the performance of the sys-
tem. Section 6 summarizes the study.

2 Feature Extraction

A feature is defined as a descriptive parameter that is ex-
tracted from an image or a video stream. The ettectiveness
of any classification scheme depends on the effectiveness of
attributes in content representation. We extract five differ-
ent types of visual features (F'1. F'2. F3. Fd and F5) based
on color, texture and motion in the video. The definitions of
these features and their intuitive meanings are discussed in
the following subsections.

2.1 Color histogram moments (F'1)

Color is an important atiribute tor image representation.
Color histogram. which represents the color distribution in
an image, is onc of the most widely used color feature.
Since it is not feasible to consider the complete histogram.,
for each frame in the video. we have considered the sec-
ond, third moments (variance. skewness respectively) and
the dominant color bin value from each of the three his-
tograms for hue, saturation and value planes in HSV color
space.

2.2 Color coherence vector (£'2)

Colorcoherence vector is similar io color histogram but also

iakes spatial information of the pixels int® consideration. A
color’s coherence is defined as the degree to which pixels of
that color are members of large similarly-colored regions.
Color ¢coherence vectors are computed as described in {13].
The RGB(888) color space is quantized into 64 colors by
considering only the 2 most significant bits from each plane.
For each frame of the video sequence, color cohierence vec-
tor is obtained with 64 bins. We have considered only the
top ten dominant color bin values as our featurce from the
coherence vector.

2.3 [Edge Features (F'3 & ['41)

We have considered two different features that can be de-
rived from edge information, namely, edge direction his-
togram and edge intensity histogram. Edge directien his-
togram is one of the standard visual descriptors defined in
MPEG-7 for image and video, and provides good repre-
seniation of the non-homogeneous textured images. This
descriptor captures the spatial distribution of edges. A
given image is first segmented into 2 x 2 sub-images. The
edge information is then calculated for each sub-image us-
ing Canny algorithm. The domain of the edge directions
(0 — 180) is divided into 3 bins. Thus. an image partitioned
into 4 sub-images results in 20 bins.

Also, we derive a 16 bin edge intensity histogram (F'4)
from the edge information as anether type of feature.
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2.4 Motion feature (F'5)

Mation is an important attribute of video. Different video
genre present different motion patterns. In this paper. we
use a simple and elfective technique where motion is ex-

tracted by pixel-wise differencing of consecutive frames. .

We divide each frame into 5 sub-images (top-left. top-right.
bottom-left. bottom-right and center), each of size equal to
half the width and heigli of the original image. The motion
information is computed by the equation:

w h

o
Mt)= =33 Pile.) ey

r=1ly=!

. Lo il (o) — B, y)| > 8
where £, y) = { L otherwise !

(2)
where [; (2. y) and f,_{x. ) are the pixel values at pixel
location (2. y) in #*% and (¢ ~ 1)** frames, respectively. 3
is the threshold. and w: and 2 are width and heighrt of the
sub-image. respectively. A 5 dimensional feature is derived
from each consecutive frame pair.

3 Classifier Methodologies

There are a number of classifier algorithms reported in the
literature for various pattern recognition applications. We
have chosen Hidden Markov models(HMMs) and Support
Vector Machines (SVMs) for our classification task. Given
the temporal nature of video. and HMMs being effective
tools for modeling time-varying paiterns [ 14], we have cho-
sen HMM as one of the classifier algorithms for our study.
SVMs are well-known for their good generalization perfor-
mance [15]. and have been applied 10 many pattern recog-
nition problems in recent years. In the next subsections. we
will give a brief discussion of the 1wo classifier methodolo-
gies.

3.1 Hidden Markov Model (HMM)

A Markov mode] is a finite state machine which changes
the state once every time unit, and each time ¢ that a state
¢; is entered. a vector o, is generated with a probability
density b, (e,). Furthermore. the transition from state g;

10 state g; is also probabilistic. and is governed by the dis- -

crete prebability a,q,. The joint probability that.the ob-
servation sequence O = (0,07... e7) of length T is gen-
erared by thie model A moving through the state sequence
&« = (q1q2...q7) is calculated as the product of the transi-
tion probabilities and the output probabilities. In practice,
only the observation sequence O is known, and the underly-
ing state sequence ¢ is hidden. Hence, it is called a hidden
Markov model.
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Given that the state sequence q is unknown, the probabil-
ity of O (given the model) is obtained by summing the joint
probability over all possible siate sequence q as follows:

P(Or)‘) = Z W!lbfh (Ol)“m!f_‘ {)'1:(02) <o Qg gy bftr (o)
91.92,....9T
(3)
where g, is the initial state probability. The parameters
{ 4,9, ) and {bg, (0;)} are known for cach model A.
The following steps are implemented for the video clas-
sification in the HMM framework.

1. Initialization of models.

2. Baum-Welch Re-estimation of the models. for deter-
mining the parameters of HMM. Here independent
model for each video genre is built. The mode! is re
estimated until there is no change in the state transi-
tion probabilities.

3. Testing of models: This involves testing video clips
against the model built.

3.2 Support Vector Machine Model (SVM)

Support vector machines [16] for pattern classification are
built by mapping the input patterns into a higher dimen-
sional feature space using a nonlinear transformation (ker-
nel function), and then optimal hyperplanes are built in the
feature space as decision surfaces between classes. Nonlin-
ear transformation of input patterns should be such that the
patiern classes are linearly separable in the feature space.
According to Cover’s theorem. nonlinearly separable pat-
lerns in a multidimensional space, when transfermed into
a new feature space are likely to be linearly separable with
high probability, provided the transformation is nonlinear.
and the dimension of 1he feature space is high enough [17].
The separation between the hyperplane and the closest data
point is called the margin of separation. and the goal of a
support vector machine is to find a optimal hyperplane for
which the margin of separation is maximized. Fig. 1 illus-
Irates the geometric construction of a hyperplane for two di-
mension input space. The support vectors constitute a small
subset of the training data that lie closest to the decision
surface, and are therefore the mos: difficult 1o classify.

The separating hyperplane is defined as a linear function
of the vectors drawn from the feature space. Construction of
this hyperplane is performed in accordance with the princi-
ple of structural risk minimization that is rooted in Vapnik-
Chervonenkis (VC) dimension theory {17]. By using an op-
timal separating hyperplane the VC dimension is minimized
and generalization is achieved. The number of examples
needed to learn & class of interesl reliably is proportional 1e
the VC dimension of that class. Thus. in order to have a less
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Figure 1: Illustration of the idea of support vectors and an
optimal hyperplane for linearly separable patterns,

complex classification system, it is preferable to have those
features which lead 1o lesser number of support vectors.
The optimal hyperplane is defined by:

Ny
ZQ,‘d;K(X. x;) =1 (4)
i=1
where Ng is the total # of support vectors which lie on ei-
ther side of the hyperplane. {ai}gh_’__s‘ are the Lagrange mul-
tipliers. {d;} % arethe desired classes and K (x,x;) is the
inner-product kernel. and is defined by:
- T/ ooni
Kixoxi) = ¢ (x)ip(x:)

rn

1
= Y wilx)es(xi).
j=0

where x is a vector of dimension ny drawn from the input
space. and {(2;(x)}72) denoles a set of nonlinear transfar-
mations from the inpul space to the feature space. pq(x) =
L. for all x. 1y is the dimension of the feature space. From
(4) it is seen that the construction of the optimal hyperplane
is based on the evaluation of an inner-product kemel. The
inner-product kernel & (x, x;) is used to construct the opti-
mal hyperplane in the feature space without having to con-
sider the feature space itself in explicit form. The design of
a support vector machine involves'finding an optimal hyper-
plane. In order to find an optimal hyperplane. it is necessary
to find the optimal Lagrange muhipliers which are obiained
from the given training samples {(x;, d;)} 5.

The performance of the pattern classification problem
depends on the type of kernel function chosen. Possible
choices of kernel function include; polynomial. Gaussian
and sigmeidal. In this work, we have used Gaussian kernel.
since it was empirically observed to perform better than the
other two. SVMs are originally designed for two class clas-
sification problems. In our work. multi-class (A = 6) clas-
sification task is achiieved using one-against-rest approacit,

where an SVM is constructed for each class by discriminat-
ing that class against the remaining (Af — 1) classes.

4 Combining Evidence

4.1 A classifier

Consider a classifier that distinguishes L differem classes,
or labels, in a label set A = {1... . L.}. Any pattern classi-
fication application involves two important stages: Training
and testing. Frony a machine learning perspective, the pro-
cess of learning the patterns involved in the training data for
various classes is known as training the classificr. The set
of all samples that truly belong to class ¢ is denoted by ;.
so the a priori ground truth 2 is truly in class " is written
as .

x e Oy . (6)

When a test sample 2 is given 1o the A" classifier. it outputs
measurement/confidence values

PeleeCi|a), i=1..Land b=1....K (7

10 express, what is the probability that the given sample be-
longs to class i. When the k** classificr assigns sample 2 10
class 7, it is written as

hr(x) =7, where j=argmax F(x € C:|2) (B)
rEA
The goal now is to combine the evidence from all the
K classifiers, and to come up with a final measure-
menvconfidence value

Y
1 . -
Py(z € Cila) = E};Wk x Pfee o) i=1....,
)
where Wy, is the weight assigned 1o the A" classifier based
on its estimated performance. and a final hypothesis is made
based on

H(z)=j, where 7=argmax Py(x € C;|») (10)

1EA

4.2 Classifier performance estimation

The performance of a classifier can be described by the
probabilistic dependencies between its decisions and actual
data memberships. writien as cenditional probabilities such
as

Plh(e)=532€C) . (1)

10 express, for example, the probability that a classifier k
assigns a sample x to class j. when in fact 2 belongs to
class 1.

For a given test set of samples with known classifica-
tions. the classification behavior of the classifier & can be
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expressed by its confusion matrix V. The namber of rows
and columns of this matrix equals the number of classes L.
Each row corresponds to one class that a samiple can be in.
Each column represents a classifier decision. The entries of
N, are the co-occurrences of classifier decisians and actual
class memberships.

npij =#{rle € Cohi(z) =7} {12)
In other words. each of the entries 1y ; ; of Ny is the num-
ber of samples » trom class ¢ which classifier & assigned
to class j. Given these values. one can estimate the condi-
tional probabilities that describe the classification behavior
of a classifier. From its confusion matrix. the probability
that a sample 2 from class i is classified by classifier & as
belonging te class 7 is esiimated as

#{xla€CiAhi(z) =7}

Flhulz) = |= € G Ni) o lee )

Rk, g
L2

where the denominator is the row sum of the % row of N,
Le.

L

Nww = Z N (14)
j=1

For computational purpose. we cstimate the average perfor-

mance of each classifier as

L
Ap = Z Php(e)=:lv e, Ny), k=1
i=1 '

(i%)
where P(hr(z) =t | 2 € C}. Ny represents. the probabil-
ity that a sample 2 from class i is classified by classifier &
as belonging 1o ¢lass 7, and is obtained from equation(13}.

4.3 Multi-classifier decision fusion

For combining the classification results on the same z by
all i classitiers, a simmple approach generally followed is
1o use the average measurement value as an estimation of
cembined classifier f:

I
1 .
Py(z€ Cilx) = IS ;Pk(_:lr eC;|z). i=1,....

L

(16)
The combined classifier H with the newly estimated post-
probabilities is called an averaged Bayes classifier. The dis-
advantage with this approach is thai, it gives equal prefer-
ence to all the clussifiers. This will be useful only when
all the classifiers perform equally well. But. this is not the
case with mest of the pattern recognition applications. So
we propose a weighted Bayesian decision classifier, where

(13)
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the individual classifiers are weighed based on their perfor-
mance. .

The weights are derived from the average classifier per-
formance values given by equation (15) as;

Ag
K -
Z j=1 -4.7'

Now, the weighted Bayesian estimation values of the com-
bined classifier & are obtained as

Wy = (17N

., N
1 . !
Pylz e Cy|z) = };: E W x P]“('mecii-’lf), i=1,...
k=1

(18)

S Experimental Results

The experiments were carried out on more than 3 hours of
video data (== €00 video clips each of 20 seconds captured
at 25 frames per second) comprising of cartoon (Ca). com-
mercial (Co), news {Ne), cricket (Cr). football (Fo) and ten-
nis (Te) video éategories. The data was collected from dif-
ferent TV channels on different dates and at different times
w ensure the variety of data. For eacl videa gence, 40 clips
were used for training, 20 clips were used to estimate the
performance of the individual classifiers. and the remaining
40 were used for final testing. A 5 state HMM. and a Gaus-
sian kernel based SVM were constructed for each feature
type and for each class.

During testing phase, the HMMs will outpur the log
probabilities, given a tesi ¢lip, representing the a pesteri-
ori probability that this clip belongs to a parzicular class.
Given a pattern vector to an SVM model, the result will be
a measure of the distance of the pattern vector from the hy-
per plane constructed as a decision boundary between this
class and rest of the classes. The performance of HMM and
SVM based classifiers computed as described in Section 4.
for each of the five types of features is given in Table 1.
For concatenated features (F'1 to £'4). the HMM and SVM
classifiers resulted in 79% and 85% classification accuracy.
respectively. The performances of the average Bayesian
HMM classifier and SVM classifier are 80.5% and 90.3%.
respectively.

Table 1: Performance of HMM and SVM classifier models
for each of the five types of features (in %).

Fi_[F2]| F3 | F4 | F5 |
HMM [ 57.49 | 41 | 77.33 | 62.35 | 36.34
SVM [[76.11 [ 45 | 838 | 725 | 571
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As explained in Section 2, the individual classifiers are
weighied and outputs are combined. The weighted com-
bine performance of HMM classifier is 81.78% and of SVM
classifier is 91.5%. The measurement values from the twa
final weighted classifier are normalized to the range 0 to
1. Finally these normalized measurement values from the
weighted HMM and weighted SVM are combined. and a
classification performance of 93.12% for all the six classes
and a performance of 97.14 % for sports category alone. has
been achieved. The confusion matrix for the final classifier
(combined HMM and SYM 1} is given in Table 2.

Table 2: Confusion matrix of video classificatien results us-
ing combined HMM and SVM classifier (in %).

| [ Ca | Co | Ne Cr [ Fo | Te
Ca ] 7742 | 19.35 0 323 0 0
Co 0 100 0 0 0
Ne ¢] 10 82.5 7.5 0 0
Cr 0 0 0 9744 | 256 0
Fo 0 2.63 0 0] 97.37 0
Te ] 0 0 3.57 | 96.43

6 Conclusion

We have presented a novel approach to combine evidence
from multiple classifiers for video classification based on
spaiial and temporal features. and Hidden Markov Mod-
els and Support Vector Machine models. A video database
of TV broadcast programs coniaining siX pepular genre
namely cartoon. commercial, news, cricket. football and
tennis was used [or training and testing the models. A
correct classification rate of 93.12% percent was achieved.
Experimental resuolts indicate that the combined classifier
out-performs the individuai classifiers. classifiers trained
with concatenated features. and average Bayesian classifier.
However. in order 1o achieve better classification perfor-
mance. evidence from visual features alone may not be suf-
ficient. Evidence from other modalities in a video like au-
dio and text need 1o be combined with the visual evidence.
which will be our future effort.
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