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Abstract—The training of kernel support vector machine
(SVM) is a computationally complex task for large datasets where
the number of samples ranges in millions. This is because kernel
matrix (in general not sparse) is both computation expensive
and memory intensive. Existing methods hardly achieve a linear
scale and suffer from high approximation loss. We propose
Projection-SVM, a distributed implementation of kernel support
vector machine for large datasets using subspace partitioning. In
subspace partitioning, a decision tree is constructed on projection
of data along the direction of maximum variance (i.e., dominant
eigenvector) to obtain smaller partitions (i.e., subspaces) of the
dataset. On each of these partitions, a kernel SVM is trained
independently over a cluster thereby reducing the overall training
time. Also, it results in reducing the prediction time significantly.
We demonstrate the efficacy of the proposed approach on
eight standard large datasets from various application domains,
namely, mnist8m, kddcup99, webspam, etc. where Projection-
SVM is on an average 150 times faster than sequential SVM
while maintaining the classification accuracy. The experimental
results also show the superiority of the Projection-SVM over the
state-of-the-art approaches for distributed kernel SVMs, such as
DCSVM, CASVM, and DTSVM.

Index Terms—Machine Learning for Big Data, Distributed
Computing, Kernel SVM

I. INTRODUCTION

The support vector machine (SVM) [1] has been immensely
successful in the classification of diverse inputs from the
fields of computer vision, surveillance systems, cyber-security,
genomics, e-commerce, etc. [2]–[6]. However, to make in-
telligent decisions from such data is becoming increasingly
difficult due to easy availability of high volume data [7],
most noticeably in the form of text, images, and videos.
Since user preferences and trends keep on changing fluidly,
analysis of such a large volume of data to support decision
making is almost inevitable. Also, the SVM has been used for
classification problems in many areas due to its generalization
capabilities. SVM is based on statistical learning theory devel-
oped by Vapnik [1]. The core of SVM is in solving a quadratic
programming (QP), which separates support vectors from the
rest of the training data. Let D = {(x1, y1), ..., (xn, yn)} be
the dataset with n data points. Where, xi ∈ Rd is the d
dimensional data point with class label yi ∈ {−1,+1}. Then
the QP optimization problem for SVM in dual form can be
written as

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)−
n∑

i=1

αi, (1)

s.t.
n∑

i=1

αiyi = 0 and 0 ≤ αi ≤ C,

where, αi ∈ α are the Lagrangian multipliers and C is a
regularization parameter. Solving equation (1) gives α and a
bias value b. All vectors having non-zero αi ∈ α are known
as support vectors. Then, decision of a unknown test feature
vector x is given by following decision function:

f(x) = sign

(
m∑
i=1

αiyiK(xi,x) + b

)
. (2)

The equation (1) can be solved using existing implemen-
tations of SVM such as LIBSVM [8], LS-SVM [9], and
SVMlight [10] but they are sequential and cannot be scale
to large-scale problems because for a standard SVM, the time
complexity of O(n3) and space complexity of O(n2) tend to
increase rapidly with an increase in the size of the training data
[11]. Thus making training of kernel SVM a difficult task for
large-scale datasets.

In the modern era, the distributed environments like the
high-performance cluster (HPC), big data analytics, and cloud
clusters are widely used for solving the data-intensive and
time-consuming problems. However, sequential minimal op-
timization (SMO) [12], the most successful quadratic pro-
gramming (QP) solver, is a sequential method which can-
not leverage the benefits of these distributed environments.
The existing state-of-the-art approaches, namely, DCSVM [5],
CASVM [13], and DTSVM [14] for approximated distribution
of SVM training suffers from high loss of accuracy and
increased communication overhead in a distributed system
due to the exchange of a large amount of data over the
communication network. The existing tree-based techniques
like DTSVM [14] use single attribute for data partitioning and
thus suffers from high loss of accuracy. The data partitioning
based approaches such as DCSVM [5], CASVM [13] and
DiP-SVM [6] show high loss in classification accuracy, high
communication overhead, and hardly achieve a linear scaling.
Thus, they are unable to achieve the desired level of scaling.

In this work, we propose Projection-SVM a distributed
SVM for large datasets. The dominant eigenvector is used
to split the data space into smaller subspaces. A tree-based
structure is used to recursively split the data at each node
in a similar fashion. This architecture can be viewed as a
modified decision tree. In general, decision tree selects most



relevant attribute which has the highest correlation to the class
labels in comparison to other attributes. However, in this work,
we use the projection of data points along the direction of
maximum variance in the dataset which is derived from all
input dimensions. After partitioning, a kernel SVMs is trained
independently on each partition in a parallel or distributed
system. The key properties of the proposed Projection-SVM
are as follows:

1) Novel partitioning approach based on the projection of
data on dominant eigenvector using all input dimensions
not only reduces the training time but also makes
the classification comfortable and reduces the loss of
classification accuracy.

2) The proposed Projection-SVM does not need to combine
the smaller local models into a single global model
which further leads to reduced training time.

3) Due to (2) above, the amount of data transferred over
the network is also reduced in comparison to existing
approaches like DCSVM [5] and CASVM [13].

4) The prediction time is also reduced significantly due
to use of a relevant smaller kernel SVM model which
contains less number of support vectors in comparison
to a single large kernel SVM model.

The rest of the paper is organized as follows. Section
2 discusses related work. The proposed distributed kernel
SVM approach is discussed in section 3. Section 4 describes
the experimental setup, evaluation method, and results. We
conclude in section 5 with references at the end.

II. RELATED WORK

To date, many parallel and distributed implementations
of SVM are proposed [15]–[19]. Based on the underlying
architecture, we can organize them into four groups, namely,
parallel [20], distributed [5], [6], [13], [21], [22], MapRe-
duce [3], [23]–[25], and GPU [26], [27]. Broadly, the dis-
tributed SVM approaches can be divided into two categories,
namely, ensemble-based approaches, and subspace-based ap-
proaches.

Ensemble based approaches work on the concept of
divide-and-conquer. A large-scale SVM training problem is
divided into several smaller SVM problems. Each smaller
SVM is trained independently and finally a single SVM
model is produced by combining the results of all the smaller
SVMs. Some of the well known state-of-the-art ensemble-
based approaches are discussed below.

In [28], Graf et al. proposed a cascade SVM, where the
training samples are divided into smaller subsets and local
SVM models are trained for each subset using LIBSVM
library. The support vectors of local SVMs are then passed
as an input to next level SVM. Finally, a global SVM model
is obtained by combining local SVM models. In [25], Z. Sun et
al. implement cascade SVM with the help of MapReduce and
Twister.

In [5], Hsieh et al. use k-means clustering for partitioning
the dataset. In [26], [27], Herrero-Lopez et al. accelerate SVM

training by integrating GPUs into MapReduce clusters. It dis-
tributes the matrix multiplications during the sequential update
of the Lagrangian multipliers. However, it does not allow the
desired level of acceleration due to the sequential nature of
the SVM. In [29], Vazquez et al. propose a distributed SVM
in which local support vectors (LSVs) are calculated on each
subset. The set of global support vectors (GSVs) is the union
of all the LSVs. Then the GSVs are merged with each training
subset, and the process is repeated until convergence (i.e., no
change in the empirical risk). However, the size of the subsets
increases with the number of iterations which contributes to
increased training time. Also, at each time, LSVs are collected
from each node to form the GSVs and then these GSVs
are broadcasted to all the nodes which further increases the
communication overhead. This also results in high redundancy
among LSVs across all the nodes. A similar approach has
been proposed by Lu et al. [22] for strongly connected
networks (SCNs). Catak et al. [23] proposed MapReduce-
based implementation of the same methodology in the cloud
environment to improve scalability and parallelism of training
phase by splitting training dataset into smaller subsets.

On the other hand, the subspace based approaches also
divide the large-scale SVM training problem into several
smaller problems. These approaches splits the data space into
several disjoint subspaces and kernel SVMs are trained on
these subspaces, independently. However, these approaches do
not involve combine step as each test point is mapped to a
subspace and the prediction is made by the corresponding
SVM model. Some of the well known state-of-the-art subspace
based approaches are discussed below.

In [14], Chang et al. use a binary decision tree (C4.5)
in order to split the training dataset into smaller subspaces.
Where at a given node E, a certain feature fE of the training
samples at node E is compared with a certain value vE so that
all samples with fE < vE are assigned to the left-hand child
node, and the remaining samples are assigned to the right-hand
child node. Finally, at each leaf nodes, kernel SVM models are
trained independently. This approach accelerates the training
and testing speed but suffers from high loss of accuracy
because the splitting of the data space is merely based on one
attribute while ignoring the spread of the data. In [30], Singh
et al. use a similar approach for intrusion detection where
decision tree (DT) is used to partition the entire dataset into
smaller subsets. Then SVM models are trained on smaller sub-
sets, which results in increased classification accuracy. Also, it
reduces the training and testing time significantly. This method
uses the domain-specific knowledge in the decision tree for
partitioning the dataset. However, our proposed approach is
generalized as it do not exploit any domain specific knowledge
and thus applicable to all domains.

The existing partitioning based methods for training the
SVM in a distributed system are not able to meet the desired
level of the acceleration in training speed and resulting in
high loss of accuracy. Also, the time taken in partitioning
the dataset is considerably high. For example, kernel k-means
clustering algorithm used for data partition in [5], [13] takes



O(n2d) time. As for large datasets where n is significantly
high these methods also lead to high computational cost. Also,
the methods using divide-and-conquer approach resulted into
a single model which results in a large number of support
vectors. The conquer step increases the time for training
of model, and a large number of support vectors increase
the prediction time. The cascade SVM [28] exchanges a
significant amount of data during training which increases the
communication overhead and also training time.

III. DETAILS OF PROPOSED WORK

The proposed approach works in two steps: training and
testing. In the first step, a decision tree is constructed using
training data. The master node partitions the entire dataset into
smaller subsets. For partitioning the dataset, it computes the
dominant eigenvector of the entire dataset using an iterative
procedure. The entire dataset is projected on the dominant
eigenvector. The spread of the projection is partitioned into
B bins, where B is the maximum number of branches at any
node in the decision tree. A child node is created for each
non-empty bin and the data of the bins is assigned to their
respective child nodes. Similarly, at each child node, a sub-
tree is constructed, recursively. The decision tree partitions the
data at each node along the direction of maximum variance in
the data as described in next section.

A. Subspace Partitioning using Decision Tree and Dominant
Eigenvector

In this work, we partition the entire data space into smaller
subspaces. Let D = {(xi, yi), i = 1, 2, ..., n} be the entire
dataset, where xi ∈ Rd is a d-dimensional data point with
class label yi ∈ {−1,+1}. The direction of the maximum
variance is given by the dominant eigenvector of the dataset
D. In theory, we can use any eigendecomposition method like
singular value decomposition (SVD) or eigenvalue decomposi-
tion for this purpose. However, we have used iterative power
method for computation of dominant eigenvector to achieve
better computational and spatial efficiency. The computational
complexity of SVD is O(nd2 + d3), which is appropriate for
computing all d eigenvectors. However, here our objective is
to compute only dominant eigenvector so the suitable method
for finding dominant eigenvector efficiently is power method
with time complexity O(nd2). The power method begins
with an initial vector v0 which has a non-zero component
in the direction of the dominant eigenvector. Then dominant
eigenvector w is given by following recurrence relation after
t iterations:

w = vt =
Σvt−1

||Σvt−1||
, (3)

where Σ is the covariance matrix of the dataset D and is
computed as

Σ = cov(D) =
1

n− 1

n∑
i=1

(xi − µ)(xi − µ)T , (4)

where µ, (µ = 1
n

∑n
i xi) is the means of the dataset D.

Equation (3) is solved iteratively, multiplying vt−1 by Σ
and then normalized. Initially, v0 is set to e (i.e. the vector
with all its values set to one) which guarantees non-zero
component in direction of dominant eigenvector.

Once the dominant vector w is computed, then the projec-
tion of a data point xi on the w is given by

x̂i = wTxi. (5)

Fig. 1 shows an example of the projection of all the points
in D on the dominant eigenvector. The entire spread of the
projection is partitioned into B bins. According to these bins,
the dataset D is partitioned into B subsets. The following
equation assigns the bin b for a data point xi:

b =


1, if r ≤ 0,

dre , otherwise,
B, if r > B.

(6)

r =
x̂i − x̂min

x̂max − x̂min
×B, (7)

where, x̂min and x̂max are the minimum and maximum values
of the spread of projection of data points on the dominant
eigenvector, respectively.
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Fig. 1. Proposed approach for data partitioning using decision tree along the
direction of maximum variability.

Finally, the entire dataset D is divided into B smaller
datasets D1,D2, ...,DB . Each dataset Db contains nb data
points. If all the points at a node belong to the same class,
then that node is declared as a leaf node labeled with the corre-
sponding class. Otherwise, data space at a node is partitioned
recursively until it reaches maximum level.

B. Training in Distributed Environment

The above partitioning method partitions the entire data
space into subspaces. In the decision tree, for a leaf node
following two scenarios can occur while partitioning i) all
points in the subspace belong to the same class, or ii) subspace
contains data points from both classes. As discussed earlier,
node in case (i) is a leaf node with label same as data
points. However, for case (ii), a kernel SVM model is trained
using data points in that subspace. The smaller kernel SVM
models on subspace data are independent and thus enable



the proposed approach to be trained in a distributed system.
Let D1,D2, ...,DP represent the data in P subspaces which
have data points from both the classes. Then the master node
sends the data of these subspaces to P compute nodes. Each
node with identifier p trains a SVM model on its data using
equation 1 as follows:

min
αp

1

2

np∑
i=1

np∑
j=1

αp,iαp,jyp,iyp,jK(xp,i,xp,j)−
np∑
i=1

αp,i, (8)

where, αp is the set of Lagrangian multipliers for the data of
pth subspace. The final SVM model SMp constitutes

SMp =

{
SVp = Dp(αp > 0)

α∗
p = αp(αp > 0),

(9)

where SVp are the support vectors and α∗
p are the corre-

sponding non-zero Lagrangian multipliers. Once training is
completed at a compute node, then it sends the trained SVM
model SMp back to the master node. The master node creates
a leaf node in the decision tree at the respective branch which
contains the returned SVM model SMp. Algorithm 1 gives
the pseudo-code of complete procedures of data partitioning
and distributed SVM training for the proposed distributed
SVM approach. After successful training, the final tree model
looks like a sample tree shown in the Fig. 2. A non-leaf
node contains 1) dominant eigenvector w, and 2) x̂min and
x̂max are the minimum and maximum values of the spread of
projection of data points on the dominant eigenvector. A leaf
node contains either a class label or an SVM model.

Fig. 2. Block diagram of the Projection-SVM training over the cluster. Master
node contains a sample tree model. The job scheduler evenly distribute the
task of training SVMs to compute nodes

C. Prediction using proposed Distributed SVM

In order to test an unknown data point on proposed dis-
tributed SVM, we traverse the decision tree from root to leaf;

Algorithm 1 Training of Proposed Distributed SVM
Input:
D: {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ {−1,+1}
n : #data points in D. d : #dimensions
B : #branches (max) at each internal node
h : Maximum height of the tree
ε : tolerance for evaluating dominant eigenvector
P : #partitions and also #node processors
Output:
tree: final tree model for prediction
train SVM(D, h)

1: if ∀yi ∈ D, yi = 1 then
2: return Leaf(1);
3: else if ∀yi ∈ D, yi = −1 then
4: return Leaf(−1);
5: else if h = 0 || n < min size then
6: return Leaf(svm train(D));
7: else
8: µ = 1

n

∑n
i xi;Σ = 1

n−1

∑n
i=1(xi − µ)(xi − µ)T ;

9: t← 0;v0 ← e;
10: while ||vt − vt−1|| > ε do
11: vt ← Σvt−1; t = t+ 1;
12: end while
13: w← vt;
14: Db ← φ, b = 1, 2, ..., B
15: x̂i ← wTxi, i = 1, 2, ..., n;
16: xmin ← min(x̂i);xmax ← max(x̂i)
17: tree← Node(w, x̂min, x̂max)
18: for i = 1, 2, ..., n do
19: b← min

(
max

(⌈
x̂i−x̂min

x̂max−x̂min
×B

⌉
, 1
)
, B
)
;

20: Db ← Db ∪ (xi, yi);
21: end for
22: for b = 1, 2, ..., B{In parallel} do
23: tree.childb ← train SVM(Db, h− 1);
24: end for
25: return tree;
26: end if

if leaf node has a class label, then this is the predicted label.
If a leaf node has an SVM model, then the classification label
is predicted using that SVM model.

Let x ∈ Rd be a test data point, and tree be the trained
model. When traversing the tree, at any node, there are three
possibilities:

1) Internal Node: If the current node is an internal node,
then based on the parameters (w, x̂min, x̂max), it com-
putes the bin index using Equations (5),(6) & (7) and
selects the corresponding branch. According to the se-
lected branch, it visits a child node, and this procedure
is continued until it reaches a leaf node.

2) Leaf Node with Class Label: If the current node is a leaf
node with a class label, then it assigns the class label of
the leaf node as the predicted class of the test point x
and the procedure is terminated.



3) Leaf Node with SVM Model: If the current node is a leaf
node with a trained SVM model SM, then it predicts
the class of the test point x using equation 2.

Algorithm 2 gives the pseudo-code of complete procedure of
prediction using proposed distributed SVM.

Algorithm 2 Prediction using Proposed Distributed SVM
Input:
x ∈ Rd :unlabeled data point
d : #dimensions
B : #branches (max) at each internal node
tree: trained tree model

Output:
y: predicted label for x

predict SVM(tree,x)

1: if isLabel(tree) = true then
2: y ← tree.ClassLabel;
3: else if isSVM(tree) = true then
4: svm model← tree.svm model;
5: y ← f(x);{using equation 2}
6: else
7: w← tree.w;
8: xmin ← tree.xmin;
9: xmax ← tree.xmax;

10: x̂← wTx
11: b← min

(
max

(⌈
x̂−x̂min

x̂max−x̂min
×B

⌉
, 1
)
, B
)
;

12: y ← predict SVM(tree.childb,x);
13: end if
14: return y;

D. Time Complexity Analysis

The time taken in partitioning at a node includes the time
taken in computing the dominant eigenvector, projecting data
points on the dominant eigenvector, and partitioning data to
each branch, i.e.

Tpartition = O(nd2 + nd+ n) ≈ O(nd2). (10)

For sequential decision tree construction, the total time is

Ttree =
∑
h

Bh∑
b=1

n

Bh
d2 = O(nd2h). (11)

However, for parallel construction of decision tree, the total
time is

Ttree =
∑
h

n

Bh
d2 = nd2

∑
h

1

Bh
≈ O(nd2), (12)

since, 1 ≤
∑

h
1

Bh ≤ 2.
The best case for the proposed approach occurs when the

data on all children nodes after partitioning belong to one class
only as shown in Fig. 3-(B). Thus in best case the training time
includes only partitioning time as no SVM is trained. The
average case is when the decision tree makes the balanced

partitions, and each class contains data points from both the
classes. Then for height h and maximum number of branches
B, the scaling factor (SF) is

SF =
n3(
n
Bh

)3 = B3h. (13)

The worst case corresponds to highly imbalanced partitioning
here the scaling factor depends on nmax, the size of biggest
partition among all partitions at height h, i.e.

SF =

(
n

nmax

)3

. (14)

IV. EXPERIMENTS AND RESULTS

The proposed distributed SVM is implemented in C++ using
libsvm [8], armadillo [31], openmp and openmpi which are
the de facto standards for scientific computing over the high-
performance cluster (HPC). The experiments are conducted
over a cluster having:

• master node (with configuration as Intel Xeon(R)
2.70GHz×48 processor and 128GB memory), and

• 100 compute nodes (with configuration as Intel Xeon(R)
2.70GHz×8 processor and 12GB memory each).

In the proposed approach, the master node is responsible
for data partitioning and maintaining the tree hierarchy. The
number of partitions (P ) are determined by P = Bh where B
is the number of branches and h is the height of the tree. The
values of B and h depend on the size of each dataset. The
details of the datasets are listed in Table I. Also, the details of
the hyper-parameters (C,γ) for SVM along with values of B
and h are given in Table III. Once the data is partitioned into
P sub-problems, they are distributed across the m compute
nodes.

A. Sketches of Correctness

1) Case-1: Each Class as a Single Gaussian Distribution:
If both classes are well separable, and projection of points on
the dominant eigenvector is producing two non-overlapping
spreads for both classes as shown in Fig. 3(A), then it splits
the data into disjoint partitions containing data points from
either class. In this case, no SVM is trained as the data on each
child node belongs to the same class as shown in Fig. 3(B)
for B = 2. The overall classification is similar to Fisher’s
linear discriminant analysis (LDA). However, if the projection
of the two separable classes is slightly overlapping as shown
in Fig. 3(C), then for each overlapping bins, it trains SVM
as shown in Fig. 3(D). In such cases, the overlapping bins
contain data points of different classes which are relatively
close to each other. Now, the SVM model is trained with
data points which are more likely to be the support vectors
resulting in a faster training of SVM. If the projection of
the points in both the classes on the dominant eigenvector
produces two completely overlapping spreads as shown in
Fig. 3(E) & Fig. 3(G), then each bin will contain points from
both the classes. If classes are separable, then at some height,



a decision tree can discriminate the points of the two classes.
For example, the tree shown in Fig. 3(F) does it at h = 2
for the case shown in Fig. 3(E). However, if classes are non-
separable as shown in Fig. 3(G), then it needs to train an SVM
model for each bin as shown in Fig. 3(H).

Fig. 3. Illustration of the working of proposed distributed SVM for well sepa-
rable classes. (A) Two separable classes and their non-overlapping projections
on the dominant eigenvector for the combined data of both the classes. (B)
The corresponding tree for (A) contains two leaf nodes with each class label.
(C) Two separable classes and their overlapping projections on the dominant
eigenvector for the combined data of both the classes. (D) The corresponding
tree for (C) contains two leaf nodes with each class label and a leaf node with
SVM model for the overlapping region (B=2). (E) Two separable classes and
their completely overlapping projections on the dominant eigenvector for the
combined data of both the classes. (F) The corresponding tree for (E) can
discriminate the two classes at height h=2. (G) Two overlapping classes and
their completely overlapping projections on the dominant eigenvector for the
combined data of both the classes. (H) The corresponding tree for (G) can
discriminate the two classes using SVM at height h=2.

2) Case-2: Each Class as a Mixture of Gaussian Distri-
butions: Let’s consider a complex case where each class
is composed of several distributions spread non-uniformly
in the space as shown in Fig. 4(A). In the first step, the
proposed SVM splits the complex set of data points into
smaller subsets which are relatively less complex as shown in
Fig. 4(C). Here, the classification is relatively easier, faster,
and may lead to good performance because it focuses on
the local data points only. However, it is also possible that
local boundaries are less regularized in comparison to global
decision boundary. Fig. 4(B)&(F)-(G) show the local decision
boundaries corresponding to each subset. The experiments on
randomly generated data points show 2%−10% improvement
in the classification performance in comparison to LIBSVM.

First, we conducted experiments on the synthetic data to
show that the proposed method works well for the data having
complex distributions. For this, we generated a mixture of K-
Gaussian distributions, where K = 10, 20, 30, 40, 50, 60. The
labels to each Gaussian distribution are assigned +1 or −1
randomly. One such data which is a mixture of 50 Gaussian
distributions is shown in Fig. 5. In the data, both the classes are
spread over the entire space with significant overlap of positive
and negative examples. Fig. 6 showed the comparisons of the
classification performance for sequential SVM and proposed
method on the synthetic datasets. The proposed approach
performs similar to sequential SVM for the low values of
K, but for the high values of K, it achieved much better
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Fig. 4. A comparison of the sequential SVM and the proposed distributed
SVM on a sample 2D-data which is a mixture of the 20-Gaussian distributions.
(A) Decision boundary for a sequential SVM using RBF kernel on all data
points. (C) Shows the partitioning lines and the decision boundary of all
subsets. (B)&(D)-(G) each show the decision boundary of a respective subset.

performance than sequential SVM. Because finding a single
separating hyperplane using SVM for such a complex data
distribution is very hard. However, proposed distributed SVM
converts a complex large problem into multiple simple smaller
problems and then solves them independently.
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Fig. 5. A sample data used to validate the proposed SVM. Data is a mixture
of 50-Gaussian distributions. Class labels are assigned randomly. The data
used is the mixture of K-Gaussian distributions. K = 10, 20, 30, 40, 50, 60,
Number of data points n = 2400.

B. Parameter Selection

The selection of parameters for training a SVM is based
on grid search for parameters γ = [2−10, 2−10, ..., 210] and
C = [2−10, 2−10, ..., 210]. The parameters for each local
SVM can be tuned independently. However, for the proposed
distributed SVM approach, the classification accuracy and
training time not only depend on the hyper-parameters of the
SVM but also depend on the number of branches at each
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Fig. 6. A comparison of the classification performance (%) for sequential
SVM and proposed distributed SVM. The data used is the mixture of K-
Gaussian distributions. K = 10, 20, 30, 40, 50, 60, Number of data points
n = 2400.

non-leaf node (i.e. B) and the maximum height of the tree
(i.e. h). If for some dataset, the projection for n data points
on the dominant eigenvector is uniformly distributed, then
the relation of the height h and branches B can be given
by h = logBn and the number of resulted splits will be
≤ Bh. Thus, a large number of branches result in a low
height which further reduces the testing time. However, the
classification accuracy depends highly on the distribution of
the data. Fig. 7 & Fig. 8 give the experimental results on
the ijcnn1 dataset. The results show that the performance of
classification for five distinct values of the B = 2, 4, 6, 8, 10
with maximum height h = 0, 1, 2, 3, 4, 5. Our experiments
demonstrate that a large number of branches leads to the high
acceleration in the training time in comparison to a small
number of branches. However, a small number of branches
preserve the classification accuracy in comparison to a large
number of branches.

C. Comparison with state-of-the-art methods

In order to evaluate the performance of the proposed dis-
tributed SVM, experiments are conducted on various large
scale high dimensional datasets from different application
domains. The datasets used for benchmarking are publicly
available at [32], [33]. The details of these datasets are listed
in Table I.

A comparison of DC-SVM and proposed distributed SVM
approach at various size levels of the adult dataset in Fig. 9
show that the proposed approach is approximately 10 times
faster than the DC-SVM method while producing the compa-
rable classification accuracy. The scalability of the proposed
distributed SVM approach increases with an increase in the
size of the dataset rapidly.

The loss of classification accuracy with respect to sequential
SVM as well as the existing distributed SVMs is used for
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Fig. 7. Comparison of classification performance for various combinations
of height h of decision tree and number of branches B for ijcnn1 dataset.
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Fig. 8. Comparison of training time for various combinations of height h of
decision tree and number of branches B for ijcnn1 dataset.

TABLE I
DETAILS OF THE DATASETS USED

Dataset Application Domain #Dim. #Train #Test
gisette [13] Digit Classification 5,000 6,000 1,000
adult [13] Economics 123 32,561 16,281
ijcnn1 [13] Text Classification 22 49,990 91,000
cifar [5] Visual Recognition 3,072 50,000 10,000
webspam [5] Spam Detection 254 280,000 70,000
covtype [5] Forest Classification 54 464,810 116,202
kddcup99 [5] Intrusion Detection 123 4,898,431 311,029
mnist8m [5] Digit Classification 784 8,000,000 100,000

comparison of performance. Table II shows the performance



TABLE II
PERFORMANCE OF CLASSIFICATION (%) OF PROPOSED DISTRIBUTED SVM AND COMPARISON WITH LIBSVM, DC-SVM, CA-SVM AND DT-SVM.

Method LIBSVM DC-SVM CA-SVM DT-SVM Proposed Change
Dataset Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time Acc. Scale
gisette 97.70 125 97.60 299 96 81 97.60 355 97.50 43 −0.20 3×
adult 85.08 761 84.79 78 83 121 84.79 45 84.46 9 −0.62 85×
ijcnn1 98.69 20 98.53 318 90.16 121 94.33 27 98.82 1 +0.13 20×
cifar 89.50 13892 80.15 22330 63.94 2143 75.82 540 87.11 193 −2.39 72×
webspam 99.28 15056 99.28 10485 99.11 3093 NA NA 98.81 28 −0.47 538×
covtype 96.01 31785 95.95 17456 75.04 34025 NA NA 95.77 119 −0.24 267×
kddcup99 99.57 37684 99.49 23346 NA NA NA NA 99.02 40 −0.55 942×
mnist8m 99.91 ≈13 d 99.91* NA NA NA NA NA 99.77 6786 −0.14 166×

NA - *Particular method is unable to calculate, *taken from [5]

TABLE III
VARIOUS EVALUATION METRICS FOR EFFECTIVENESS & EFFICIENCY OF THE PROPOSED DISTRIBUTED SVM.

Dataset C γ B h Precision Recall F-measure Kappa Index Partition Time Train Time Test Time
(%) (%) (%) (-1,1) (Seconds) (Seconds) (Seconds)

gisette 1 2e-4 2 1 97.03 98.00 97.51 0.9500 0.941 42.179 6.865
adult 32 2−7 2 2 87.00 93.65 90.20 0.5292 0.019 3.981 7.000
ijcnn1 32 2 2 5 94.69 92.80 93.74 0.9309 0.073 0.609 0.356
cifar 8 2−22 2 4 88.16 90.70 89.41 0.7295 10.299 183.190 111.271
webspam 8 32 2 10 99.45 98.59 99.01 0.9751 5.490 22.083 12.231
covtype 32 32 2 10 96.23 95.53 95.88 0.9153 3.707 115.202 4.375
kddcup99 256 0.5 2 10 97.13 98.43 97.78 0.9715 23.952 15.638 1.520
mnist8m 1 2−21 2 10 99.74 99.80 99.77 0.9954 1184.090 5601.990 123.561
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Fig. 9. A level wise comparison of DC-SVM and proposed distributed SVM
on adult dataset.

of the classification and training time on datasets listed in
Table I. The details of various evaluation metrics used for
evaluation of the proposed approach is given in Table III.
The proposed distributed SVM approach reduces the loss in
the classification accuracy, and the results are approximately
equal to the results of the sequential SVM. On all the datasets
considered for evaluation of the proposed approach achieves
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Fig. 10. A comparison of the loss in classification accuracy (%) of DCSVM,
CASVM, DTSVM, and proposed distributed SVM with respect to LIBSVM
on publicly available datasets.
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Fig. 11. A comparison of the training time (seconds) for LIBSVM, DCSVM,
CASVM, DTSVM, and proposed distributed SVM on publicly available
datasets.

the least drop in the classification accuracy among existing
approach (i.e. DCSVM [5], CASVM [13], and DTSVM [14])
as compared to sequential SVM as shown in Fig. 10. One
possible reason for this reduction in the loss of classification
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Fig. 12. Comparison of the test time of sequential SVM and the proposed
approach

accuracy is that the proposed approach finds the decision
boundary in the smaller subspaces only, which may help in
better classification within the subspaces. The decision tree
splits the large complex problem into smaller simple problems
which are then solved with more precision.

The proposed SVM approach reduces the training time as
well as testing time significantly as shown in Fig. 11 and
Fig. 12, respectively. The reduction in training time can be
attributed to the distributed training of smaller independent
SVMs. The proposed approach uses decision tree for parti-
tioning of the dataset which is computationally less expensive
as compared to kernel-clustering approach for very large
datasets. Use of the dominant eigenvector efficiently divides
the entire space along the direction of maximum variance.
This partitioning leads to the reduction in the variance of the
data points in subspace. As there is no conquer step, so it
further reduces the training time. This approach also reduces
the communication overhead significantly as it does not send
the data from one level to another after training as required
in [5]. The proposed approach needs to communicate twice,
once to send data from the master node to worker nodes and
later to receive model parameters back from worker nodes to
master node.

Finally, the tree model predicts the label at leaf nodes using
leaf label or trained SVM. There are three types of nodes in
tree model: 1) Internal node which decides to which subspace
the test data point belongs. 2) Leaf node with a class label
which directly predicts the classification label for the test data
point without any computation. 3) Leaf node with SVM model
which uses the trained SVM model to predict classification
label. As these SVMs are trained on smaller sub-datasets
which generally will contain less number of support vectors
with respect to global SVM.

To balance the load, we used five load balancing algorithms,
namely, 1) round robin - Here the jobs are assigned sequen-
tially in each round, 2) round robin (sorted) - It assigns jobs
based on the estimated run time in each round, 3) round robin
(backtrack) - This is similar to round robin (sorted) but after
every round, it reverses the direction of assignment, 4) least
loaded - It picks a random job and assigns it to the least
loaded node, and 5) least loaded (sorted) This is same as least
loaded but assigns the longest job first. Fig. 13 (A) & (B) show

the scaling behaviour of the proposed approach while using
various load balancing strategies for mnist8m, and kddcup99
datasets, respectivly. It can be observed from the figures that
the least loaded (sorted) performs better than the others on
both the datasets. Also, the proposed approach scales well
with an increase in the number of compute nodes. However,
after a certain number of nodes, there is no significant change
in scaling of the algorithm which is entirely depends on the
size of data and the complexity of the classification problem.
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Fig. 13. Scaling behaviour of the proposed approach on (A) mnist8m, and
(B) kddcup99 datasets using various load balancing strategies. The proposed
approach scales well with an increase in the number of compute nodes (m).
The least loaded on sorted sequence of the jobs performs better than the
others.

V. CONCLUSION

In this work, a distributed SVM for big data using decision
tree and dominant eigenvector is proposed. This distributed
SVM approach trains the model faster and requires less
time in prediction for new data points. The use of dominant
eigenvector and decision tree for partitioning of the dataset
is also computationally less expensive with a complexity of
O(nd2) in comparison to kernel k-means approach with a
complexity of O(n2d) as proposed in [5] [13]. The proposed
approach also achieves good classification performance with
a small change in accuracy. The experimental results on eight
standard datasets confirm that the proposed approach is on an
average ≈ 150 times faster than sequential SVM and ≈ 10−50
times faster than other existing distributed SVM approaches,
namely, DC-SVM, CA-SVM, and DTSVM while sustaining
the accuracy.
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