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Abstract—Existing image captioning approaches fail to gen-
erate fine-grained captions due to the lack of rich encoding
representation of an image. In this paper, we present an attentive
contextual network (ACN) to learn the spatially transformed
image features and dense multi-scale contextual information
of an image to generate semantically meaningful captions. At
first, we construct deformable network on intermediate layers of
convolutional neural network (CNN) to cultivate spatial invariant
features. And the multi-scale contextual features are produced
by employing contextual network on top of last layers of CNN.
Then, we exploit attention mechanism on contextual network to
extract dense contextual features. Further, the extracted spatial
and contextual features are combined to encode the holistic
representation of an image. Finally, a multi-stage caption decoder
with visual attention module is incorporated to generate fine-
grained captions. The performance of the proposed approach is
demonstrated on COCO dataset, the largest dataset for image
captioning.

Index Terms—Image captioning, deformable network, contex-
tual network, attention mechanism, multi-stage LSTM.

I. INTRODUCTION

Automatically describing the content of an image, often
termed as image captioning, is one of the primary goals of
scene understanding. In recent years, it has received an enor-
mous interest by bringing computer vison (CV) and natural
language processing (NLP) together. Image captioning is a
challenging task that goes beyond the conventional tasks such
as image classification [15] and object detection [6] as it needs
to captivate the holistic representation of an image in order to
generate fine-grained caption. To achieve holistic representa-
tion of an image, we first need to capture the fine-grained
visual information and inherent semantic representation of an
image. Further, the fine-grained captions can be generated by
understanding the semantic relationships among the objects
and attending to the prominent image regions. Captioning an
image is emerged as a notable research problem due to its
wide range of applications in the field of computer vision.
It can help visually impaired users, strengthen robotic vision,
reinforce the content search, and make it easy to organize &
accessible for unstructured visual data.

The task of image captioning learns a probabilistic model
over the caption, conditioned on either visual features or com-
bined visual & attribute features of an image. The predominant
approach for image captioning task is encoder-decoder frame-
work [24], [28], [37], [39], adopted from machine translation
[4]. The encoder-decoder framework employs a convolutional
neural network as an encoder to extract the visual information
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Fig. 1. Overview of the proposed attention-guided approach for image
captioning. In brief, we first extract multi-scale contextual features by in-
corporating dilated convolutions on semantic features. Then, we combine
the attention guided spatial and multi-scale contextual features by leveraging
position and channel attention mechanisms. The combined features are further
fed to the attention based LSTM decoder to generate the caption of an image.

of an image, and the recurrent neural networks are exploited
to generate natural language sentence. In order to generate
caption of an image, most of the image captioning approaches
utilize the semantic representation of an image that is captured
from the last convolutional layer of backbone CNN network
[15], [19], or the visual object region features extracted
from the object detection frameworks [27]. However, these
approaches are failed to generate the fine-grained captions
of an image due to the lack of holistic representation of an
image. The potential drawbacks with the existing approaches
are: i) Lack of spatial and contextual information of an image.
ii) Fail to incorporate spatially transformed and dense multi-
scale contextual features. iii) Utilization of one-stage caption
decoder which is hard to generate rich fine-grained captions.

Recent approaches [20], [25] on visualizing the characteris-
tics of each CNN layer demonstrate that the features of early
layers contain rich spatial features but lack semantic infor-
mation [32]. Whereas, the last layers of CNN contribute rich
semantic information but fail to incorporate spatial features
of small objects [40]. Therefore, we need to capture spatial
features along with semantic information in order to obtain
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fine-grain and coarse-grain details of visual objects. Although
this feature fusion approach collects both spatial and semantic
details, it is unable to incorporate spatial invariant features and
dense scene contextual information. Motivated by the above
observations, we propose an attentive contextual network
(ACN) to capture spatially transformed image features and
dense-contextual information of an image for image captioning
task.

The overview of the proposed attentive contextual network
(ACN) is shown in Figure 1. The proposed ACN extracts the
spatial features from early convolutional layers and semantic
information from last layers of CNN. But, the early layers of
CNN are sensitive to the geometric transformations such as
rotation, pose, object scale, and deformation. These geometric
transformations cannot be handled using conventional CNN
networks due to the fixed geometric structure of convolutional
kernel and max-pool operations. Hence, we incorporate a
deformable network [16] on early CNN layers to strengthen
transformation modelling capability. Deformable networks are
simple and dynamic models that handle both geometric trans-
formations and unknown transformations. Also, it learns the
robust representation of objects with different scales and
deformations.

Even though, the last layers of CNN contain rich semantic
information, they do not preserve multi-scale features and
object boundaries information due to the repeated pooling
and striding operations in the network [45]. So, we introduce
contextual network on top of last convolutional layer of CNN
to encode multi-scale contextual information of an image. The
contextual network captures the scene contextual information
of an image by probing the parallel dilated convolutions at var-
ious rates and multiple field-of-views. Further, we leverage an
attention mechanism [3] to generate dense contextual features.
Finally, the extracted spatial invariant and dense multi-scale
contextual features are concatenated and fed to the caption
decoder module. The caption decoder module exploits coarse-
to-fine multi-stage network to generate refined descriptions of
an image. The main contributions of our work are summarized
as follows:
• We present attentive contextual network to effectively

encode the guided contextual information of an image
for caption generation.

• Our encoder-decoder framework incorporates spatial in-
variant and dense multi-scale contextual features by ex-
ploiting deformable and contextual networks.

• The proposed network outperforms the significant works
of image captioning on COCO dataset and generates
semantically meaningful captions by learning rich holistic
representation of an image.

II. RELATED WORK

In this section, we first review the several feature encoding
approaches that explored spatial & semantic features, spatial
invariant features, and multi-scale contextual information for
various computer vision tasks. Then, we present the significant
works of image captioning.

A. Visual feature encoding approaches

Ma et al. [29] exploited rich hierarchical features of deep
CNN to boost the accuracy and robustness of visual track-
ing. These hierarchical features interpret the image pyramid
representation and encode the appearance of target objects at
multiple levels of abstraction. The combined coarse and fine
semantic information via shortcut fusion method is explored
in [40] to achieve spatially aware visual details of an image.
Zhang et al. [32] proposed ExFuse to integrate semantic details
into low-level features and high spatial resolution information
into high-level features more effectively for segmentation task.

To incorporate the ability to learn the spatial invariant
features, Jaderberg et al. [46] proposed spatial transformer
networks (STNs). These learnable modules explicitly allow
the spatial manipulation of data and remove spatial transfor-
mations such as affine or perspective without any additional
supervision. Inspired by STNs, Dai et al. [16] introduced
deformable networks to further enhance the transformation
modelling capability. The deformable networks generate dense
predictions when compared to STNs and further increase the
performance over complex vision tasks. Further, various works
[11], [46] are proposed to handle deformations and multi-scale
variations caused by geometric transformations.

Yu and Koltun [30] introduced dilated convolutions in
CNNs to incorporate multi-scale contextual information of an
image. Dilated convolutions enlarge the receptive field size
exponentially and equip rich contextual information. Si et al.
[36] proposed multiply spatial fusion network (MSFNet) to
extract spatial information and increase the size of receptive
field. The spatial pyramid pooling module is introduced in [45]
to incorporate multi-scale contextual information by probing
parallel dilated convolutions with multiple rates and multiple
field-of-views.

B. Image captioning

The classical encoder-decoder framework for image cap-
tioning task is explored in [24], where convolutional neural
network is employed as encoder and recurrent neural network
is served as decoder. Xu et al. [34] exploited attention based
encoder-decoder framework for image captioning to selec-
tively focus on prominent regions of visual information to
generate caption of an image. Chen et al. [39] incorporated
spatial and channel wise attention in CNN to encode attentive
visual information. Further, the word-level and sentence-level
attention mechanism is investigated in [43] to generate human
like captions. To generate rich fine-grained captions of an
image, Gu et al. [12] proposed coarse-to-fine multi stage
caption generation network with multiple LSTM decoders.
Recently, Zhou et al. [37] proposed a multi-level visual
fusion network (MVF) to interpret visual features as visual
knowledge and generate function words for refined captions.
The transformer based architecture is utilized in [5] to enrich
the visual encoding and caption generation steps.

In contrast to the existing approaches, our proposed method
encodes the visual image by incorporating spatial invariant and
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dense multi-scale contextual features. And, we leverage multi-
stage caption decoder module to generate precise and diverse
captions.

III. PROPOSED APPROACH

In this section, we first describe the classical encoder-
decoder framework for caption generation, where the encoder
employs convolutional neural network (CNN) to encode the
visual representation of an image and decoder leverages re-
current neural network (RNN) based approaches to decode the
visual features into sequence of words. Then, we present the
proposed attentive contextual network for image captioning
task.

A. Encoder-Decoder model for caption generation

Given an image I and its corresponding caption S =
{w1, w2, . . . , wN} consists of N words, the encoder-decoder
model directly maximizes the objective as

θ∗ = arg max
θ

∑
(I,S)

log p (S|I; θ) , (1)

where θ are the parameters of the model. Then, the log
likelihood of joint probabilities over all words is defined using
chain rule as

log p(S|I) =
T∑
t=1

log p(wt|w1, . . . , wt−1, I), (2)

here the model parameters are dropped for convenience.
Further, each conditional probability is modeled by the RNN
based encoder-decoder framework as

log p(wt|w1, . . . , wt−1, I) = f(ht, ct), (3)

where f is a nonlinear output function which generates the
probability of each predicted word wt. The ht and ct are
hidden state and context vector of RNN at time t. In this
work, we leverage long-short term memory (LSTM) network
from the family of RNN to generate caption of an image. The
hidden state ht in LSTM network is modeled as

(ht) = LSTM(xt, ht−1, ct−1), (4)

where xt is the input vector. Usually, ct provides a visual
evidence for generating caption of an image and there are two
ways to model the context vector i.e., vanilla encoder-decoder
and attention based encoder-decoder frameworks.

In a nutshell, the vanilla encoder-decoder framework ex-
tracts context vector from the last fully connected layer of con-
volutional network. This context vector will be same through-
out caption generation process and does not depend on the
information captured by the RNN decoder module. Whereas,
the context vector of attention based encoder-decoder frame-
work depends on both visual encoder and caption decoder
modules. And, it selectively focus on prominent regions of an
image at each time step of RNN hidden state. In this work,
we adopt the attention based encoder-decoder framework to
generate guided contextual features for image captioning task.

B. Attentive contextual network for image captioning

In this work, we present an attentive contextual network
(ACN) to encode spatially transformed features and multi-
scale contextual information of an input image for caption
generation task. The proposed attentive contextual network
(Figure 2) adopts attention based encoder-decoder framework,
where the visual encoder is comprised of deformable network
(DN), contextual network (CN), and recurrent criss-cross
attention mechanism (RCCAM). And, the caption decoder is
constituted with Long-short term memory (LSTM) network.
In particular, we incorporate deformable network on spatial
features extracted from early layers of backbone network to
handle the intra-class variability caused by spatial transfor-
mations. And, the contextual network is employed on top of
semantic features extracted from the top layer of backbone
network to incorporate multi-scale contextual information.
Then, a criss-cross attention mechanism [3] is employed on
contextual network to attend prominent regions of visual scene
information. Further, we fuse spatially transformed features
and contextual features to achieve holistic representation of an
image. Finally, the multi-stage LSTM network with attention
mechanism [12] is used to generate words which are guided by
attentive contextual features. In the following subsections, we
will elaborate the visual encoder and caption decoder modules.

1) Visual encoder: The visual encoder is a feature encoding
network that encodes spatially transformed features and multi-
scale scene contextual information of an image by processing
input image through various network components. Mainly, the
proposed visual encoding framework has five components,
namely, backbone network, deformable network, contextual
network, recurrent criss-cross attention mechanism, and fea-
ture fusion.

a) Backbone network: We utilize pre-trained ResNet [15]
as a backbone feature extraction network to extract the visual
representation of an image. It has five layers, namely, Conv1,
Conv2, Conv3, Conv4, and Conv5, where each Conv layer
composed with varied number of Bottle-Neck layers. Usually,
the early layers of backbone network hold rich spatial features
of small objects but fail to incorporate semantic information
of an image. Whereas, the top layers contain the potential
semantic information but lack spatial resolutions of objects.
To mitigate this issue, we propose a novel feature fusion
network that takes advantage of both spatial and semantic
features of an image in order to generate a natural language
sentence. The proposed framework for image captioning task
is illustrated in Figure 2. As shown in Figure, we first remove
the fully connected layers of ResNet backbone network and
utilize the spatial and semantic features of Conv layers. In
particular, we extract the spatial features from Conv3 layer of
ResNet backbone network and incorporate a spatial resolution
of 32 × 32 with 512 channels. However, the early layers of
backbone network fail to handle the geometric variations such
as scaling, rotation, translation, and so on. To address this
problem, we introduce deformable network on top Conv3

layer to extract spatially transformed features. Further, we
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Fig. 2. Framework of the proposed attentive contextual network.

achieve semantic features from Conv5 layer of ResNet with
the resolution of 8 × 8 and 2048 channels. In addition,
we employ contextual network on top of Conv5 layer to
incorporate multi-scale contextual information of an image.
The details of deformable network and contextual network are
presented in the following sub-sections.

b) Deformable network: The convolutional networks are
widely explored models for image captioning, but their per-
formance is limited by the lack of ability to handle the
geometric transformations. Usually, the CNN networks learn
to adopt spatial invariance by utilization of large models,
data augmentation techniques, and hand-crafted modules such
as max-pooling or scale invariant feature transforms (SIFT).
However, these hand crafted features learn fixed and known
transformations, and fail to process unknown geometric trans-
formations [16]. Further, the large models and hand-crafted
design algorithms are difficult, complex, infeasible, and re-
quire expensive training for overly complex transformations.
In addition, the fixed kernel and max-pool receptive field sizes
produce the same activation units by leaving out the fact that
the different locations may correspond to objects with different
scales and deformations [16].

To address these issues, we employ deformable convolutions
on Conv3 of backbone network as they are not truly invariant
to large transformations of the input data when compared
to the deep convolutional features (Conv5). In the standard
convolutions, the deformable convolution module adds 2D
offsets at the regular grid sampling locations. These offsets are
learned from the preceding convolutional layers and condition
the deformation on the input features. The deformable con-
volutional module can readily place in between convolutional
layers and trained end-to-end by simple back-propagation. In
our work, we employ two deformable convolutional modules

in between two standard 1× 1 convolutions.
Given input feature map k, the standard convolution gener-

ates the output feature map l using a regular grid G over the
input feature map as

l(q0) =
∑
qn∈G

w(qn) · k(q0 + qn), (5)

where w denotes the weight values, q0 is the location on l,
and qn enumerates on sampling regular grid (G).

Whereas, the deformable convolutions augment the offsets
∆ qm | m = 1, . . . ,M , where M = mod G. The Equation
5 is updated for deformable convolution as

l(q0) =
∑
qn∈G

w(qn) · k(q0 + qn + ∆qn). (6)

In deformable convolutions, the sampling operates on irreg-
ular and offset locations (qn + ∆qn). Since the offset ∆pn is
usually fractional, we use bilinear interpolation in Equation 6
as

k(p) =
∑
s

B(s, p) · k(s), (7)

where q denotes arbitrary location (k(q0 + qn + ∆qn) for
Equation 6), s enumerates all spatial locations in k, and B(·, ·)
is the bilinear interpolation kernel.

c) Multi-scale contextual network: Usually, most of the
image captioning works [24], [34], [39], [43] generate the
caption by utilizing the semantic information of an image that
is extracted from top convolutional layer of backbone network.
Although the top layer of CNN contains rich semantic infor-
mation, the finer details of object boundaries diminish due to
the multiple pooling and strided convolutional operations. To
address this issue, we employ a contextual network on top of
Conv5 layer of backbone network. In particular, the contextual
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network employs several parallel dilated convolutions [30]
on output feature map of Conv5 with different scales in
order to capture scene contextual information at multiple
scales. The contextual network helps to enlarge the filter’s
field of view and allows us to control receptive field size
of input feature maps. Thus it employs the larger contextual
information of an image to the network without increasing the
computation time and learnable parameters. Also, the parallel
dilated convolutions help to segment the objects at multiple
scales and condition each layer to sample the input receptive
fields at multiple rates and multiple field-of-views.

Given a two-dimensional signal, for each location j on the
output feature map l and weight kernel matrix w, the dilated
convolutions are applied on input feature map k as

l[j] =
∑
i

k[j + r · i]w[i], (8)

where r indicates the dilation rate at which we sample the
input feature map. Note that r = 1 is the special case of
dilated convolutions that indicates the standard convolution.
As we change dilation rate, the filter’s field-of-view modify
adaptively.

d) Recurrent Criss-Cross Attention: Although CNN
models are exceptionally powerful class of models, they are
internally limited to local receptive fields due to the fixed
geometric structure and provide short range contextual infor-
mation. To address this issue, we have introduced contextual
network with dilated convolutions at multiple scales. However,
our contextual network collects scene contextual information
at multiple scales but lacks dense contextual features [3]. Var-
ious works utilized [8], [35] attention mechanism to generate
dense contextual information by aggregating the contextual
information at each position via generated attention maps.
Inspired by this, we feed output of contextual network into
criss-cross attention module [3] to generate attention guided
contextual features. Criss-cross attention mechanism is a
memory friendly mechanism and significantly reduces FLOPs
when compared to conventional attention mechanisms [39],
[42]. In particular, it replaces the dense non-local attention
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Fig. 3. Criss-cross attention mechanism.

blocks with the sparse attention by sparsely connecting one
pixel to other pixels in criss-cross fashion. Further, we take
recurrent operation of the criss-cross module to capture the full

image dependencies. In a nutshell, the first attention module
collects the local context information in horizontal and vertical
directions. Then, the recurrent attention module collects the
additional information from all other augmented pixels and
capture the full image dependencies.

Given an input feature map X , we first obtain a feature map
F using a convolutional layer. Then, the feature map F is fed
to criss-cross attention module to obtain a new feature map
F ′ that extracts the contextual information at horizontal and
vertical direction (criss-cross path). In order to achieve dense
contextual feature, we perform the above procedure recurrently
and obtain a new feature map F ′′. The architecture of criss-
cross attention mechanism is illustrated in Figure 3. As shown
in Figure, given a feature map F ∈ RC×W×H , we generate
two feature maps Q and K using 1 × 1 convolutions, where
{Q,K} ∈ RC′×W×H . Further, we obtain a feature vector
Qv ∈ RC′

and fv ∈ R(H+W−1)×C′
from each position v

in the spatial domain of Q and K, respectively. In order to
generate attention map R, we first perform affinity operation
as

de,v = Qvfᵀ
e,v, (9)

where de,v ∈ D is the correlation between features Qv and
fe,v (e is the eth element of fv). Then, we apply softmax
layer on D.

In addition, we generate another feature map V ∈
RC×W×H by employing a convolutional layer on F . Further,
we obtain a feature map Υu ∈ R(H+W−1)×C by collecting
the features in the same row or column at each position v.
Then, the aggregation operation collects the all contextual
information to generate an output feature vector F ′ as

F ′v =
∑
e∈|Υu|

Re,vΥe,v + Fu, (10)

where F ′ is the output feature map that contains rich con-
textual information, Further, we repeat the same criss-cross
attention mechanism with the F ′ in order to obtain dense
contextual information (F ′′).

e) Feature fusion: The purpose of the feature fusion
process is to achieve the holistic representation of an image by
combining the extracted spatially transformed image features
and dense contextual information of an image. As discussed in
the previous sections, we extract spatially transformed image
features by employing the deformable network on top Conv3

of ResNet backbone network and dense contextual features
are achieved by feeding Conv5 features of backbone network
to contextual network and recurrent criss-cross attention. In
order to fuse these features, we first upsample the contextual
features to spatial features using bi-linear interpolation tech-
nique. Then, we concatenate both features by stacking up one
another and perform 3 × 3 convolutions before feeding it to
caption decoding module.

2) Caption decoding module: Usually, most of the image
captioning frameworks use one-stage caption decoder module
to generate caption of an image. However, they fail to generate
rich fine-grained descriptions due to the lack of intermediate
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supervision. To mitigate this issue and effective use of our
visual encoder representation, we use a coarse-to-fine multi-
stage caption decoder framework [12] for caption generation.
Typically, it is equipped with multiple decoders where each de-
coder component operates on the output of previous stage and
produces refined image descriptions progressively. In addition,
it addresses the problem of vanishing gradient raised due to
multi-stage models and reinforces the intermediate supervision
through reinforcement learning. The framework of the coarse-
to-fine multi-stage caption decoding module is illustrated in
Figure 2. As shown in Figure, it has three stacked long-short
term memory (LSTM) networks with attention modules. In
particular, the first stage LSTM decoder generates coarse-
grained image descriptions, and the successive LSTM decod-
ing network produces the fine-grained descriptions. At each
stage of the model, we input attention weights and previous
stage hidden vectors to generate more refined captions.

On achieving encoded information of an image using visual
encoder, we first learn the coarse decoder LSTM network
(LSTMc). At each time step t, the LSTMc takes the in-
formation of previous words, encoded visual representation of
an image, and the previous hidden states of LSTM network to
generate the caption as

c0t , h
0
t = LSTMc(h

0
t−1, i

0
t , wt−1),

i0t = [f(Z);h
Nf

t−1], (11)

where h0
t−1 and hNf

t−1 are the hidden states, c0t is the cell state,
wt−1 is the previous word, i denotes the decoder stage (i = 0
for LSTMc and i >= 1 for fine decoders (LSTMf )), Nf
indicates the total number of fine stages, and f(Z) mean pool
of visual encoder features. Further, we refine captions using
fine stage decoders using attention weights αi−1

t , previous
words, and visual information as

cit, h
i
t = LSTMf (hit−1, i

i
t, wt−1),

iit = [g(Z,αi−1
t , hi−1

t , hi−1
t ], (12)

where, g(.) denotes the function of spatial attention that
generates attention guided visual information. On achieving
attentive features, the coarse-to-fine LSTM network generates
the fine-grained description of an image.

IV. EXPERIMENTAL RESULTS

In this section, we verify the efficacy of the proposed
attentive contextual network (ACN) using quantitative and
qualitative analysis on COCO dataset, the largest dataset of
image captioning task. At first, the quantitative analysis is
presented by comparing the proposed ACN with the state-
of-the art approaches using conventional metrics like BLEU-
n, METEOR, ROUGE L, CIDEr-D, and SPICE. Then, we
illustrate the generated caption and attention maps of an
example image to analyse the performance of the proposed
attentive contextual network.

A. Dataset

We conduct experiments on COCO captioning dataset to
validate the performance of the proposed attentive contextual
network. In our experiment, we use widely adopted COCO
data split, which is 113K images for training, and 5K images
for validation & test sets. Further, we evaluate generated
captions using standard evaluation metrics like BLEU-n [7]
(B-1, B-4), METEOR (MR) [13], ROUGE L (RL) [21],
CIDEr (Cr) [31], SPICE [38]. In a brief, all these metrics
take generated caption & reference captions of an input image
and evaluate the coherence between n−gram word occurrence
across the captions.

B. Implementation details

We mainly implemented the proposed attentive contextual
network (ACN) using Pytorch [23] framework. In the proposed
ACN model, the contextual feature embedding, attention layer
embedding, and LSTM hidden and context vectors are fixed
to 512 dimension. Further, the ADAM optimizer [26] is used
with learning rate of 0.0001 for visual encoder and 0.0003 for
caption decoder. Throughout the network, we set batch size to
32 and learnt until the accuracy of the model does not change
on validation set for 15 epochs. Finally, we employ decay rate
when the model does not improve for 6 epochs.

For our visual encoder, we use ResNet-101 [15] network
as backbone network which is pre-trained on Imagenet [33].
From ResNet backbone network, we first extract the spatial
(Conv3) and semantic Conv5 features of size 32×32×512 and
8× 8× 2048, respectively. On extracting spatial features, we
employ deformable network with two standard and deformable
convolutions. We use 1 × 1 filters with 512 channels for
standard convolutions. And, the deformable convolutions are
employed using 3×3 filters. Further, we incorporate contextual
network with several parallel dilated convolutions on Conv5

feature of ResNet backbone network. At first, we employ
1× 1 convolutions and 3× 3 convolutions with dilation rates
of 2, 4, and 6. Along with dilated convolutions, we add one
convolutional layer of 1×1 filter and average pooling to incor-
porate features from various field-of-views. The convolutional
layers of entire contextual network are set to 256 channels
and concatenated all 5 layers before feeding it to criss-cross
attention module. The number of channels are reduced to
512 before feeding contextual feature to criss-cross attention
module and maintained the same number of channels in feature
fusion process.

C. Quantitative results

In this work, we present the attentive contextual network
(ACN) for image captioning task that incorporates the spatially
transformed and multi-scale contextual features of an image
to generate natural language sentence. The proposed ACN
model generates the spatially invariant and semantically rich
features. Table I presents the performance comparison of the
proposed ACN model with the state-of-the-art methods of
image captioning using standard evaluation metrics. From
the Table, we can observe that the proposed ACN approach
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is outperforming the previous state-of-the-art approaches in
terms of all metrics due to incorporation of rich visual and
textual information. In particular, we compare the performance

TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED APPROACH WITH THE

STATE-OF-THE-ART METHODS ON THE COCO DATASET, WHERE B-N, MR,
RL, CR, AND SP ARE SHORT FOR BLEU-N, METEOR, ROUGE L,

CIDER-D, AND SPICE, RESPECTIVELY

B-1 B-4 MR RL Cr SP
NIC [24] - 27.7 23.7 - 85.5 -

SCA-CNN [39] 71.9 31.1 25.0 - - -
DAIC(RL) [43] 77.6 35.4 26.7 56.4 116.5 -
Up-Down [10] 77.2 36.2 27.0 56.4 113.5 20.3

VRAtt [14] 80.1 37.2 27.9 61.3 121.8 21.9
VREA [28] 80.2 37.4 28.1 57.2 122.1 21.9
MVF [37] 80.5 38.5 28.2 58.1 128.1 22.1
AOA [2] 80.2 38.9 29.2 58.8 129.8 22.4
M2T [5] 80.8 39.1 29.2 58.6 131.2 22.6

Ours-ACN 81.2 40.1 29.6 59.2 133.3 23.1

of the proposed ACN with the recent encoder-decoder models
like double attention image captioning model (DAIC) [43],
visual relationship attention (VRAtt) [14], visual relational
reasoning (VREA) [28], multi-level visual fusion (MVF) [37],
and meshed-memory transformer models (M2T) [5]. Here, the
DAIC [43] model investigates the word level attention and
VRAtt [14] utilizes the visual relationship attention for image
captioning. Further, multi-level visual features are explored
in MVF [37] for caption generation. Finally, the M2T [5]
reported the state-of-the-art performance using transformers
in caption decoder module. In contrast to other works, we
utilize spatially transformed image features and multi-scale
contextual information to encode the visual representation of
an image. Further, the multi-stage caption decoder is used to
generate semantically meaningful captions.

D. Qualitative results

In this section, we present the qualitative analysis of the
proposed attentive contextual network (ACN) through gener-

Generated caption: an adult elephant and a baby
elephant standing in a dirt field.

Fig. 4. Illustration of attention maps and generated captions of test image.

ated caption and attention maps of each generated word for
given input image. The attention maps and generated words
are shown in Figure 4. From the Figure, we can observe
that the proposed approach is attending to relevant image
regions of each generated word. Also, we can infer that
the generated caption is precise, diverse, and semantically
meaningful. Specifically, the generated words “adult”, “baby”,
“dirt”, “field”, and “elephant” demonstrate that the proposed
approach is able to generate fine-grained words by utilizing
the holistic representation of an image.

V. CONCLUSION

Most of the image captioning approaches utilize either
attention guided image/object level features [10], [14], or
visual attributes [1], [37] with semantic information for de-
scribing the gist of an image. However, these methods fail
to incorporate spatial information of small objects and multi-
scale contextual information of image. To address this issue,
we propose a novel attentive contextual network (ACN) for
image captioning. The proposed ACN approach incorporates
attention guided dense visual features for caption generation
task. In particular, we first extract spatial and semantic features
from backbone network. Then, we refine the extracted features
by employing deformable network and contextual network.
Further, we utilize coarse-to-fine multi-stage caption decoder
to generate fine grained captions. Finally, we demonstrate the
efficacy of the proposed approach on COCO dataset. Espe-
cially, the deformable network achieves the spatially trans-
formed features and contextual network provides the dense
multi-scale contextual information of an image. The stack
of LSTM networks in multi-stage caption decoder module
incorporates intermediate supervision and handle the vanishing
gradient problem.
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