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Abstract—Speckle is a multiplicative noise which is inherent in
medical ultrasound images. Speckles contributes high variance
between neighboring pixels reducing the visual quality of an
image. Suppression of speckle noise significantly improves the
diagnostic content present in the image. In this paper, we propose
how sparseland model can be used for speckle suppression. The
performance of the model is evaluated based on variance to mean
ratio of a patch in the filtered image. The algorithm is tested on
both software generated images and real time ultrasound images.
The proposed algorithm has performed similar to past adaptive
speckle suppression filters and seems promising in improving
diagnostic content.

Index Terms—Dictionary learning, K-SVD, multiplicative
noise, speckle, sparse representations

I. INTRODUCTION

Medical ultrasound scanning is the widely used non-invasive
modality to acquire real time images of the organs including
kidney, liver, cardiac, fetus monitoring etc. The signal to noise
ratio of ultrasound images is poor compared to magnetic
resonance imaging and computed tomography reducing the
diagnostic precision of the machine. Ultrasound images are
inherently affected by a multiplicative noise called speckle.
The speckle appears as small worms or snake like structures
in the image revealing no significant information about the
tissue structure and so it is considered as noise.

Speckle is uncorrelated with respect to spatial, temporal and
frequency of operation of ultrasound probe. The uncorrelated
property of speckle is used to suppress the noise at RF
acquisition stage using different compounding techniques. In
frequency compounding, the same imaging sector is scanned
with multiple frequencies and the corresponding RF signals
are averaged. Phase compounding involves averaging the RF
data acquired by scanning the same position with multiple
probe positions [1]. Compounding techniques are employed in
the ultrasound machines at a cost of increased computations.
Speckle suppression also done after complete formation of
an ultrasound image by estimating the random behavior of
speckles in the image.

Mathematically speckle can be modeled as sum of large
number of complex phasors which results in constructive
and destructive interference at the receiver side [2]. The
constructive interference leads to bright spots and destructive
interference leads to dark spots similar to dense salt and
pepper like noise in the image. The intensity of envelop
detected RF data J(n, m) affected by speckle noise is given as

J(n,m) = (P (n,m) ∗ I(n,m)) N×(n,m)

where the multiplicative noise N×(n,m) is sample wise
independent of past, future samples and uncorrelated to the
image pixel value I(n, m), P(n, m) is the point spread function
(PSF) of the ultrasound imaging system, (n,m) represents
the spatial position of the tissue in the scan plane. The log
transformation, which is used to compress the dynamic range
of envelope detected data in ultrasound imaging system modify
the multiplicative model into an additive model.

J(n,m) = (P (n,m) ∗ I(n,m)) +N+(n,m)

N+(n,m) is the additive noise term. The behavior of I(n,m)
in fully formed image is modeled as summation of complex
phasors in a random walk model which results bright pixels
due to constructive interference and dark pixels due to destruc-
tive interference [2].

I(n,m) =

p∑
1

ap(n,m) ejϕp(n,m)

p is a positive integer which is generally considered very
large, ap and ϕp are amplitudes and phases of scattering
echoes from tissues.

Smoothing the image is one common solution seen in
literature to address speckle suppression. These techniques
are mainly differed based on how to smooth and diverse
criteria employed to determine the degree of smoothness. The
operation of the filter on a particular pixel depends upon local
statistics of the pixel surrounding around it. These filters are
biased to the size of the window used for finding local statistics
and smoothing.

Sparse and redundant representations over learned dictionar-
ies looks promising for image deblurring [3] and denoising
applications [4]. In this paper, we show how sparse and
redundant representation over learned dictionaries of speckle
affected ultrasound image effectively leads to speckle sup-
pression. The algorithm is tested individually on coherent,
diffused speckle pattern images and real time ultrasound B-
mode (Liver and Kidney) images. Coherent speckles in the
ultrasound image appears as dense salt and pepper like noise
and diffusion speckle pattern appears as small worm like
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structures. The speckle suppression is performed on images,
which is generated from Matlab using K-wave toolbox [5].

The performance of the algorithm is evaluated based on
how efficiently it can smoothen the image. The smoothness
of image is computed by variance to mean ratio over some
fixed patches. The performance is compared with well de-
fined speckle reduction filters like Frost [6], Lee [7] and
Speckle reduction anisotropic diffusion (SRAD) [8] filters.
Speckle suppression by sparse and redundant representation
over trained dictionaries significantly improved visual content
of an image similar to Frost, Lee and SRAD filters.

The rest of the paper is organized in the following way.
Section II deals with construction of sparseland model for
speckle suppression. Results of sparseland model with respect
to other models is discussed in section III and section IV
concludes the paper.

II. REPRESENTATION OF AN IMAGE OVER SPARSE AND
REDUNDANT OVER-COMPLETE DICTIONARY.

A. Problem formulation

Sparse modeling is used in many image processing ap-
plications like denoising, inpainting, mosaicing etc. Speckle
suppression in ultrasound images is mathematically formulated
in the following way.

Minf(X) =
1

2
‖ X − Y ‖22 +G(X) (1)

Y : Given measurements.
X : Unknown to be recovered.
Y is the speckle image and we want to recover clean image X.
We do not want to recover the image that is not to far from the
noisy image and that is the penalization that we have here i.e.,‖
X−Y ‖22. ‖ X−Y ‖22 gives the mean square error between the
speckle image and restored image. In (1), ‖ X−Y ‖22 also seen
as variance of speckle noise. The image that minimizes (1) is
noisy image itself and so we have not done much. The second
term in (1) indicates the prior information regarding the image
that has to be recovered. This is simply a Bayesian point of
view, adapting the Maximum-A-Posterior (MAP) estimation
and the basic idea is computing the X that minimizes f(X).
(1) is seen as prior and likelihood estimation with probabilistic
interpretation. In this scenario we choose a prior to be

G(X) = λ ‖ α ‖0 (2)

where ‖ α ‖0 gives sparsity of the signal representing
number of non-zero coefficients.

B. Sparseland modeling of an image.

To construct sparse modeling of an image, we will begin
by constructing the sparse model for overlapping fixed image
patches. An image patch of size

√
m×
√
m pixels is arranged

lexicographically as single column x ∈ <m. To define a
sparseland model for this column vector, we need to construct
a dictionary of size D ∈ <m×k. If k > m then the dictionary

is said to be overcomplete and it is redundant. We simplify
the model assuming the matrix D is fixed and it is known to
us. Every image patch x in the image is represented sparsely
over the dictionary by solving

α̂ = argmin
α
‖ α ‖0 s.t Dα ≈ x (3)

s.t stands for such that.
we will get ‖ α ‖0� m. Mathematically speaking, the signal
is represented by a linear combination of few column vectors
of redundant dictionary matrix D. The constraint Dα ≈ x
is equivalent to ‖ Dα − X ‖22 ≤ ε, ε is the magnitude of
error allowed. We need to define the parameter Q such that
‖ α ‖00≤ Q � m. It states that it uses atmost Q columns of
D for representing the image patch.

We have (ε,Q,D) with us and need to find the sparse
representation α̂

α̂ = argmin
α
‖ α ‖0 subject to ‖ Dα−Y ‖22< T (4)

T is the threshold and the recovered image is given by Dα̂ =
X̂ . The optimization of (4) is an NP hard problem and cannot
be solved as it is. (4) can be solved using relaxation and greedy
algorithms by modifying the equation as

α̂ = argmin
α
‖ Dα− Y ‖22 + µ ‖ α ‖1 (5)

Orthogonal matching pursuit (OMP) optimization algorithm
is employed for obtaining the α̂ due to its efficiency and
simplicity. .

C. Despeckling of image from local patches.

Despeckling an ultrasound image Y of size
√
M ×

√
M

where M � m is done by constructing a larger dictionary.
The larger dictionary is obtained by just scaling the dictionary
of image patch containing the basis of curvelet or contourlet
transforms [9]. This is not possible if we use small and fixed
dictionary D ∈ <m×k. We can solve this problem by another
way by tiling the results of all patches in the image forming
the complete despeckled image. Blocking artifacts is seen on
the resulted image due to tiling of patches and is overcomed
by constructing the dictionary for overlapping patches and
averaging the results of the patches accordingly [10], [11].

Considering every patch in the image belonging to sparse-
land model (ε,Q,D), MAP estimator can be rewritten as

{αij , X} = arg min
αij ,X

λ ‖ X − Y ‖22

+
∑
ij

µij ‖ αij‖0 +
∑
ij

‖ Dαij −BijX ‖22
(6)

The first term in the equation represents the error between
the recovered image and noise image. Bij is binary image
used to extract the patch of an image of size

√
m ×

√
m. (6)

has two unknowns αij , X and is solved by fixing X = Y and
seeking for α̂ij . The optimum value of α̂ij for each image
patch is obtained by solving

α̂ij = argmin
α
µij ‖ α ‖0 + ‖ Dα− xij ‖22 (7)



OMP algorithm is employed to obtain α̂ij for each image
patch by picking one column at a time from a dictionary and
stopping it when ‖ Dα − xij ‖22< T . This is operated for
every image patch of size

√
m×
√
m one at a time on sliding

window model basis. (6) is in quadratic form and its closed
form solution is given by

−
X = (λI +

∑
ij

BTijBij)
−1(λY +

∑
ij

BTijDα̂ij) (8)

(8) is seen as averaging the result of sparseland model of
shifted overlapping patches of a speckle image. We formulated
all the above equations guessing the dictionary matrix D is
given to us. Various dictionaries are proposed in the literature
and we choose to have discrete cosine transform as dictionary
due its uncorrelated basis structure which tends to have high
sparsity. We have to update the parameters D and αij based
on the image patches iteratively unless the required condition
is met. D and αij can be updated using patches from a set
of clean images or from the corrupted image itself. D is the
common dictionary used to represent all the patches in the
image. In this paper, we updated D and αij using the patches
from the speckled image. The final generalized problem is
formulated as

X = arg min
{αij}ij ,X,D

λ ‖ X − Y ‖22

+
∑
ij

‖ Dαij −BijX ‖22 s.t ‖ αij‖0 < Q
(9)

(i, j) in (9) corresponds to spatial location of image patch
in the image. Representing the image with few number of
columns naturally reduces the noise (noise is represented in
lower dimension where it cannot well) and averaging the
patches leads to smoothness of the image. The algorithm for
finding sparseland model for speckle suppression is shown in
Algorithm.1.

The sparseland model algorithm for speckle suppression
requires to initialize few parameters, they are listed below.

1) Initial dictionary (I) :Initial dictionary for K-SVD
training- overcomplete DCT.

2) Overlapping stepsize ∆: Interval between neighboring
blocks.

3) Sigma: used to determine the target error for sparse-
coding each block.

4) Training block T: Number of training blocks extracted
for training.

5) Dict D :Dictionary size.
6) Block size

√
m×

√
m: size of image patch to process.

7) Iteration number I: number of K-SVD training itera-
tions to perform.

8) λ:Specifies the relative weight attributed to the noisy
input signal in determining the output.

Algorithm 1 Algorithm for finding Sparse representation of
an image.

1) In (9) we have to fix three terms X,D and αij . To find
this, we are going to fix two terms and find the third
term. Let us fix X=Y and overcomplete dictionary D.

2) Repeat J times
• Sparse matrix update using OMP algorithm,

Compute sparse vector αij for each patch BijX

∀ij min
αij

‖ α ‖0 s.t
∑
ij

‖ BijX −Dα ‖22≤ ε

• Dictionary update stage: update each atom
a=1,2,...k in D by
-Find the set of blocks in image that uses this atom
va = {(i, j)|αij(a) 6= 0}
-Find the corresponding error for each index
(i, j) ∈ wa

eaij = BijXij −
∑
n 6=a

dnαij(n) (10)

-Matrix E is formed with columns {eaij}(ij)∈wa

-Ea is factorized as U∇V T using SVD algorithm.
Fix the updated dictionary column dl be the first col-
umn of U. Coefficients of {αaij}(ij)∈wa

is updated
by the entries of V multiplied by ∇(1, 1). Iteration
of 2) is called K-SVD.

3) Now D and αij known, compute X by
−
X = (λI +

∑
ij

BTijBij)
−1(λY +

∑
ij

BTijDα̂ij)

which is a simple averaging of shifted patches.

TABLE I
K-WAVE PARAMETERS USED TO SIMULATE THE ULTRASOUND IMAGE

SHOWN IN FIG. 2(A).

Transducer width 14.1593 mm (64 grid points)
Number of elements 64
Number of active elements 64
Element width 221.2389 um (1 grid points)
Sound speed 1540 m/s
Focus distance 30 mm
Elevation focus distance 30 mm

The order of complexity for each pixel in sparseland model is
of the order O(mkQJ), where m is patch size, k is number
of columns in dictionary, Q is the sparsity of each column in
coefficient matrix and J is number of stages used for updating
the dictionary.

III. RESULTS

The algorithm is applied on four types of ultrasound images.
In first case a phantom image with coherent speckle is consid-
ered. The Frost, Lee, SRAD and Sparseland filtered images



(a) Coherent Speckle image. (b) Frost

(c) Lee (d) SRAD

(e) Sparseland (e) Trained dictionary

Fig. 1. (b), (c), (d). Speckle suppressed images of various filters on (a).
Coherent speckled image. (f) Trained dictionary of sparseland model.

(a) Phantom with Scatters (b) US image of (a).

(c) Frost (d) Lee

(e) SRAD (f) Sparseland

(e) Trained dictionary

Fig. 2. (a) Scattering phantom. (b) Ultrasound image (US) of (a). (c), (d),
(e), (f) Filtered images of various filters on (b). (g) Trained dictionary of
sparseland model.

(a) Kidney (b) Frost

(c) Lee (d) SRAD

(e) Sparseland (e) Trained dictionary

Fig. 3. (b), (c), (d), (e) Filtered images of various filters on (a). Kidney image.
(f) Trained dictionary of sparseland model.

(a) Liver (b) Frost

(c) Lee (d) SRAD

(e) Sparseland (e) Trained dictionary

Fig. 4. (b), (c), (d), (e) Filtered images of various filters on (a) Liver image.
(f) Trained dictionary of sparseland model.



along with trained dictionary is shown in Fig. 1. A fully
formed speckle ultrasound phantom image is generated using
K-wave tool box in MATLAB is shown in Fig. 2. The K-wave
parameter specifications used for generating the ultrasound
image for the template Fig. 2(a) is shown in Table I. The
small snake like structures in the image Fig. 2(b) corresponds
to speckle patterns. The result of various filters on diffused
speckle is shown in Fig. 2(c)-Fig. 2(f). Trained dictionaries
of sparseland model for corresponding images are represented
in the form of image for better visualization. Fig. 3 and Fig.
4 shows the results of various filters on kidney images and
liver images respectively. The B-mode ultrasound kidney and
liver images are collected from Toshiba Capasee SSA-220A
US scanner from Nitya Diagnostic Centre, Hyderabad.

The algorithm is conducted by varying the parameters listed
in section II. The optimal suppression based on smoothing
is obtained for the values σ=20, I=20, λ=25, T=40000,
dictionary size D-8 x 256, Block size- 8 x 8. The algorithm is
applied by fixing the same parameters for all the images i.e.,
coherent speckled, diffused speckle, kidney and liver images.

The variance to mean ratio of the filtered coherent speckle
phantom image at different patches of size 20x20 is shown in
Table. II. The window size for computing the local statistics of
the filter Lee and Frost is 5 x 5. The SRAD filter is fixed for 30
iterations. The high variance to mean ratio of coherent speckle
signifies the patch has edge and low variance to mean ratio
signifies the patch is from flat region. By fixing the number of
iterations to 20, the performance (variance to mean ratio) of the
sparseland model with respect to sigma σ for coherent speckle
image is shown in Fig. 5. The graph follows approximately
the same trend for rest of the images, so σ is fixed to 20.
Fixing the σ, the performance of the sparseland model with
respect to number of iterations for updating the dictionary for
the coherent image is shown in Fig. 6. The variance to mean
ratio saturates after 20 iterations and there is no change in the
performance afterwards, so it is taken as bench mark value.

The pixel variations of 98th column of coherent speckle
of various filtered images is shown in Fig. 7. All the filters
reduce the variance to mean ratio, steep rise and fall of pixel
intensities signifies the present of edges in the image. All the
filters mimic the edges as all lines coincide with each other
at that location, which is the anticipated result of speckle
suppression filters. The stats signifies speckle suppression by
sparseland model performs similar to Frost, Lee and SRAD
filters. The algorithm is implemented in MATLAB 7.9 version
on core i5 processor with 2.8 Ghz clock speed. Sparseland
model took 10.2 seconds for execution for an image of size
256 × 256.

IV. CONCLUSION

The sparseland modeling representation of speckled images
has the natural capability of removing outliers present in
the image. Averaging the results of sparseland model on
overlapping patches of the image lead to smoothing. The

TABLE II
VARIANCE/MEAN OF PIXELS WITH WINDOW SIZE 20X20 OF IMAGE

SHOWN IN FIG.1 AT DIFFERENT LOCATIONS.

Phantom Frost Lee SRAD Sparseland
4.08 1.26 0.49 0.08 0.04
4.71 2.34 3.19 2.53 1.84
4.98 2.03 2.73 2.24 1.493
11.32 7.54 9.16 9.58 7.68
16.63 13.58 14.73 16.66 11.99

Fig. 5. Performance of Sparseland model with respect to sigma.

Fig. 6. Performance of Sparseland model with respect to number of iterations.

Fig. 7. Pixel variations of filtered images.



suppression of speckles by sparseland method performed sim-
ilar to other adaptive speckle suppression filters. The speckle
suppression using sparseland model significantly improved the
visual content of the image, sonographers can infer more
information from the despeckled ultrasound images to do
accurate diagnosis.

We need to study the effectiveness of sparse modeling using
different initialization of dictionaries and training of dictio-
naries on clean images for speckle suppression of ultrasound
images.
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