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Abstract— As a large proportion of road accidents occur
at intersections, monitoring traffic safety of intersections is
important. Existing approaches are designed to investigate acci-
dents in lane-based traffic. However, such approaches are not
suitable in a lane-less mixed-traffic environment where vehicles
often ply very close to each other. Hence, we propose an
approach called Siamese Interaction Long Short-Term Memory
network (SILSTM) to detect collision prone vehicle behavior. The
SILSTM network learns the interaction trajectory of a vehicle
that describes the interactions of a vehicle with its neighbors at
an intersection. Among the hundreds of interactions for every
vehicle, there maybe only some interactions that may be unsafe,
and hence, a temporal attention layer is used in the SILSTM
network. Furthermore, the comparison of interaction trajectories
requires labeling the trajectories as either unsafe or safe, but such
a distinction is highly subjective, especially in lane-less traffic.
Hence, in this work, we compute the characteristics of interaction
trajectories involved in accidents using the collision energy model.
The interaction trajectories that match accident characteristics
are labeled as unsafe while the rest are considered safe. Finally,
there is no existing dataset that allows us to monitor a particular
intersection for a long duration. Therefore, we introduce the
SkyEye dataset that contains 1 hour of continuous aerial footage
from each of the 4 chosen intersections in the city of Ahmedabad
in India. A detailed evaluation of SILSTM on the SkyEye dataset
shows that unsafe (collision-prone) interaction trajectories can be
effectively detected at different intersections.

Index Terms— Driving behavior analysis, vehicle interaction
analysis, social force model, LSTM, Siamese networks.

I. INTRODUCTION

NEARLY 40% of all road accidents are recorded at
intersections [1]. Road accidents at intersections can be

attributed to a combination of factors like humans (drivers, rid-
ers, vehicle occupants, pedestrians, tri-cyclists, and bicyclists),
vehicles (design or structure, weight, equipment like seat-belts
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or tires), and infrastructure or environment (road design,
signage, weather, conditions affecting visibility) [2]–[4]. These
factors lead to black spots - places where road traffic accidents
have historically been concentrated [5], [6]. Existing research
in accident analysis focuses on the identification of black
spots through multiple approaches like screening, clustering,
and crash prediction [7]. However, there is no standardized
approach that can be followed for all types of roads [8].
Hence, accident analysis using black spots is impractical for
developing countries like India where there is a large disparity
in the size of roads and intersections, no earmarked turning
lanes, road markings are often blurry and not followed by the
drivers, and the lack of enforcement of speed limits. Instead,
there is a need to analyze the risk of collisions by monitoring
driving behavior.

Driving behavior is affected by navigation around blind
spots caused by occlusion of smaller vehicles by larger vehi-
cles, turning distance of different types of vehicles, driver
visibility in various environmental conditions, and design of
intersections [9]. The effect of the aforementioned factors on
driving behavior manifests in the form of gap distance between
vehicles in the same lane and across lanes, acceleration
and deceleration of vehicles [9]. Surveillance video cameras
can monitor driving behavior effectively over long periods
of time like the UA-DETRAC dataset [10]. However, they
cannot be used to monitor multiple lanes of an intersection
simultaneously due to limited field of view and occlusion
of vehicles. Aerial videos allow us to monitor all the lanes
of an intersection as shown in the VisDrone dataset [11].
Hence, we design an approach to detect collision proneness at
intersections using aerial videos.

We propose that detection of collision proneness requires
the relative distance (distance between the center of two
vehicles) and the speed of neighboring vehicles (instantaneous
displacement of the center a vehicle between two successive
frames) rather than the exact dimensions of the target vehicle,
turning radius, the exact distance between vehicles, as used
in existing methods for vehicle behavior modeling [12]–[14].
This method is particularly useful in case of aerial videos
where exact vehicle dimension and turning distance are dif-
ficult to obtain for any arbitrary vehicle and intersection.
Further, vehicle maneuvers like overtaking, avoiding oncom-
ing traffic, and merging into other lanes occur frequently
at intersections. These maneuvers are heavily influenced by
neighboring vehicles in the immediate surroundings that leads
to gradual or abrupt change in the driving behavior over
time. Hence, the state of any vehicle at a particular instance
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can be expressed based on its relationship with neighboring
vehicles.

In the proposed approach, we represent the behavior of
every vehicle using the relative distance, speed of the vehicle,
and speed information of its neighbors at every frame to
form a temporal sequence called vehicle interaction trajectory.
In literature, Long Short-term Memory (LSTM) networks have
been used to represent pedestrian/vehicle spatial trajectories
(x and y positions) [15], [16]. In our approach, we encode the
vehicle interaction trajectory using the proposed Interaction
LSTM module that represents the long-term driving style of a
vehicle that is different from existing LSTM based approaches
like [15]–[17] that only consider a small fragment of the
trajectories.

The encoded vehicle interaction trajectories are com-
pared using a Siamese network called Siamese Interaction
LSTM (SILSTM) to detect unsafe and safe interaction trajec-
tories. Though SILSTM can learn vehicle interaction behavior,
it still needs labels to separate unsafe and safe interaction
trajectories. Annotation of unsafe interaction trajectories is
challenging and highly subjective in lane-less traffic (drivers
do not follow lane-discipline) due to the irregular driving
behavior such as a) staggered following - following vehicle
is staggered with the leader vehicle, b) non-lane passing -
two-wheelers driving between lanes and passing vehicles in
lanes, c) following between two vehicles - vehicles occupy any
lateral position on roadway for better passing opportunities,
d) multiple leaders - lane-less movement and different vehicle
sizes may cause a vehicle to follow multiple leaders, and e)
lateral movement - different vehicles have different capability
of lateral movement [18]. To arrive at an objective annotation
scheme for unsafe and safe interaction trajectories that adhere
to the aforementioned lane-less behavior, we use the charac-
teristics of interaction trajectories from accidents computed by
the collision energy model [19]. The interaction trajectories
which have similar properties to accident interaction trajecto-
ries are labeled as unsafe while the rest are labeled as safe.

The evaluation of collision prone (unsafe) vehicle inter-
action trajectories requires an aerial dataset of lane-less
traffic. However, existing datasets like UA-DETRAC [10]
and VisDrone [20] only cover lane-following traffic. Hence,
we introduce a new dataset called SkyEye1 in this work to
monitor highly heterogeneous traffic with mostly two-wheelers
that maneuver between the gaps of large stationary vehicles.
In such traffic, the detection and tracking of two-wheelers
in lane-less traffic more challenging. Without the detection
and tracking information for the individual vehicles, it is even
more challenging to detect unsafe driving behavior. So, in our
SkyEye dataset, we provide 4,021 annotated vehicle tracks
from 4 intersections in the city of Ahmedabad in India to
facilitate research in lane-less mixed traffic conditions.

The main contributions of the work are as follows:
• An view-independent Siamese interaction LSTM

(SILSTM) network for detecting collision-prone vehicle
interaction trajectories.

1https://github.com/debadityaroy/SkyEye/

• A large annotated aerial dataset called SkyEye for
studying lane-less mixed traffic at different types of
intersections.

• An objective annotation scheme for collision-prone inter-
action trajectories using the collision energy model.

The rest of the paper is organized as follows. Section II
reviews relevant existing literature. In Section III, the proposed
approach is described in detail, and the evaluation results are
presented in Section IV. Finally, the conclusion is presented
in Section V.

II. RELATED WORK

In this section, we describe the relevant literature on acci-
dent detection. We also discuss interaction modeling as it is
integral to accident detection and collision analysis.

A. Accident Detection

Accident detection in surveillance videos has been
studied in literature as either an anomaly detection problem
[21]–[23] or vehicle tracking based detection of interactions
[24]–[26]. The reason for treating accidents as anomalies
arose due to the unavailability of a large number of recorded
accident examples when compared to normal activities. The
number of accident examples considered in [21], [22] and [23]
is 8, 6, and 150, respectively. Clearly, such a small number
of examples is not sufficient to learn the spatio-temporal
dynamics of accidents, especially when there are more than
13 different accident scenarios that are possible [27]. Hence,
the anomaly detection based approaches represent regular
vehicle motion as: 1) interaction fields [21], 2) trajectory
features extracted from spatio-temporal video volumes using
auto-encoders [22], or 3) bag-of-features extracted from 3D
convolutional networks (C3D) [23]. Then the deviation from
normal vehicle behavior is used to detect accidents. While
this technique can detect abnormal behavior, dense lane-less
traffic often results in very close encounters between vehicles
at low-speeds that can appear as accidents.

With more examples of accidents and better vehicle
tracking, vehicle interactions during accidents can be repre-
sented more accurately. A dataset of 678 dashboard cam-
era videos containing accidents was presented in [24].
Using a dynamic spatial attention recurrent neural network
(DSA-RNN), the authors in [24] were able to anticipate
accidents before they occurred. Owing to a large number of
videos, the DSA-RNN was trained to recognize the change
in spatial behavior of the vehicles before, during, and after
accidents. The spatial representation of the different vehicles
was obtained using a spatial attention network based on
VGGNet [28]. The attention network only focused on the
regions that extracted features based on positive detections
of an object detector that was trained to recognize vehicles.
The trend for larger accident datasets continued with the
Car Accident Detection and Prediction (CADP) dataset [25]
that had 1,416 recorded accidents from surveillance traf-
fic cameras. The authors also demonstrated the ability to
anticipate accidents using augmented context mining (ACM)
for recognizing smaller objects better with existing object
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detectors. With ACM, different sized object region proposals
were produced based on manual annotation, and the one with
the best detection score was retained. Combining ACM based
object detection with DSA-RNN [24], the authors showed
that faster and more accurate accident anticipation could be
achieved.

The largest accident dataset till date called the Near-miss
Incident DataBase (NIDB) was introduced in [26] with
4,594 near-miss incidents recorded from dashcam videos. The
authors presented a new loss function called Adaptive Loss for
Early Anticipation (AdaLEA) for training RNNs (particularly
LSTMs and Quasi-RNNs) that could adaptively change the
loss value based how early the network detects an accident
before the actual incident. This was a departure from the
linear loss proposed in [24] where the same loss value was
used regardless of how early or late an accident was detected.
The large number of videos in NIDB helped the authors to
pre-train the RNN in order to achieve the earliest prediction
of accidents as compared to existing methods. It is important to
note that the ability to anticipate accidents depends largely on
the identification of every vehicle-vehicle interaction. Hence,
we summarize the various interaction modeling methods in the
literature.

B. Interaction Modeling

The most popular method for interaction modeling in traffic
flow analysis is the car-following model [29] that is used
to describe homogeneous traffic with lane discipline. More
recently, to accommodate motorcycle-heavy traffic, a tri-class
flow (considering bus, car, and motorcycle as separate flows)
was empirically studied in [30]. The traffic flow problem
was described as two-wheeler accumulation in different lanes
alongside buses and cars, which were segmented as vehicle
packets. However, these vehicle packets were still segregated
by lanes. Such a packet formation fails to account for the
unique kinetic characteristics of two-wheelers riding between
lanes as suggested by the authors in [30]. Hence, interaction
models based on social force [31] were developed to describe
vehicle behavior in lane-less traffic [12], [13]. Social force
models categorize vehicle behavior based on three forces:
1) attraction between vehicles moving together as a group,
2) repulsion that refers to the minimum distance maintained
between members in a group, and 3) coherence that means
vehicles moving together in a group maintain similar velocity.
However, social force models need a large number of parame-
ters to calculate the components of each of these forces for
every vehicle-vehicle interaction.

The complexity in defining the social forces explicitly was
overcome by methods that learn the relationship between
different targets based on the relative distance between their
trajectories using Long Short-Term Memory (LSTM) [15],
Recurrent Neural Networks (RNN) [17], and Generative
Adversarial Networks (GAN) [16]. In all these approaches,
the relationship between a target and its neighbors is stored in
a shared layer that helps in predicting the future trajectory of
the target. The predictions are then compared with the ground
truth, and the errors are used to update the weights in the

shared layer as well as the representation layers in the LSTM
or RNN. Given an unknown trajectory, these networks also
use a part of the trajectory and the shared layer information
to generate the future trajectories based on both the distance
and probability of collision in the future with neighboring
vehicles. However, as the shared layer is learned to produce
safe trajectories, it cannot be used to learn the dynamics of
accident trajectories. Moreover, the temporal history used to
learn the shared layer is designed for processing immediate
behavior (between 8 to 12 time-steps) which is not suitable
for describing long-term vehicle behavior at intersections
involving a hundred or more time-steps.

III. PROPOSED APPROACH

In lane-less traffic, drivers adjust vehicle movements by
estimating the motion of neighboring vehicles during over-
taking, avoiding oncoming traffic, and merging into other
lanes. The neighboring vehicles are in-turn influenced by other
vehicles in their immediate surroundings that could lead to a
change in their driving behavior over time. Hence, there is
a need to effectively represent neighborhood information for
every vehicle and the process of representation is described
subsequently.

A. Interaction LSTM

Mathematically, the neighborhood information for any par-
ticular vehicle i is represented by the relative distance
of the vehicle i with the other vehicles, the speed of
vehicle i , and the speed of the vehicles in the neigh-
borhood. This neighborhood information which defines the
vehicle trajectory is encoded into the input vector at

i =
[dt

i1, dt
i2, · · · , dt

i j , v
t
i , v

t
1, v

t
2, · · · , v t

j ] for every time step t . The
distance between the neighboring vehicles i and j at time t
denoted by dt

i j and the instantaneous speed for vehicle i
at time t is denoted by v t

i . The nearest j neighbors are
chosen for representing the state of vehicle i at time t . The
number of neighbors can be varied to obtain the best possible
representation, and we provide ablative studies in Section IV
to demonstrate the effect of the same. The neighborhood
information obtained for a single frame is concatenated to
obtain the interaction trajectory for the entire duration of N
frames when the vehicle i is present in the video. Hence,
the interaction trajectory sequence for a vehicle i is expressed
as ai = [a1

i , a2
i , · · · , aN

i ].
Recurrent Neural Networks (RNN) [32] can be used to

represent the interaction trajectory sequence obtained above.
At every time step t ∈ {1, · · · , N}, the hidden state vector ht

can be updated based on the equation ht = σ
(
Wat + Uht−1

)
,

where W is the weight matrix from the input to the
hidden-state vector and U is the weight matrix that links the
hidden-state vector from the previous time step ht−1, and σ(.)
denotes the logistic function.

In dense traffic, vehicles have to ply slowly especially while
entering and exiting intersections. Hence, the average length
of the trajectory for each vehicle is more than a hundred
time-steps (each time-step represents 1/3 of a second). Stan-
dard RNNs suffer from vanishing gradient problem in which
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the back-propagated gradients become extremely small over
long sequences. Hence, the LSTM model was introduced [33]
that sequentially updates the hidden-state representation like
an RNN at each time step but alleviates the vanishing gradient
problem by introducing three gates for information control
to the memory state st . The output gate ot determines how
much of the memory state should be transferred to the next
node. The input gate decides the contribution of input at at
time-step t . Finally, a forget gate ft is used to control how
much of the history of the trajectory should be forgotten. With
relation to this work, we refer to this LSTM as an interaction
LSTM where each memory state in the LSTM st stores a
part of the state of a vehicle at time t in terms of the distance
and speed of neighboring vehicles. The output gate determines
the proportion of information that should be passed across the
memory states at each time step. The input gate determines the
amount of neighborhood information that should be allowed
at time t to update a part of the vehicle state stored in st and
the forget gate decides how much of the previous vehicle state
affects the present vehicle state.

Every LSTM is parametrized by the input weight matrices
and the previous state for each of the gates along with the
memory cell. In this work, the LSTMs are formulated with
logistic function σ(.) on the gates and the hyperbolic tangent
(tanh) as the activation functions. This formulation can be
described mathematically as

it = σ(Wi at + Ui ht−1)

ft = σ(W f at + U f ht−1)

ot = σ(Woat + Uoht−1)

s̃t = tanh(Wsat + Usht−1)

st = it � s̃t + ft � st−1

ht = ot � tanh(st ), (1)

where � denotes the element-wise product. The matrices Wi

and Ui , W f and U f , and Wo and Uo are associated with the
input, output, and forget gates, respectively.

Bidirectional LSTMs were introduced in [34] to incorporate
both future and past context of a sequence by using a separate
LSTM on the reversed sequence. The output of the combined
model at each time step is computed as the concatenation
of the outputs from the forward and backward networks.
Analyzing the safety of a trajectory at any time step is affected
both by the recent past and the immediate future. Particularly,
any sudden change in the speed of the vehicle before and after
any time step determines the propensity of a collision which
can be adequately captured by a bidirectional LSTM. Hence,
in this work, we use the bidirectional LSTM models to model
the interaction trajectories. Next, we describe the comparison
of the modelled trajectories using a Siamese network.

B. Siamese Interaction LSTM

In dense lane-less traffic, the gap between vehicles is quite
narrow at the intersection and similarly when they leave the
stop sign. The gradual increase or decrease in vehicle speed for
a particular vehicle is also dependent on the volume of vehicles
entering or exiting an intersection. These incidents are flagged

as unsafe if either a collision energy-based formulation [19]
or interaction LSTM architecture described above. As these
cases arise naturally out of lane-less traffic, it is essential to
classify such interactions from collisions. Hence, we propose
a Siamese Interaction LSTM (SILSTM) that compares two
trajectories represented using interaction LSTMs to differen-
tiate between safe and collision-prone interaction trajectories
in dense lane-less traffic.

Siamese networks [35] are neural networks with two inputs
that share the same weights called tied weights. The outputs
of these networks are compared using a distance measure
like cosine, Manhattan, or Euclidean distance. The Siamese
network is trained in a way so as to minimize the distance
between features of the same class and maximize the distance
between examples of dissimilar classes [35]. Siamese networks
have also been used in conjunction with LSTMs to compare
sequences [36]. Notably, an additional label was supplied
in [36] to indicate whether the sequences are similar or
dissimilar.

In this work, the SILSTM network is built with one or
more bidirectional LSTM (BLSTM) layer(s). Each BLSTM
layer has Rectified Linear Units (ReLU) activation function
at the output of each BLSTM unit. The activation outputs
at the ReLU units at each time-step of the final BLSTM
layer are pooled to produce a fixed-dimensional output that
is sent through an attention layer. Every time-step in the
vehicle interaction trajectory is not important in determining
the overall safety. There are some crucial interactions in the
entire interaction trajectory that are more important than all
the others. The attention mechanism assigns a weight αn to
each of the n activation outputs of the BLSTM hn such that∑N

n=1 αn = 1. The output of the attention layer is the context
vector which is calculated by multiplying the attention weight
to the hidden output c = [α1 h1, α2 h2, · · · , αN hN ]. Let ci , c j ,
and ck be the context vectors for vehicle interaction trajectories
ai , a j and ak , respectively. Finally, the SILSTM is optimized
using triplet loss that is computed as

Li j k = max(�ci − c j�2 − �ci − ck�2 + m, 0), (2)

where ci and c j belong to the same class (either safe or
unsafe) and ck belongs to a different class. The triplet loss is
minimized so that distance between the context vectors from
the same class (�ci − c j�2) is pushed to 0 and the distance
between context vectors from different classes (�ci − ck�2)
is made to be greater than �ci − c j�2 + m, where m is the
margin. A pictorial description of the entire SILSTM network
with triplet loss based training is shown in Figure 1.

IV. EXPERIMENTAL EVALUATION

We describe the various experimental details such as the
dataset, parameter settings, and protocols in this section. Also,
we present and discuss the various quantitative and qualitative
results obtained from the experiments.

A. Dataset

SkyEye: The SkyEye dataset is the first aerial dataset
for monitoring intersections with mixed traffic and lane-less
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Fig. 1. Training of the siamese interaction LSTM (SILSTM) using triplet loss. The interaction trajectories of three vehicles can be compared based on the
neighborhood information at each time-step that is captured using the bidirectional LSTMs and the attention layer. Best viewed in color.

behavior. Around 1 hour of video each from 4 intersections,
namely, Paldi (P), Nehru bridge - Ashram road (N), Swami
Vivekananda bridge - Ashram road (V), and APMC market
(A) in the city of Ahmedabad, India as shown in Figure 2.
These intersections were considered because of the diverse
traffic conditions they present. While Paldi and Nehru bridge
are four-way signalized intersections, the intersection at Swami
Vivekananda bridge is a seven-way signalized intersection,
and APMC market is a three-way non-signalized intersection.
Hence, this dataset comprehensively covers a wide variety

of traffic conditions for both signalized and non-signalized
intersections. The videos were captured using the included
camera in the DJI Phantom 4 Pro drone at 50 frames per sec-
ond in 4K resolution (4096 × 2160). The annotated dataset
contains 50,000 frames in total from all the intersections.
In these 50,000 frames, a total of 4,021 distinct vehicle tracks
are annotated that include 421 cars, 77 buses, 2,185 two-
wheelers, and 973 auto-rickshaws. The annotation of these
vehicle interaction trajectories as safe and unsafe is discussed
in the next subsection.
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Fig. 2. Intersections in the SkyEye dataset at Ahmedabad in India with their
initials in brackets which is used in the rest of the paper. Best viewed in color.

B. Labelling Collision-Prone Trajectories Using
Collision Energy

Annotating collision prone vehicle interaction trajectories
is highly subjective. Hence, we propose an annotation scheme
based on objective assessment of collision potential in terms
of collision energy [19]. Collision energy is defined as

Ec(v; si , s j �=i |σd , σw, β)

=
∑
j �=i

w(si , s j ) exp

(
−d2(v, si , s j )

2σ 2
d

)
, (3)

where

w(si , s j )=ex p

(
−|�pi j |

−2σw

)
.

(
1

2

(
1 − �pi j

|�pi j |
vi

|vi | ,
))β

(4)

and

d2(v, si , s j ) =
∣∣∣∣�pi j − �pi j (v − v j )

|v − v j |2 (v − v j )

∣∣∣∣ . (5)

Here, σd is the preferred distance a vehicle maintains with each
surrounding vehicle to avoid collision, σw is the distance at
which a vehicle reacts to prevent a collision while overtaking,
merging, or avoiding oncoming traffic, and β is the peakiness
of the weighting function for turning distance. In Equation 3,
vehicle i is defined by a state variable si = {pi , vi }, where
pi = (xi , yi ) is the position, and vi the velocity of the vehicle.
Also, �pi j denotes the distance between vehicles i and j .

As the goal is for all vehicles to navigate in the same space
without collisions, we can obtain the parameters σd , σw , and β
by minimizing collision potential for every vehicle as follows

{σd(i), σw(i), β(i)}
= argmin

{σd (i),σw(i),β(i)}
(Ec(vi; si , s−i |σd(i), σw(i), β(i))) . (6)

As there are thousands of vehicle interaction trajectories for
which the above minimization problem needs to be solved,
a fast solver is desirable. Hence, we formulate the above
minimization as a genetic algorithm problem instead of the
interior point method used in [19]. After obtaining the σd

and σw values for all the vehicles, we can label the safe
and unsafe vehicle interaction trajectories. Figure 3 shows
that trajectories from accidents in CADP dataset [25] have
low values of σd and σw . This means that accident prone
vehicles have low σd and σw . Considering the CADP dataset
as the baseline, the cluster of trajectories in SkyEye with
low values of σd and σw are labeled as collision-prone. The
cluster with high values of σd and σw is labeled safe as
it comprises of vehicles that maintain a safe distance while
driving alongside other vehicles and during overtaking and
merging, respectively. Almost all the points can be clearly
identified as either safe or unsafe but one or two outliers
remain that establish the effectiveness of this labeling scheme
over a subjective assessment. Though we mention one method
of generating the ground truth other approaches like using
a micro-simulation model to obtain car-following parameters
and lane-change parameters using vehicle trajectories [37]
can also be applied. The SILSTM model is adaptable to any
suitable ground truth that is available.

Among the 4,021 unique vehicle interaction trajectories in
the SkyEye dataset, 2,041 were labeled as unsafe (collision-
prone) and the rest 1,980 were labeled as safe. Every trajectory
is based on the vehicle center following [19] and the direction
of the travel is not considered. A breakdown by intersection
is presented in Table I. The number of unsafe interaction
trajectories are comparable to the safe interaction trajectories
for all the intersections. The labeled interaction trajecto-
ries form the ground-truth for our collision prone trajectory
detection. For training, testing, and validation, the labeled
interaction trajectories were randomly split into 70%, 20%,
and 10%, respectively. This process was repeated three times
to obtain 3 different splits and the results reported here are
averaged over the 3 splits.
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Fig. 3. Labelling safe and unsafe trajectories in SkyEye based on turning
distance σw (x-axis) and preferred distance σd (y-axis) in each figure. (a) The
vehicle interaction trajectories involved in accidents from the CADP dataset
have low turning and preferred distance. Hence, the cluster with low turning
distance at various intersections in SkyEye (b) P, (c) V, (d) N, and (e) A,
is labeled as unsafe (each point represents a vehicle trajectory). The cluster
whose members have a higher value of turning distance is labeled as safe
because the neighboring vehicles are further apart. Best viewed in color.

TABLE I

INTERSECTION-WISE DISTRIBUTION OF LABELED UNSAFE AND

SAFE TRAJECTORIES IN THE SKYEYE DATASET

C. Collision Prone Trajectory Prediction

The median length of the interaction trajectory in the
SkyEye dataset was found to be 108 and hence, the number
of BLSTM units in the SILSTM network was set to 64.
To the BLSTM layer, an attention layer of 32 units was added
and this SILSTM network was called BLSTM1L+A, where
1L represents the single BLSTM layer and +A represents
the attention layer. For the BLSTM layer, the recurrent and
activation dropout values were both set to 0.5, and the attention
layer dropout was set to 0.1. These values were obtained
empirically by cross-validation. The BLSTM1L+A network
was trained for 200 epochs with the criteria of triplet loss on
the validation data used to save the best model for evaluation.

TABLE II

RETRIEVAL METRICS FOR UNSAFE INTERACTION TRAJECTORIES USING
BLSTM1L+A SILSTM ON THE SKYEYE DATASET. CONSIDERING

MORE THAN 8 NEIGHBORS DOES NOT YIELD

BETTER PERFORMANCE

Though triplet loss provides an embedding that separates dis-
similar interaction trajectories, it does not allow us to evaluate
retrieval performance on test interaction trajectories. Hence,
for reporting the recall, precision, and F1 score of the test
interaction trajectories, we used the k nearest neighbor (kNN)
algorithm. The kNN algorithm allows us to determine whether
the test interaction trajectory is more close to unsafe or safe
interaction trajectories. Out of the three retrieval metrics, recall
is the most important in measuring the safety of an intersection
as it determines how many unsafe interaction trajectories were
recovered correctly.

Table II presents the recall, precision, and F1 scores of
unsafe trajectories for the BLSTM1L+A SILSTM network.
In order to determine the collision proneness of interaction
trajectories, we also evaluated the effect of the number of
neighboring vehicles. This is important as dense traffic is
encountered at the intersections in the SkyEye dataset and
multiple vehicles surround a given vehicle from all directions.
For every vehicle, its neighboring vehicles were chosen based
on their distance to the vehicle under consideration. From
Table II, it can be observed that considering more than
8 neighbors does not yield better retrieval performance both
in terms of recall and F1 score. This can be attributed to
the fact that 8 neighbors are enough to cover the immediate
vicinity of a vehicle. Considering more neighbors includes
vehicles which do not contribute significantly to the driving
behavior.

In literature [38], stacked BLSTM networks have been
used for better semantic representation of sequences com-
pared to single-layer BLSTM networks. Hence, a stacked
2-layer SILSTM network called BLSTM2L+A was con-
structed with 64 and 32 BLSTM units in the first and second
layer, respectively and connected to a 32-unit attention layer.
In Table III, the retrieval performance of unsafe trajectories
with the BLSTM2L+A SILSTM network is presented. Inter-
estingly, the best retrieval performance was again observed for
8 neighbors which follows the behavior of the BLSTM1L+A
network. However, the addition of a BLSTM layer improves
the highest recall value to 0.84 over 0.81 for the BLSTM1L+A
network. The reason for the improved performance is that both
the BLSTM layers operate at different timescales. The BLSTM
unit in the first (lowest) layer combines the information from
the 3 time-steps - past, current, and future. For the second
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TABLE III

RETRIEVAL METRICS FOR UNSAFE INTERACTION TRAJECTORIES USING
BLSTM2L+A SILSTM ON THE SKYEYE DATASET. CONSIDERING

MORE THAN 8 NEIGHBORS DOES NOT YIELD

BETTER PERFORMANCE

(higher) layer, each BLSTM unit combines the information
from 3 LSTM units of the 1st layer which gives it a temporal
resolution of 9 time-steps. In effect, aggregation of events
over different timescales in interaction trajectories allows for a
hierarchical representation that can better detect unsafe driving
behavior. We also trained a 3-layer network (with 64, 32, and
16 BLSTM units) but no improvement in retrieval performance
was observed. This leads us to hypothesize that considering a
longer temporal duration (27 time-steps for each BLSTM unit
in the third layer) does not provide additional information that
helps in recalling unsafe trajectories.

D. Comparison With Different Architectures

The existing methods in literature are not designed to
analyze the complete trajectory of an individual vehicle.
The focus is only on detecting accidents [21]–[23], [39] or
evaluating the entire scene consisting of multiple vehicles
simultaneously [24]. In our proposed approach, we evaluate
the driving style of each vehicle individually. Hence, in this
paper, we compare the performance of different variants of the
SILSTM network based on the BLSTM2L+A architecture.
These variants include - a) LSTM2L - a 2-layer LSTM
network without an attention layer, b) LSTM2L+A - a 2-layer
LSTM network with 1 attention layer, c) GRU2L - a 2-layer
gated recurrent unit (GRU) network without an attention
layer, d) GRU2L+A - 2 GRU layers with 1 attention layer
and e) BLSTM2L - a 2-layer BLSTM network without an
attention layer. The first layer in each of these variants has
64 units followed by 32 units in the second layer. For the
networks with attention, a 32 unit attention layer is added to
be comparable to the BLSTM2L+A network.

According to Table IV, the LSTM2L, LSTM2L+A,
GRU2L, GRU2L+A, and BLSTM2L networks also demon-
strate the best retrieval performance for 8 neighbors and
increasing the number of neighbors affects the performance
adversely. The GRU units have two gates - reset and update
with no memory units and hence are computationally less
expensive. For interaction trajectories, the GRU2L+A network
performs similar to the BLSTM2L network. Hence, if a
computationally inexpensive network is desired to extract local
structure in interaction trajectories, GRU units can be used
instead of BLSTM units with only marginal loss in recall
performance. Furthermore, the attention layer always shows

TABLE IV

COMPARISON OF RETRIEVAL PERFORMANCE FOR DIFFERENT
ARCHITECTURES FOR THE SILSTM NETWORK

improvement when used with either GRU, LSTM, or BLSTM
units. This shows that aggregation of local structure in inter-
action trajectories is effective for comparison of interaction
trajectories. The local structure arises from the small regions
of the interaction trajectory, where the probability of collision
is high. Comparing these regions is essential to the detection
of similarity in collision-prone interaction trajectories.

E. Qualitative Analysis

Some examples of the detected unsafe/collision-prone
interaction trajectories using the SILSTM network at the
4 intersections of the SkyEye dataset are shown in Figure 4.
The vehicle whose trajectory is under consideration is shown
(in green) with its 8 nearest neighbors for that particular instant
also marked with numbers (in white). In each of these cases,
one particular instance is highlighted along the trajectory of
the vehicle where a probable collision is about to happen
with one of the neighbors. Such an collision-prone interaction
contributes to the unsafe nature of the vehicle interaction
trajectory. Most of these unsafe vehicle interactions occur
when a vehicle emerges in a direction opposite to the prevalent
flow of the traffic. As the prevalent flow has considerable speed
compared to the emerging vehicle, there is a imminent chance
of collision that is identified by SILSTM when analyzing the
interaction trajectory.

F. Quantitative Analysis

For the different variants of the SILSTM network, a high
recall rate is observed with relatively lower precision val-
ues. A low precision value indicates many false positives
that arise because many benign intersection trajectories are
considered as collision-prone. As the SILSTM method con-
siders vehicle speed in addition to distance for modeling
intersections, the intersections with smaller vehicles rapidly
traversing between large stationary vehicles at stop signs are
also considered as unsafe. In Table V, the recall, precision,
and F1 values for each intersection in the SkyEye dataset are
presented separately. The two intersections, namely, Paldi (P)
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Fig. 4. Examples of unsafe interaction trajectories in SkyEye dataset at various intersections - (a) P, (b) A, (c) N, and (d) V. The vehicle whose interaction
trajectory is under consideration is shown in green and its neighbors for that particular instant are shown with numbers in white. The trajectory is shown in
red and an unsafe interaction is marked in red.

TABLE V

RETRIEVAL METRICS FOR EVERY INTERSECTION IN SKYEYE DATASET

BASED ON THE BEST PERFORMING BLSTM2L+A SILSTM NETWORK

CONSIDERING 8 NEIGHBORS FOR EACH VEHICLE

and APMC market (A) show much higher recall values
compared to Swami Vivekananda bridge - Ashram road (V)
and Nehru Bridge - Ashram Road (N). As intersection V is
a 7-way signalized intersection, there are more concurrent
traffic flows than intersections P and A with are 4-way and
3-way, respectively. Based on the low relative distance and
high relative speed between the various concurrent traffic

flows, many safe interaction trajectories are confused as
unsafe.

V. CONCLUSION

In this paper, we have proposed a Siamese Interaction Long
Short-Term Memory network (SILSTM) that can compare
the driving style of a vehicle with another vehicle based
on interactions with neighboring vehicles. The interactions
were represented in the form of interaction trajectories that
contained the distance of a vehicle from its neighbors and
the speed of the neighbors. The proposed SILSTM quan-
titatively identifies unsafe vehicle interaction trajectories at
different types of intersections in challenging lane-less traffic
conditions. Also, a large aerial dataset called SkyEye was
introduced that is the first to provide long-term monitoring of
signalized/non-signalized intersections with lane-less traffic in
India. We demonstrated the efficacy of the proposed SILSTM
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approach in learning salient features from long vehicle interac-
tion trajectories. We showed that learning these salient features
allowed for highly effective detection of collision-prone trajec-
tories at various types of intersections in the SkyEye dataset.
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