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Abstract—Recognition of facial expressions across various
actors, contexts, and recording conditions in real-world videos
involves identifying local facial movements. Hence, it is important
to discover the formation of expressions from local representa-
tions captured from different parts of the face. So in this paper,
we propose a dynamic kernel-based representation for facial ex-
pressions that assimilates facial movements captured using local
spatio-temporal representations in a large universal Gaussian
mixture model (uGMM). These dynamic kernels are used to
preserve local similarities while handling global context changes
for the same expression by utilizing the statistics of uGMM.
We demonstrate the efficacy of dynamic kernel representation
using three different dynamic kernels, namely, explicit mapping
based, probability-based, and matching-based, on three standard
facial expression datasets, namely, MMI, AFEW, and BP4D. Our
evaluations show that probability-based kernels are the most
discriminative among the dynamic kernels. However, in terms
of computational complexity, intermediate matching kernels are
more efficient as compared to the other two representations.

Index Terms—Expression recognition, feature extraction, uni-
versal attribute model, MAP adaptation, factor analysis, Gaus-
sian mixture model, Fisher kernel, supervector kernel, mean
interval kernel, intermediate matching kernel

I. INTRODUCTION

Facial expressions are considered to be one of the most
important ways of conveying emotions. In general, facial ex-
pressions are mainly recognized through various facial move-
ments. The first approach to track facial movements was facial
electromyography (fEMG) which uses electrodes attached to
the facial area [1]. However, such an invasive method limits
facial mobility and hence, a set of rules were devised to
measure the facial movements unobtrusively [2]. These rules
are known as the Facial Action Coding System (FACS) which
is composed of different facial action units (FAU) where each
FAU corresponds to a particular facial movement. FACS has
been widely used to categorize different types of facial muscle
movements that are considered to be physical expressions
of emotions. However, FACS does not capture the different
variations that may arise in facial movements and thus other
facial features like appearance features, geometric features,
etc., have been investigated both spatially and temporally for
better understanding of facial expressions [3].

Pantic et al. [4] proposed many approaches for better un-
derstanding of facial expressions by capturing local and global
features. Multiple features like the histogram of oriented gra-
dients [5], Gabor wavelet transformations [6], scale-invariant
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feature transform (SIFT) [7], active appearance models [8],
facial point tracking [9], etc have been explored for facial
expression recognition. A combination of geometric features
and appearance features are shown substantial improvement
in the recognition of facial expressions [8]. Along with these
global and local features, other modalities like audio and
text (from spoken words) are also used for recognition of
emotions. The methodologies described above focus only on
datasets where the facial expressions are shot in a controlled
environment with no background movement with frontal facial
pose [10]. However, such datasets are not representative of
real-world human computer interaction systems like driver-
fatigue detection for driver-less cars, facial paralysis analysis,
pain detection, etc. For real world scenarios, we need to
ensure that the facial expression recognition system is pose-
independent, subject-independent, context-insensitive, and ro-
bust under different capturing conditions.

In order to address the above mentioned challenges, we
propose a single model called universal Gaussian mixture
model (uGMM) to capture all the local features, which appear
in facial expressions across different poses, scales, and subjects
in various illumination conditions with dynamic backgrounds.
After training the uGMM, the similarity between any two
expression clips needs to be calculated based on the distance
between the features in the clips and means of the uGMM
mixtures. Kernel methods are one of the most popular mea-
sures that transform distances to higher dimension in order to
enhance separability across classes [11]. However, most of the
kernel methods are applicable for static length patterns which
hinders for comparing expression clips where the number
of local features vary widely. Hence, we employ dynamic
kernels [12] that can handle varying length patterns by either
converting them into fixed-length patterns (probability based
[13] or explicit mapping based kernels [14]) or choosing the
best possible combination of local features (matching based
kernels [15]).

The base kernel (i.e. similarity measurement) in the dynamic
kernels mentioned above is based on the closeness of the
local features across two expression clips. In both probability
based kernels and explicit mapping based kernels, the posterior
probability of every local feature with respect to the uGMM
is considered for kernel computation. In case of matching
based kernels, the local features that are most similar to
the uGMM means are the only ones considered for base
kernel computation. This shows that important local structures
which contribute to the significant local facial movements are
preserved during kernel computation. These significant facial
movements are unique to some expressions, for example, brow
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lowerer in angry, and pulling of lip corners and cheek raiser
in happy [2]. Hence, dynamic kernels are well suited for
representing the similarity of facial expressions.

The proposed approach has the following characteristics:
(1) the spatio-temporal features are captured from the various
facial region to model the dynamics of facial expressions,
(2) a universal Gaussian mixture model is constructed to
preserve the local structure, and (3) dynamic kernels for
variable length is proposed to effectively preserve the local
structure and handle the large variation globally. The proposed
work explores different types of dynamic kernels to recognize
spontaneous (not posed/natural) facial expressions in an un-
constrained (uncontrolled/wild) environment. We demonstrate
the efficacy of the proposed approach on publicly available
benchmark datasets like constrained dataset, namely, Maja and
Michel initiative (MMI) facial expression dataset, spontaneous
dataset, namely, Binghamton Pittsburgh 4 dimension (BP4D)
spontaneous expression dataset, and unconstrained dataset,
namely, acted facial expression in wild (AFEW).

The rest of the paper is organized as follows. Section II
presents the related work. Section III describes the proposed
approach in detail. Experimental results of the proposed ap-
proach on the benchmark datasets are discussed in Section IV.
Section V gives the conclusion.

II. RELATED WORK

Various approaches that combine generative models with
discriminative embedding techniques have been proposed in
the literature for facial expression recognition. In this section,
the different feature extraction methods used for constructing
generative models, in particular, Gaussian mixture models
(GMM) are discussed. Also, the related literature on multiple
discriminative embedding techniques is summarized with a
focus on dynamic kernels.

A. Facial expression recognition

Stefanos et al. [16] proposed the domain adaptation method-
ology for each and every facial muscle movement. The feature
set used by the authors was the local binary pattern (LBP) ap-
plied after face registration using contour landmarks removal
and affine transformations. The domain adaptation was then
applied for various facial action units independently. In total,
12 facial action units were adapted efficiently, which were
view and subject independent. This domain adaptation does
not require a large dataset, therefore the approach was claimed
to be data efficient by the authors. The domain knowledge
was then combined with some expert Gaussian process for
the final decision. The experiments were conducted on multi-
class and multi-label datasets, namely, MultiPie, DISFA, and
FERA2015 facial expressions datasets. The authors had also
shown the cross datasets evaluation by testing DISFA against
FERA2015 and vice-versa. To handle multiple view variations,
i.e. from -45 to +45 degrees and to reduce computational
complexity involves in capturing the facial muscle movement
information, Tariq et al. [17] proposed a supervised Gaussian
mixture model (GMM) based modeling of facial expressions.
With bag-of-word (BoW) modeling, image descriptors were
calculated using soft vector quantization (SVQ) on the GMM

mixtures. In order to minimize the reconstruction loss and
maximize the data likelihood, the GMM was learned in a
supervised manner and a new set of features were obtained
known as supervised SVQ (SSVQ).

For better feature representation, the blend of geometrical
and appearance based features known as coordinate based
features with neutral face subtraction (CBF-NS) was used [18].
The dictionary of the neutral faces was learned through GMM
along with the CBF-NS features. The mean and covariance of
each GMM component were considered as the dictionary of
neutral faces. The movement of the geometric features was
tracked after subtracting the best fit neutral face from the
dictionary. The most discriminative feature points were then
fused with the SIFT features computed around those points
to detect the expression using SVM. The datasets, namely,
CK+, MMI, and eNTERFACE were used with both similar
and cross-dataset experiments to prove the importance of the
work.

Non-verbal gestures are also the crucial part of emotion
recognition, as during human-human interaction these non-
verbal gestures are playing an important role [19]. Initially,
the universal background model was used for capturing vari-
ations among different gestures across various individuals.
Simultaneously, the segmentation model to capture the ele-
ments of gesture sequences using HMM is implemented. Both
GMM and HMM models were then used for capturing the
dynamics of various gestures robustly in the kernel space.
The experiment was performed on the self-constructed dataset,
which had a certain gesture sequence for happiness, anger,
sad, and neutral. They also computed informative gestures
like head motion, hand gestures, etc, which were sufficiently
good for classifying 3-class or 4-class based facial expressions.
Also, various deep learning techniques like convolution neural
networks [20], recurrent neural network [9], etc are explored
in past few decades for efficient facial expression recognition
in frontal pose faces.

B. Dynamic kernels

Similar approaches that combine generative models like
Gaussian mixture model (GMM) and hidden Markov model
(HMM) has been used for representing varying length data
like speech, music, and actions in video clips. One of the
most popular approaches for mapping varying length to fixed
length representation is dynamic kernels [21]. Lee et al. [14]
proposed a probabilistic sequence kernel (PSK), which used
the probabilistic measures of Gaussian densities individually
rather than in the combined form as a universal background
model (UBM). The main goal was to learn discriminative
features rather than generative features. The authors conclude
that their method has better discrimination ability than any
other sequence kernel. The PSK uses both class-independent
GMM and class-specific GMM to generalize the models
among various speakers and to learn the example specific
information, respectively. The PSK is more efficient than
GMM-UBM or any other sequence kernel but has higher
computational complexity.

Reducing the computational complexity of the probability
sequence kernel (PSK), Chang et al. [22] proposed the use
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Fig. 1: Block diagram of the proposed spontaneous expression recognition using dynamic kernels.

of Bhattacharyya distance-based measure between two GMM
components, which exploits both the first and second order
statistics of universal GMM. The authors trained a single gen-
eralized background model known as a universal background
model (UBM) for modeling features from different speakers.
Adapting the means and covariances from the global mean and
covariance of the UBM for each speaker resulted in universal
mean interval supervectors. The kernel formed using this
supervector is called Gaussian mean interval kernel (GUMI)
that was used for classification with an SVM. However, GUMI
kernel introduces mean and covariance adaptation, which adds
the computational load.

In order to further reduce the computational complexity,
intermediate matching kernels (IMK) were proposed in [15]
that do not require mean or covariance adaptation. Instead, a
set of local virtual features based on either GMM mixtures
or HMM states was used to select the closest local features
from every clip, which were then used for the computation
of IMK. The cost of computing IMK was shown to be lower
than either GUMI or PSK as the number of virtual features was
generally far less than the number of local features extracted
from any clip [21]. Further, it was shown that an improvement
in computation speed could be achieved by optimizing the
selection of virtual features.

To summarize, multiple works were done in the area of
facial expression recognition to capture the dynamics of facial
movements using various generative and discriminative repre-
sentations. However, most of the methods like learning-based
methods mentioned above, incurs high computational cost with
great domain expertise [23].

III. PROPOSED APPROACH

Motivated by the literature presented in the previous section,
we construct a universal GMM from local spatio-temporal

features to represent facial expressions. The statistics of the
learned uGMM are then mapped into the dynamic kernel
space for efficient facial expression recognition. A number of
different dynamic kernels have been studied in this paper and
the entire process of kernel formation is shown in Figure 1.

A. Face alignment and feature extraction

The faces of subjects in unconstrained videos are constantly
moving across a variety of dynamic backgrounds. Hence,
identification and alignment of the subject’s face during the
entire video clip is crucial for feature extraction. We choose
discriminative response map fitting (DRMF) as it has been
shown to be both accurate and computationally efficient in
the detection of faces [24]. Facial landmark points produced
by the DRMF method can be used to eliminate background
information in order to create aligned videos of subjects’ faces.
In these aligned videos, the various facial movements are
tracked using a set of densely sampled interest points. For each
of these trajectory points, histogram of optical flow (HOF)
and motion boundary histogram (MBH) features are calculated
[25]. Each expression clip can be represented using the set of
feature vectors (either HOF or MBH) X = {x1,x2, · · · ,xL},
where L is the number of feature vectors computed from the
clip.

B. Training uGMM

After the calculation of the HOF and MBH feature descrip-
tors described above, a separate uGMM is trained for each
descriptor. The uGMM is represented by the parameter set
λ = {wc,µc,σc} and can be expressed as

p(xl|λ) =
C∑
c=1

wcN (xl|µc,σc), (1)
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Fig. 2: Each Gaussian component in the uGMM captures a
particular facial attribute from different poses and subjects
under different illumination conditions. Some examples of
facial movements with high posterior probability w.r.t. to a
Gaussian component ((a) 30, (b) 100, and (c) 150) are given.
A 256 component uGMM trained on AFEW dataset has been
considered for this illustration (best viewed in color)

.

where c represents each uGMM component, C represents
total uGMM components, and the mixture weights wc should
satisfy the constraint

∑C
c=1 wc = 1. Also, µc and σc are

the mean and covariance for component c of the uGMM,
respectively. The parameter λ of uGMM is estimated using
standard EM method. The EM estimation is an iterative pro-
cess of finding the maximum likelihood estimate of the model
parameters, in this case, uGMM means, covariances, and mix-
ing coefficients. In the E-step, we calculate the membership
probabilities of the uGMM mixtures given the features and
in the M-step re-estimating and maximizing the parameters
using the membership probabilities [26]. We hypothesize that
after training the uGMM, each Gaussian component captures
a facial motion attribute as shown in Figure 2. Further, the
variance of each Gaussian component accounts for variability
in poses and subjects under different illumination conditions
for each facial motion attribute. These attributes can be specific
to a particular expression or may be present in multiple facial
expressions. Furthermore, capturing such a large number of
attributes in the uGMM allows the comparison of expression
clips across a variety of facial movements, which reduces the
effect of intra-expression variability.

As the uGMM contains attributes from different facial
expressions, representing a particular clip requires enhancing
the contribution of the attributes present in the clip. This can
be achieved by maximum aposteriori (MAP) adaptation. The
first step in MAP adaptation is to calculate the probabilistic
alignment of every feature vector from a clip with respect to
the each mixture of the uGMM that is computed as

p(c|xl) =
wcp(xl|c)∑C
c=1 wcp(xl|c)

, (2)

where xl is a feature vector of the clip and p(xl|c) is the
likelihood of a feature xl arrives from a mixture c. Using
the probabilistic alignment, different dynamic kernels can be
computed for better representation of variable length patterns
to fixed length pattern as described subsequently.
C. Dynamic Kernels

1) Explicit mapping based dynamic kernel: In order to
calculate dynamic kernels, the set of local feature vectors are
first mapped to fixed length representations and then a kernel

function is designed in that space. Using probabilistic align-
ment computed in Equation 2, the gradient of log-likelihood
w.r.t. to the uGMM means is obtained as

ψ(µ)
c (X) =

L∑
l=1

p(c|xl)alc, (3)

where alc =
∑−1
c (xl − µc). The gradient vector for covari-

ances of each component of the uGMM is given by

ψ(σ)
c (X) =

1

2

(
L∑
l=1

p(c|xl) [−uc + vlc]

)
, (4)

where uc = Σ−1c and vlc =
[
al1ca

T
lc, al2ca

T
lc, · · · , aldcaTlc

]
.

Finally, the gradient of the log-likelihood w.r.t. the weights is
computed as

ψ(w)
c (X) =

L∑
l=1

p(c|xl)
[

1

wc
− p(c1|xl)
w1p(c|xl)

]
. (5)

The gradient of log-likelihood with respect to the parameters
of the uGMM defines the directions in which the parameters
should be updated to best fit the model. Thus, these gradients
show the deviation of the facial motion attribute derived from
an expression clip compared to the facial motion attribute cap-
tured by the uGMM component. By stacking all the gradients,
the Fisher score vector is formed for each component c as

Φc(X) =
[
ψ(µ)
c (X)T ,ψ(σ)

c (X)T ,ψ(w)
c (X)T

]T
. (6)

The Fisher score with respect to the entire uGMM contain-
ing C mixtures is obtained as

Φfs(X) =
[
Φ1(X)TΦ2(X)T , · · · ,ΦC(X)T

]T
. (7)

Now, to compare two expression clips, Xm and Xn containing
Lm and Ln local features, respectively, the Fisher kernel is
constructed as

K(Xm,Xn) = Φfs(Xm)TF−1Φfs(Xn), (8)

where F is the Fisher information matrix expanded as

F =
1

N

N∑
f=1

Φfs(Xf )Φfs(Xf )T . (9)

The Fisher score captures the similarity across two expression
clips, whereas the Fisher information matrix captures the vari-
ability in the distinct facial movements across two expression
clips. The information obtained from these two quantities is
combined to form the Fisher kernel given in Equation 8. The
construction of Fisher kernel (FK) involves computation of
three gradient vectors of dimension C × (Lm + Ln). Simi-
larly, the computation of Fisher information matrix involves
N × d2s + N computations, where N is the total number
of training examples. The final complexity of Fisher kernel
computation is d2s + ds, where ds is the dimension of the
Fisher score vector. Hence, the total computation complexity
for Fisher kernel is O(CL+Nd2s +N + d2s + ds) as shown
in Table I.
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TABLE I: Computational complexity of different kernels. C is number of uGMM components, Lm and Ln represent the
number of local feature vectors for two clips to be compared, dl is the dimension of the local feature vectors, ds is the
dimension of the score vector, N is the number of training examples.

Fisher Kernel Intermediate Matching Kernel GMM Supervector Kernel GMM Mean Interval Kernel

Number

of

Computations

Gradient vector
computation 3× C × (Lm + Ln)

Posterior probability
computation C × (Lm + Ln)

Mean
adaptation C × (Lm + Ln)

Mean
adaptation C × (Lm + Ln)

Fisher information
matrix
computation

N × d2s +N
Comparisons to
select features C × (Lm + Ln)

Supervector
computation C × (d2l + 1)

Covariance
adaptation C × (Lm + Ln)

Kernel
computation

d2s + ds
Base kernel
computation

C
Kernel
computation

d2s

Supervector
computation C × (d2l + dl)

Kernel
computation d2s

Computational
Complexity O(CL+Nd2s +N + d2s + ds) O(CL) O(CL+ Cd2l + d2s) O(CL+ Cd2l + Cdl + C2d2s)

2) Probability based dynamic kernel: Instead of gradients,
probability based kernels compare the probabilistic distribu-
tions of the local feature vectors of two clips. This requires
the MAP adapted means and covariances of the uGMM for
every clip, that are computed as

µc(X) = αFc(X) + (1− α)µc. (10a)

and
σc(X) = αSc(X) + (1− α)σc. (10b)

Here, Fc(X) and Sc(X) denote first and second-order Baum-
Welch statistics for a clip X, respectively. These statistics can
be calculated as

Fc(X) =
1

nc(X)

L∑
l=1

p(c|xl)xl (11a)

and

Sc(X) = diag

(
L∑
l=1

p(c|xl)xlxTl

)
, (11b)

respectively. The adaptation of the mean and covariance of
every uGMM mixture is based on the posterior probability
of that uGMM mixture given the expression clip. A higher
posterior probability shows close correlation between the
facial motion attribute captured by the Gaussian component
to the facial motion attribute in the expression clip. This
further implies that adapted means and covariances for that
mixture will have larger influence from the first and second-
order Baum-Welch statistics Fc(X) and Sc(X), respectively
than the original uGMM mean and covariance µc and σc,
respectively.

Using the adapted means from Equation 10a, the uGMM
vector ψc(X) for a clip X is obtained as

ψc(X) =
[√
wcσ

− 1
2

c µc(X)
]T
. (12)

By concatenating the uGMM vectors, a (Cd× 1)-dimensional
uGMM supervector (GSV) is obtained for each clip as
sGSV (X) = [ψ1(X)

T
,ψ2(X)T , · · · ,ψC(X)T ]T . The super-

vector kernel between two clips Xm and Xn is then given
by

KGSV (Xm,Xn) = sGSV (Xm)
T
sGSV (Xn). (13)

Though the supervector takes into account the first order
statistics, it does not utilize the second order statistics. So, in

order to capture both the second order statistics and deviation
of the adapted means from the means of the uGMM, a mean
interval vector can be computed for each mixture c of the
uGMM as

ψc(X) =

(
σc(X)− σc

2

)− 1
2 (
µc(X)− µc

)
. (14)

The variability among the adapted parameters and the uGMM
components depends on both mean and covariance statistical
dissimilarity. Hence, the mean interval vector contains co-
variance statistical dissimilarity as shown in the first term
of Equation 14 and mean statistical dissimilarity which is
evaluated in the second term of Equation 14. Combining
these mean interval vectors across the uGMM mixtures gives
the uGMM mean interval (GMI) supervector sGMI(X) =
[ψ1(X)

T
,ψ2(X)T , · · · ,ψC(X)T ]T . Finally, the GMI kernel

between two clips Xm and Xn is computed as

KGMI(Xm,Xn) = sGMI(Xm)
T
sGMI(Xn). (15)

The construction of uGMM-SVK involves mean adaptation
that requires C × (Lm + Ln) computations and uGMM-MIK
involves both mean and covariance adaptation that requires 2×
C×(Lm+Ln). Similarly, supervector and kernel construction
of uGMM-SVK and uGMM-MIK needs C × (d2l + 1) and
d2s computations, respectively, where dl is the dimension of
the local feature vectors. The total computational complexity
of uGMM-SVK is O(CL + Cd2l + d2s) and uGMM-MIK is
O(CL+ Cd2l + Cdl + C2d2s), as shown in Table I.

3) Matching based dynamic kernel: Apart from the explicit
mapping and probabilistic based dynamic kernels described
above, there are matching based approaches like matching
kernel (MK) which compare clips directly based on local sim-
ilarity across features [13]. Specifically, the matching kernel
is constructed by considering the closest local features within
a pair of clips as

KMK(Xm,Xn) =

Lm∑
l=1

max
l′

k(xml,xnl′)

+

Ln∑
l′=1

max
l
k(xml,xnl′), (16)
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where k(., .) is a base kernel (Gaussian kernel), Lm and Ln
represent the number of features in the clips Xm and Xn,
respectively. However, matching kernel is computationally
expensive as the number of base kernels to be computed is
O(L2) where L represents the maximum of Lm and Ln.

To reduce the computational complexity of MK, interme-
diate matching kernel (IMK) is proposed as an alternative
that is constructed by matching sets of feature vectors that
are closest to a set of fixed virtual feature vectors. Let
V = {v1,v2, · · · ,vC} be the set of virtual feature vectors.
Then, the feature vectors that are nearest to the cth virtual
feature vector vc from clips Xm and Xn are determined as

x∗mc = arg min
x∈Xm

D(x,vc) and x∗nc = arg min
x∈Xn

D(x,vc).

(17)
The distance function D(., .) measures the closeness of a
feature vector in Xm or Xn to a virtual feature vector in
V. This distance function allows us to find the best facial
movement from each expression clip that matches the facial
movement learned for a particular uGMM component. Each
uGMM component provides a point of comparison between
two expression clips. Hence, having a large number of uGMM
components ensures that even small correlations in the facial
movement across two expression clips can be measured ac-
curately. This is especially beneficial to resolve high intra-
expression variability.

After the selection of the closest feature vectors, a base
kernel is computed for each of the C pairs. The IMK is then
obtained as the sum of all the C base kernel computations as

KIMK(Xm,Xn) =

C∑
c=1

k(xmc,xnc). (18)

The components of the uGMM, which contains the informa-
tion in the mean vectors, covariance matrices, and the weights
of the uGMM are considered as the virtual feature vectors. As
a closeness measure, we use probabilistic alignment, i.e., the
posterior probability of a component in the uGMM generating
a feature described in Equation 2. So, the local feature vectors
close to a particular virtual feature vector (component) c, given
by x∗mc and x∗nc for clips Xm and Xn, respectively, are chosen
as

x∗mc = arg max
x∈Xm

p(c|x) and x∗nc = arg max
x∈Xn

p(c|x). (19)

The construction of IMK involves (i) C × (Lm + Ln)
computations of posterior probabilities for each component,
(ii) C × (Lm + Ln) comparisons to select the closest feature
vectors, and (iii) C base kernel computations. This gives a
total computational complexity of O(CL) where L is the
maximum of Lm and Ln. When C is smaller than Lm and
Ln, the computation is significantly less expensive than other
matching kernel as shown in Table I.

IV. EXPERIMENTS

In this section, the various dynamic kernels are evaluated
on different datasets and features. A detailed experimental
analysis with multiple features and uGMM components are

Fig. 3: Facial expression dataset used for the experiment in
the proposed approach where (i) belongs to the constraint
dataset collected in the laboratory environment, (ii) belongs
to the spontaneous dataset collected while interviewing the
candidates, (iii) belongs to the unconstrained dataset collected
from the movies.

performed on a variety of expression datasets as shown in
Figure 3. In increasing order of complexity, these datasets
are: (i) MMI constrained facial expression dataset, (ii) BP4D
spontaneous dataset that is recorded in a controlled setup
but contains multiple pose and view variations, and (iii)
AFEW unconstrained facial expression dataset that is compiled
from videos shot in unconstrained environments with various
background, pose, and view variations.

A. Datasets and Experimental Settings

MMI- Maja and Michel Initiative facial expression dataset
[10] is a large corpora of audio visual data available for
facial expression analysis. The dataset is recorded from onset
to the apex to the offset for multiple facial emotions in a
constrained environment with acted facial expressions. A total
of 75 subjects between the ages of 19 to 62 are recorded
in 2900 videos with annotated facial action units (AU) and
emotions. However, even with such a large corpora, we were
able to experiment with only 213 sequences as these are the
only available videos with emotion annotations, in which 180
video sequences are used for training and remaining 33 video
sequences are used for testing and a person-independent 10-
fold cross-validation is performed as mentioned in [23].

BP4D- The Binghamton Pittsburgh 4D (BP4D) dataset [27]
is the first spontaneous facial expression dataset where the
facial expressions of the subjects are recorded as a response to
videos that invoke a variety of emotions. The dataset contains
2952 videos recorded from 9 different views in a controlled
lab environment. A total of 41 subjects participated in the
study that includes both male and female of different age
groups across different countries. For BP4D, we randomly
select videos of 39 subjects for training samples and 2 subjects
for testing samples. Though we have trained the uGMM with
the 8 different facial expressions of emotions available in
the dataset, the reported results include only the 6 emotions,
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namely, anger, disgust, fear, happiness, sadness, and surprise.
This is done so as to facilitate comparison of our proposed
approach with many existing studies [28], [29], [30], [5] where
only these 6 facial expressions have been considered.

AFEW- Acted Facial Expression in the Wild (AFEW) [31]
is one of the widely used unconstrained facial expression
datasets. These datasets are created from Hollywood movies
that contain dynamic short videos, which are close to the real-
world environment. It consist of total 723 training videos and
383 testing videos. The AFEW dataset is broadly categorized
into seven emotion categories, namely, angry, disgust, fear,
happiness, neutral, sadness, and surprise.

As mentioned in Section III-A, dense trajectory descrip-
tors - HOF and MBH, which define spatial and temporal
characteristics are extracted from each video for the uGMM
training. The temporal length of the trajectories used for the
computation of HOF and MBH are chosen to be 15 frames as
it was found to adequately capture almost all facial movements
in their entirety. The HOF descriptor is computed within
a space-time volume of size 2 × 2 × 3 and the resulting
optical flow is quantized into 9 bins. This results in a final
descriptor of 108 dimensions (i.e., 2 × 2 × 3 × 9). Similarly,
MBHx and MBHy (MBH in horizontal and vertical directions,
respectively) are computed in the same volume as HOF. Both
MBHx and MBHy are quantized into 8 bins leading to a 96-
dimensional representation (i.e., 2×2×3×8) in either direction
which are concatenated to form a 192-dimensional descriptor.
The computation of the histogram of optical flow (HOF)
and motion boundary histogram (MBH) features is based on
the trajectories describing facial movement. However, not all
trajectories contain information about the facial movements.
Some trajectories have sudden and large displacements, which
are caused due to the effect of abrupt camera motion. Also, the
local constant camera motion like pan, tilt, or zoom is detected
by homography estimation and such trajectories are removed
to retain only the essential foreground trajectories caused
by facial movements. Hence, the HOF and MBH calculated
on the foreground trajectories are capable to handle real-
world recording conditions in unconstrained environments.
The dense trajectory features used in the proposed work
compute descriptors within a space-time volume aligned with
a trajectory to encode the appearance and motion informa-
tion, however, the commonly used features for expression
recognition like HOG3D, 3DSIFT, and LBP-TOP are usually
computed only in a 3D video volume around interest points
while ignoring the fundamental dynamic structures in the
video [32]. Hence, we use dense trajectory descriptors, namely,
HOF and MBH to train 8 uGMMs, i.e. two for each four
different 64, 128, 256, and 512 Gaussian components on
3 datasets, namely, MMI, BP4D, and AFEW, respectively.
It is observed that the increase in the number of mixtures
further, from 256 to 512 does not yield any improvement in
classification accuracy of the kernel-based representation due
to the increased demand for local features which cannot be
met by these datasets.

For adaptation of the uGMM parameters with respect to a
video, we consider the top 20 mixtures from the uGMM based
on highest posterior probability of the mixture with respect to

the local features in the video. Then, the corresponding means
and covariance of these mixtures are adapted according to
Equations 10a and 10b, respectively. The reason for choosing
the top 20 mixtures is that the posterior probabilities of
mixtures beyond the first 20 mixtures is found to be mostly
zero, which does not influence kernel computation.

B. Comparison of dynamic kernels

The various types of kernels are compared in terms of
classification performance in Tables II, III, and IV on the
MMI, BP4D, and AFEW datasets, respectively. The classifier
used for evaluation is kernel based formulation of support
vector machines (SVM) using LibSVM [33]. It can be ob-
served that increasing the number of mixtures in uGMM
improves the classification performance of all kernel methods,
however, as mentioned earlier the classification performance
does not improve beyond 256 Gaussian components. As more
uGMM components represented subtle motion dynamics of
the face, the unique characteristics can be better captured
leading to an improvement in discrimination ability. Further,
probability based kernels such as SVK and MIK perform
better than matching and mapping based kernels, i.e. IMK
and FK. This shows that incorporating the first-order and
second-order statistics of the uGMM in probabilistic kernels
provides global contextual information that helps in dealing
with pose, actor, and illumination variations. Such comple-
mentary information augments the local feature based kernel
representation that reduces misclassification when compared to
matching or mapping based kernels. However, the calculation
of first and second-order statistics for uGMM-MIK leads to
a computational load far greater than IMK. This trade-off
between accuracy and speed can be considered when choosing
the appropriate kernel for specific use-cases. Further, MBH
is the stable derivative of the the HOF and thus perform
better across the facial expression datasets and kernels. As
the expression videos contain little camera motion or sudden
movements, stabilization does not particularly contribute to
classification performance.

TABLE II: Classification performance (in %) of dynamic
kernels IMK, FK, SVK, and MIK on MMI

Number of uGMM
components IMK FK SVK MIK

HOF MBH HOF MBH HOF MBH HOF MBH
64 29.5 36.4 38.6 56.8 34.6 42.5 52.3 55.2

128 36.4 40.9 37.3 50.7 45.5 45.9 69.1 69.2
256 38.6 56.8 36.4 45.5 53.3 57.5 71.3 73.2
512 37.2 45.4 34.2 42.7 46.8 52.9 70.2 70.5

TABLE III: Classification performance (in %) of dynamic
kernels IMK, FK, SVK, and MIK on BP4D

Number of uGMM
components IMK FK SVK MIK

HOF MBH HOF MBH HOF MBH HOF MBH
64 28 25.1 25.8 24.2 47.1 51.5 70.1 52.7

128 34.3 28.6 21.3 21.5 47.6 53.3 71.19 62.4
256 58.9 58.5 18.8 18.9 50.7 53.5 74.5 73.3
512 45.7 49.3 18.8 18.9 47.8 52.4 71.6 70.8
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TABLE IV: Classification performance (in %) of dynamic
kernels IMK, FK, SVK, and MIK on AFEW.

Number of uGMM
components IMK FK SVK MIK

HOF MBH HOF MBH HOF MBH HOF MBH
64 37.8 44.7 25.8 25.8 45.1 39.1 46.5 49.8

128 38.7 47.2 24 18.8 45.8 41.7 48.3 52.3
256 49.5 53.1 21.4 21.4 47.5 44.8 50.3 56.9
512 40.2 48.7 20.13 20.3 45.8 42.7 47.5 54.5

C. Expression-wise analysis

Figure 4 represents the confusion matrix of different facial
expressions on BP4D dataset. The best recognition accuracy
achieve is 74.5% with 256 components and using uGMM-
MIK. It can be observed that the classification performance for
each expression is similar to overall classification performance.
Also, true positive and false positives follow the same trends
on the dataset as in classification performance. This shows the
generalization capability of the learned model and the simi-
larities in the capturing of the local features through second
order statistics i.e. uGMM-MIK based representations. It can
be observed that happy facial expressions are misclassified
into angry facial expressions and vice-versa because of the
common facial movements like stretching of lips and widening
of eyes 1. On the other hand, there is a clear discrimination
between happy and surprise expressions. This may be due to
the fact that opening of eyes 1 and mouth are rarely found in
happy expression but frequently occur in surprise expression.

The kernel matrix for uGMM-MIK on BP4D dataset is
visualized in Figure 5. It can be clearly observed that using
MIK as a distance measure provides clear separability across
different facial expressions.

Fig. 4: Confusion matrix (based on classification performance
%) of the best model on BP4D dataset, feature extractor used
- HOF, Gaussian components - 256, and kernel used - MIK
(best viewed in color).

1“Widening of eye” represents the positive expression of attention that
brings joy and happiness whereas “opening of eye” represents anxiety and
strain in the human eye [34].
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Fig. 5: Kernel matrix representation of the best model on
BP4D dataset, feature extractor used - HOF, Gaussian compo-
nents - 256, and kernel used - MIK. The number on the axis
represent clips of different facial expressions (best viewed in
color). The diagonal blocks in lighter blue represent higher
values as compared to the off diagonal elements in darker
blue.

D. Comparison with state-of-the-art

In Tables V, VI, and VII, the proposed method of us-
ing dynamic kernels for expression recognition is compared
with state-of-the-art approaches on MMI, BP4D, and AFEW
datasets, respectively. Existing techniques use low-level fea-
tures like HOG [5], SIFT [18], and geometric feature [35]
that cannot handle the variations encountered in expression
videos in unconstrained environments [36]. As these features
are extracted at every frame, they consider only spatial infor-
mation which is not sufficient to analyze facial expressions
in videos. By adding temporal information, features like 3D-
CNN [28], 3D-CNN on deformable facial parts [37], CNN
with conditional random fields (CRF) [30], CNN with bidi-
rectional long short term memory (BLSTM) [29], etc. can
adequately represent facial expressions. However, CNNs and
LSTMs need large annotated expression datasets in order to
generalize well across facial expressions. Hence, the state-
of-the-art methods employ a combination of CNN and HOG
features with traditional sequential models like HMM.

TABLE V: Performance (%) comparison of dynamic kernels
and state-of-the-art methods on MMI dataset

Methods Accuracy (%)
3DCNN∗ [28] 53.5

SIFT + SVM [18] 62.5
LDA + NN [38] 67.4

3DCNN + DAP [37] 62.2
Neutral face + sparsity [39] 70.1

CNN + Joint fine-tuning [20] 70.24
Proposed uGMM-FK 56.8

Proposed uGMM-IMK 56.8
Proposed uGMM-SVK 57.5

Proposed uGMM-MIK 73.2
* our evaluation using C3D features

In order to further improve the recognition performance,
other modalities like audio features are also fused with video
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features for integrating complementary information [40]. It can
be clearly observed that MIK performs better than the state-of-
the-art with the help of the temporal information embedded in
the MBH features. The first and second-order statistics of the
uGMM used for capturing global context of motion dynamics
that are more useful for classification of facial expressions
than similar models like deformable facial parts [37] that also
capture the structure of local motion dynamics. Also, from
Table VI, it can be observed that on the BP4D dataset, the
use of higher order statistics from a non-sequential model like
uGMM outperforms methods like HMM [5], LSTM [29], and
CRF [30] with the classification performance of 74.5% that
model facial expressions as sequences. As sequential methods
generally require more training data, kernel methods like MIK
can be considered as a suitable alternative in absence of large
training data.

TABLE VI: Performance (%) comparison of dynamic kernels
and state-of-the-art methods on BP4D dataset

Methods Accuracy (%)
3DCNN∗ [28] 46.5

CNN + Binary LSTM [29] 54.8
CNN + CRF [30] 66.7

NEBULA + SVM [41] 69.9
HOG + HMM [5] 72.2

Proposed uGMM-FK 25.8
Proposed uGMM-IMK 58.9
Proposed uGMM-SVK 53.5

Proposed uGMM-MIK 74.5
* our evaluation using C3D features

TABLE VII: Performance (%) comparison of dynamic kernels
and state-of-the-art methods on on AFEW dataset

Methods Accuracy (%)
3DCNN∗ [28] 31.3

Expressionlet [42] 31.7
HOG-TOP + geometric warping [35] 45.2

CNN + kernel ELM + PLS [40] 54.5
Proposed uGMM-FK 25.8

Proposed uGMM-IMK 49.5
Proposed uGMM-SVK 47.5

Proposed uGMM-MIK 56.9
* our evaluation using C3D features

V. CONCLUSION

In this paper, we introduce a novel approach for facial
expression recognition in videos by using dynamic kernels.
Dynamic kernels provide a generic mechanism for incor-
porating generative models into discriminative classifiers. A
universal GMM (uGMM) model with simple kernel com-
putations is used to capture the local dynamics while pre-
serving variations in global context. We have shown that
by subsuming first and second order statistics of uGMM, a
kernel based representation can be derived for recognizing
the facial expressions efficiently. We evaluate the proposed

approach on three challenging benchmark datasets to show
the generic mechanism of the proposed approach for video-
based facial expression recognition. We have also shown that
the probability based mean interval kernel (MIK) outperforms
other state-of-the-art approaches. Also, IMK are shown to be
computationally efficient but is not as discriminative as MIK.
This makes dynamic kernels a natural choice for any expres-
sion recognition application that focuses either on accuracy or
computation time.
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