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Abstract— Vehicle trajectory prediction at intersections is
both essential and challenging for autonomous vehicle naviga-
tion. This problem is aggravated when the traffic is predomi-
nantly composed of smaller vehicles that frequently disobey lane
behavior as is the case in many developing countries. Existing
macro approaches consider the trajectory prediction problem
for lane-based traffic that cannot account when there is a high
disparity in vehicle size and driving behavior among different
vehicle types. Hence, we propose a vehicle trajectory prediction
approach that models the interaction among different types of
vehicles with vastly different driving styles. These interactions
are encapsulated in the form of a social context embedded
in a Generative Adversarial Network (GAN) to predict the
trajectory of each vehicle at either a signalized or non-signalized
intersection. The GAN model produces the most acceptable
future trajectory among many choices that conform to past
driving behavior as well as the trajectories of neighboring
vehicles. We evaluate the proposed approach on aerial videos
of intersections from the benchmark VisDrone dataset. The
proposed GAN based approach achieves 6.4% relative improve-
ment over state-of-the-art in predicting trajectories.

I. INTRODUCTION

Understanding driving behavior is essential at intersec-
tions which account for about 40% of all accidents [1].
Especially in the absence of turning lanes, the propensity of
accidents increase substantially. Vehicle trajectory prediction
is important in understanding driving behavior as it can
help in inferring the navigation style of vehicles at an in-
tersection when vehicle are in close proximity to each other.
Traditionally, sensors such as magnetometer detectors, loop
detectors, ultrasonic sensors, and surveillance video cameras
have been used to monitor intersections. However, these
sensors are prohibitively expensive to set up and operate
at all intersections. Particularly, surveillance video cameras
that are being increasingly employed for traffic monitoring
suffer from issues like occlusion, shadows, and a limited
field of view. Although many techniques have been proposed
to mitigate these challenges [2], [3], traditional surveillance
cameras are still not viable for monitoring all the lanes in an
intersection. In contrast, an Unmanned Aerial Vehicle (UAV)
can be deployed as a cost-effective solution to monitor all the
lanes of an intersection. Especially, with the availability of
lightweight, high-resolution cameras, even smaller vehicles
like motorbikes can be captured in detail. Furthermore, UAVs
provide a top-view perspective that is devoid of occlusion and
shadows that makes aerial videos ideal for capacity analysis
of intersections.
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Vehicle trajectory prediction in aerial videos can help
in understanding the complex interactions among different
types of vehicles especially in developing nations where
lane based driving is not followed. For example, motorcycles
may maneuver between the gaps of large stationary vehicles
at a stop line to move to the front of the queue while in
the presence of no gaps, a bus with its considerable size
and slow acceleration may impede the progress of smaller
vehicles behind it. To deal with such diverse scenarios,
we propose a generative adversarial network (GAN) based
approach that predicts the best possible route for each vehicle
with respect to future interactions that can occur due to close
proximity to other vehicles. Some examples of the multiple
prediction paths available during various vehicle maneuvers
like overtaking and merging at intersections are presented in
Figure 1.

Estimating the interactions between vehicles during the
maneuvers shown in Figure 1 requires generating future
trajectories that are aligned with the past behavior for each
vehicle. The past behavior acts as a prior or condition
for the future trajectories and hence, we propose to use a
conditional Generative Adversarial Network (GAN) [4] that
has been shown to generate multiple predictions from the
same prior distribution. During training, these predictions
are then pruned based on its closeness to ground-truth.
Further, the pooling module in the generator ensures that
these trajectories can effectively avoid nearby vehicles. These
properties of the trajectories learned during training help the
generator in the GAN to produce useful predictions for a
given test trajectory. The proposed conditional GAN based
on interactions between vehicles shows impressive accuracy
in predicting vehicle trajectories for different vehicle ma-
neuvers like merging and overtaking in both signalized and
non-signalized intersections.

II. RELATED WORK

The most popular method for traffic flow analysis is the
car-following model [5] that is generally used to describe
homogeneous traffic with lane discipline. More recently,
to accommodate motorcycle-heavy traffic, a tri-class flow
(considering bus, car, and motorcycle as separate flows) was
empirically studied in [6]. The traffic flow problem was
described as two-wheeler accumulation in different lanes
alongside buses and cars which were segmented as vehicle
packets. However, these vehicle packets were still segregated
by lanes. Such a packet formation fails to account for the
unique kinetic characteristics of two-wheelers riding between
lanes as suggested by the authors in [6]. Hence, interaction
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Fig. 1: Multiple prediction paths are available during various
vehicle maneuvers: (a) avoiding oncoming traffic, (b) over-
taking, and (c) merging. The paths in green are acceptable
while the ones in red are not. The paths in yellow are not
optimal for the target vehicle but can be considered based
on the decision taken by another vehicle (s). The possible
trajectories for all the vehicles are not shown for the sake of
clarity. Best viewed in color.

models also known as social force models were developed
where each object is considered to be dependent on other
objects and environmental factors [7]. Understanding these
forces and accounting for them allow effective tracking
even in crowded traffic scenes generally encountered at
intersections. Social force models categorize target behavior
based on two aspects, individual force and group force.

Individual force is defined for each target, and is further
subdivided into two forces - fidelity that means that the target
should not change its desired direction, and constancy which

means that one should not suddenly change its speed and
direction. Group force is further categorized into three types
of forces - attraction between individuals moving together
as a group, repulsion that refers to the minimum distance
maintained between members in a group, and coherence that
means individuals moving together in a group move with
similar velocity.

The majority of existing publications focus on modeling
pedestrian dynamics with social force models [8]–[11] but
there is limited literature on traffic modeling using social
force dynamics [12]–[14]. However, the traffic models devel-
oped with social force carefully consider vehicle dimensions,
turning radius, the exact distance between vehicles, etc. In
real scenarios, for any arbitrary vehicle at any intersection,
information about vehicle dimensions and exact distances
are difficult to obtain from aerial videos. Hence, the relative
distance between the trajectories of the neighboring vehicles
which is independent of the dimensions of the target vehicle
used [8], [9]. However, these approaches focus on predicting
the average future trajectory by minimizing the Euclidean
distance from the ground-truth future trajectory whereas the
goal should be to generate multiple good trajectories for
every vehicle given the current position. Hence, a natural
choice is Generative Adversarial Networks (GAN) that can
predict multiple likely trajectories based on a vehicle’s past
driving path. Further, we utilize a pooling layer to model
vehicle-vehicle interactions and a loss function that allows
the network to produce multiple diverse future trajectories
for the same observed sequence. These future trajectories
are evaluated on the distance and probability of collision
with neighboring vehicles.

III. VEHICLE INTERACTION MODELING USING GAN

In order to estimate the influence of various vehicles in
the vicinity of the target vehicle, there is a need to jointly
reason and predict the future trajectories of all the vehicles
involved in an intersection. Assuming that the trajectories
for the vehicles in a scene are obtained from a tracking
algorithm as X = X1, X2, · · · , Xn, the goal is to predict
the future trajectories Ŷ = Ŷ1, Ŷ2, · · · , Ŷn of all the vehicles
simultaneously. The input trajectory of a vehicle i is defined
as Xi = (xti, y

t
i) from time steps t = 1, ..., tobs, the ground-

truth future trajectory is defined as Yi = (xti, y
t
i) from time

steps t = tobs + 1, · · · , tpred, and the predicted trajectory is
defined as Ŷi.

A Generative Adversarial Network (GAN) comprises of
two neural networks - a generative model G to capture the
data distribution, and a discriminative model D to estimate
whether a sample arrived from the training data rather than
G. The generator G takes a latent variable z as input, and
outputs a sample G(z) while the discriminator D takes a
sample x as input and outputs D(x) which represents the
probability that it is real. The training procedure is akin to



a two-player min-max game with the objective function

min
G

max
D

V (G,D) =

Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]. (1)

Conditional GAN expands the functionality of the traditional
GAN architecture by accepting an additional input c at
both the generator and discriminator to produce G(z, c) and
D(x, c), respectively [4]. Such conditional GANs can be
used to replicate models conditioned on a prior distribution
which in this case is the past trajectory of the vehicle during
the observation period t = 1, ..., tobs).

Trajectories of vehicle movements are a form of time-
series data with many possible futures based on different
intentions like giving more space to larger vehicles and
avoiding overtaking maneuvers, left turn, right turn, or U-turn
on a multi-lane road, etc. This makes the vehicle trajectory
prediction problem truly multimodal and GANs can help
predict all the different possibilities. In a nutshell, the GAN
used in this work consists of a generator, a pooling stage,
and a discriminator. The generator is an encoder-decoder
framework where the hidden states of encoder and decoder
are linked with the help of a pooling module. The generator
takes in input Xi and outputs predicted trajectory Ŷi. The
discriminator receives the entire sequence comprising both
input trajectory Xi and future prediction Ŷi (or Yi) as input
and classifies them as either real or fake.

In order to produce the input for the generator, the location
of each person is embedded into a fixed length vector eti
using a 1-layer multi-layer perceptron (MLP) as in [8]. These
embeddings are then used to initialize the hidden state of the
encoder in the long short-term memory (LSTM) cell at time
t as

eti = φ(xti, y
t
i ;Wee),

htei = LSTM(ht−1
ei , eti;Wencoder),

(2)

where φ(.) is an embedding function with Rectified Linear
Unit (ReLU) non-linearity, Wee is the embedding weight,
htei is the hidden state of the ith encoder at time t and
the LSTM weights, Wencoder, are shared between all the
vehicles to provide global context of the scene. The encoder
learns the state of the vehicle and stores the motion pattern
for that particular vehicle. Similar to the social LSTM model
[8], a pooling stage (PS) is designed to share the information
between the different encoders that models vehicle-vehicle
interaction. After observing the motion of each vehicle till
tobs, the hidden states of all the vehicles present at the
intersection are pooled (max-pooled in our implementation)
to obtain a tensor Pi for each vehicle. As the goal is to
produce future trajectories that are synchronized with past
driving behavior in the observation period, the hidden state
of the decoder is conditioned based on the combined tensor
as

cti = γ(Pi, h
t
ei;Wc),

htdi = [cti, z],
(3)

where γ() is a multi-layer perceptron (MLP) with ReLU non-
linearity, htdi is the hidden state of the ith decoder at time t,
and Wc is the embedding weight.

After initializing the decoder states as above, the predic-
tions can be obtained as

eti = φ(xt−1
i , yt−1

i ;Wed),

Pi = PS(ht−1
d1 , ..., htdn),

htdi = LSTM(γ(Pi, h
t−1
di ), eti;Wdecoder),

(x̂ti, ŷ
t
i) = γ(htdi),

(4)

where φ(.) is an embedding function with ReLU non-
linearity with Wed as the embedding weights. The LSTM
weights are given by Wdecoder and γ(.) denotes an MLP.

The discriminator uses a separate encoder which takes as
input Treal = [Xi, Yi] or Tfake = [Xi, Ŷi] and classifies
them as real or fake. The discriminator learns interaction
behavior and classifies unacceptable trajectories as “fake”.
While a GAN is trained using adversarial loss given in 2,
L2 loss is used to estimate the distance of the generated
path from the actual ground-truth.

To estimate the trajectory of multiple vehicles, we need
to share information across the LSTMs representing each
vehicle. However, the number of vehicles at an intersection
is high, and the number varies depending on the traffic condi-
tion. Therefore, there is a need for a compact representation
to store shared information. Further, local interactions are
not always sufficient to determine future trajectories, and
far-away vehicles might impact the path taken by a vehicle.
Hence, the network needs to model the global context. In
social pooling [8], [9] based approaches, a grid-based pooling
scheme is proposed that considers only local context and
fail to capture global context. As per [15], both a compact
representation and global context can be learned using a
symmetric function on transformed elements of the input
set of points. Hence, in this work, the input coordinates are
passed through an MLP followed by a symmetric function
like Max-Pooling. The pooled vector Pi summarizes all the
information needed for a vehicle to choose a path. Also, the
relative position of each person in relation to person i is
augmented with input to the pooling module.

Though GAN produces good predictions, these predictions
are the “average” prediction in case of multiple outputs. In
order to encourage the generation of diverse samples, we
use a variety loss given in [16]. For each scene, k possible
output predictions are generated by randomly sampling z
from N (0, 1) and the best prediction is obtained as

Lvariety = min
k
‖Yi − Ŷ (k)

i ‖2, (5)

where k is a hyper-parameter. By considering the trajectory
that is closest in terms of Euclidean distance to the ground-
truth trajectory, the network explores only those outputs that
are closest to the past trajectory.

IV. EXPERIMENTAL RESULTS

A. Dataset description
The VisDrone dataset contains 96 video clips that include

56 clips for training, 7 for validation, and 33 for testing.



Among them, we chose only the videos that depict vehicular
traffic at intersections. Finally, the dataset considered for
evaluation in this work consists of 23 clips for training
(10,239 frames with approximately 11,000 vehicles), 5 for
validation (2,033 frames with approximately 2,400 vehicles),
and 6 for testing (2,110 frames with approximately 2,500
vehicles) from the VisDrone dataset.

B. Implementation Details

The generator in the GAN utilizes only a decoder whereas
the discriminator utilizes the encoder as well as the decoder.
For both the encoder and the decoder, LSTMs are used
to represent the trajectories with hidden state dimensions
of 16 and 32, respectively. The input trajectory coordinates
are embedded as 16 dimensional vectors. The generator and
discriminator are trained with a batch size of 16 for 200
epochs using Adam optimizer [17] with a starting learning
rate of 0.001.

C. Quantitative Analysis

Most existing trajectory prediction algorithm provide
ground truth during training and for initializing the track
during the observation period. However, obtaining annotated
ground-truth videos is both expensive and seldom available.
Hence, to mimic the same format for our experiments,
we propose to use tracking outputs obtained from tracking
algorithms for the observation period (t = 1, · · · , tobs) and
the actual ground-truth from t = tobs+1, · · · , tpred to deter-
mine the prediction performance. This experimental protocol
adequately reflects real-world situations where ground-truth
trajectories may not be available for vehicles for the hundreds
of vehicles at an intersection. So, in order to obtain the
trajectories for the observation period, we compared on-line
tracking algorithms that can efficiently track a large number
of targets - 1) Markov Decision Process (MDP) based tracker
[18], 2) simple, online, real-time tracking (SORT) [19], and
3) deep SORT [20] that integrates the SORT algorithm
with appearance features from the YOLO [21] detection
framework. The metrics used for comparison in Table I
are Multiple Object Tracking Accuracy (MOTA) combines
three sources of errors and Multiple (MOTP). While we
were able to test SORT and MDP with different detection
frameworks, deepSORT integrates the appearance features
provided by different layers of the YOLO [22] architecture to
associate the targets. This prevents the tracking framework to
be decoupled from the detection network. It can be observed
from Table I that the MDP tracker has the highest recall and
MOTA among the other trackers.

We compare the GAN based prediction system to existing
approaches using social LSTM (S-LSTM) [8] and social
attention-based structural recurrent neural network (S-RNN)
[11]. The input coordinates obtained from the tracker output
are transformed into a relative coordinate system with the
center of the video taken as the origin in order to achieve
translation invariance. For the S-LSTM and S-RNN, we use
the implementation provided by the respective authors. For
the GAN model, we modify and use the implementation

TABLE I: Comparison of different trackers and detectors
(in %) on intersection videos for all vehicle types in the
VisDrone dataset. The choice of the tracking framework is
crucial for robust prediction.

Method Recall Precision MOTA MOTP
DeepSort [20] YOLO 7.8 79.3 5.2 73.5

SORT [19]
F-RCNN 17.7 93.5 16.0 79.4
SSD 5.5 82.6 4.0 75.7
R-FCN 16.6 91.5 14.6 78.8

MDP [18]
F-RCNN 25.5 89.4 22.2 78.0
SSD 11.1 78.4 7.8 74.4
R-FCN 24.6 87.6 20.8 77.0

given by the authors in [16]. All the prediction networks
follow different protocols for observation and prediction
lengths. For simplicity of comparison, we follow an observa-
tion length of 8 time steps (tobs = 8) and prediction length
of 8 time steps (tpred = 8) for all the networks. Similar to
the S-LSTM model, neighboring trajectories were pooled at
every time step during testing. Further, for every trajectory
prediction, 20 samples were drawn from the generator and
the best one was chosen based on L2 distance for quantitative
analysis.

The comparison is done using the following evaluation
metrics:

• Average Displacement Error (ADE) which measures
the average L2 distance between ground-truth and the
prediction over all the predicted time steps.

• Final Displacement Error (FDE) that measures the
distance between the predicted final destination actual
destination at the end of the prediction period tpred.

In Table II, we present the comparison of vehicle trajectory
prediction performance of GAN with S-RNN and S-LSTM.
It can be observed that GAN produces better ADE and FDE
scores than the other two prediction approaches. This can
be attributed to the generator in GAN being trained with
a variety loss that is able to predict more diverse set of
trajectories than both S-LSTM and S-RNN. Further, the
global context employed in GAN is more apt for vehicle
trajectory prediction at intersections as vehicles can rapidly
accelerate or decelerate at intersections. Even vehicles which
are separated initially can become close rapidly and a global
strategy helps in keeping track of such movements for better
predictions.

D. Qualitative Analysis

Traffic prediction using GAN having a social structure
helps us predict two basic movement types used by smaller
vehicles like motorcycles and scooters in traffic - merging
and overtaking. While merging, vehicles avoid collisions
while continuing towards their destination by either slowing
down or altering their course slightly or a combination of
both. This behavior is highly dependent on the context and
behavior of other surrounding vehicles. The proposed model
can predict the variation in both the speed and direction of a
vehicle to effectively navigate nearby traffic. For instance, the
model predicts that either vehicle Y (yellow) slows down or



TABLE II: Comparison of prediction performance with state-
of-the-art on the intersection videos of VisDrone dataset.

Method ADE FDE

S-RNN [11]

DeepSort 0.88 1.60

SORT
F-RCNN 0.92 1.76
R-FCN 0.92 1.75
SSD 0.85 1.52

MDP
F-RCNN 0.89 1.56
R-FCN 0.86 1.61
SSD 0.94 1.66

S-LSTM [8]

DeepSort 0.89 1.57

SORT
F-RCNN 0.77 1.62
R-FCN 0.91 1.66
SSD 0.92 1.67

MDP
F-RCNN 0.82 1.53
R-FCN 0.89 1.51
SSD 0.79 1.42

GAN

DeepSort 0.91 1.65

SORT
F-RCNN 0.87 1.66
R-FCN 0.87 1.65
SSD 0.77 1.42

MDP
F-RCNN 0.82 1.53
R-FCN 0.84 1.58
SSD 0.72 1.32

both vehicle R (red) and Y change direction to avoid collision
(Figure 2 (a) and (b)). This scenario shows that as the GAN
model can evaluate the likelihood of multiple future paths
for every vehicle, it steers every vehicle in the direction that
is least likely to be taken by other vehicles in the future.

Another common scenario encountered in traffic is where
a vehicle might want to either maintain pace or may overtake
the vehicle in front. This has been studied with car-following
models in literature [5]. The decision making ability while
overtaking is restricted by the field of view. However, as
the GAN model has access to the ground-truth positions of
all the vehicles involved in the scene, it results in some
interesting predictions. For example, in Figures 2 (c) and
(d), the model predicts that vehicle R (in red) is obstructed
by vehicle B (blue) and will give way by changing their
direction. This global knowledge allows GAN to correctly
predict that vehicle Y (yellow) will overtake vehicle B.

Vehicles also avoid each other when moving in opposite
directions without any physical barrier separating both the
streams of traffic. This tendency manifests in smaller vehicles
generally bunching with other vehicles moving in the same
direction. Also, smaller vehicles (vehicle Y) mostly observe
the movement of larger vehicles (vehicle R) in the opposite
direction and overtake only if they predict that there is
adequate clearance distance (Figure 2 (f)). However, in the
presence of smaller vehicles, the driver in vehicle Y (yellow)
makes a choice very late and close to the oncoming vehicle
R (red) (Figure 2 (e)). The model is not able to distinguish
between these two behaviors as the type of vehicle is not
taken into consideration during prediction and the prediction
is not aligned with the ground-truth (Figure 2 (e)). In such
case, we hypothesize that decisions based on local vicinity
can produce better predictions rather than accounting for
vehicles that are further away (global context).

V. CONCLUSION

In this paper, we proposed a Generative Adversarial Net-
work (GAN) based approach in order to predict trajectories
of vehicles at both signalized and non-signalized intersec-
tions. The prediction algorithm can predict vehicle trajectory
resulting from different traffic maneuvers like overtaking,
merging, and avoiding oncoming traffic without any ad-
ditional information about the dimension of the road. An
evaluation on the intersection videos of the VisDrone dataset
demonstrates the efficacy of GAN in predicting trajectories
with minimal deviation compared to the actual trajectories
followed by different types of vehicles. Further, as there are
no assumptions about the type of traffic and their movements,
the method can be applied for the analysis of any type of
intersection.
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