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Talk Overview

e Approximation Algorithms.

* Bin Packing and Knapsack.

* Rectangle Packing Problems:

2D Geometric Bin Packing (2BP),
2D Strip Packing (2SP),

Dynamic Storage Allocation (DSA),
2D Geometric Knapsack (2GK),
Unsplittable Flow on a Path (UFP),
Storage Allocation Problem (SAP),
Maximum Weight Independent Set of Rectangles (MISR).
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Approximation Algorithms

* Approximation algorithms are efficient
algorithms that find near-optimal solution.

THE DESIGN oF Approximation

* For a minimization problem, an algorithm QTS Aleorichms
A is a-(absolute) approximation (a>1)
if A(l) < a OPT(I) for all input
instances I .

T
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* For a minimization problem, an algorithm
A is a-asymptotic approximation (o>1)
ifA(l) < a OPT() +0(1)
for all input instances I .
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PTAS

Polynomial Time Approximation Schemes (PTAS):

If for every € > 0, there exists a poly-time (0 (n/())-time) algorithm A,
suchthat A,(I) < (1+¢)OPT().

Efficient PTAS (EPTAS): if running time is O (f (). n¢).

Fully PTAS (FPTAS): if running time is O((n/€)°).

Asymptotic PTAS (APTAS): A,(I) < (1 +¢&)OPT(I) +0(1).

QuasiPTAS (QPTAS): (1 + &)-approximation in n{1°8 M time.
PseudoPTAS (PPTAS): (1 + €)-approximation in n°)-time, where n is the
number of items and the numeric data is polynomially bounded in n.
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Packing Problems
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| GET IDEAS ABOUT
WHAT'S ESSENTIAL WHEN

PACKING MY SUITCASE.

—Diane von Turstenberg




Hoffman’s Packing Puzzle

e Given: Twenty-seven identical blocks
with dimensions AXB XC where

A+B+C
1 <A<B<C.

e Goal: Pack all blocks into a box with
sides4A + B + C.
(eg, A=4,B=50C=6.)




Packing Problems

e Goal: Pack some items under some constraints.
* Example: Bin Packing, Knapsack — two classical NP-hard problems.
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Packing Problems

e Studied in computer science and optimization from 1960’s.
[Gilmore-Gomory, Operations Research ‘61]

* Among Karp's 21 NP-complete problems.

 The cornerstone of approximation algorithms.

 The term approximation algorithms was first coined for near-
optimal bin packing algorithms [Johnson, STOC '73].

* Knapsack and Bin Packing has most needed implementations
among all NP-hard problems [Market Research by Skiena, ‘99].



Bin Packing Problem

n items with sizes sq, S5, ... S, s.t. s; € (0,1],
* Goal: Pack all items into min # of unit bins.

|

* Example: items {0.8, 0.6, 0.3, 0.2, 0.1} can be
packed in 2 unit bins: {0.8, 0.2} and {0.6, 0.3, 0.1}.

* 3/2 hardness of approximation (from Partition).

- This does not rule out OPT+1 guarantee.

* delaVega-Lueker, Combinatorica '81: APTAS,

e Karp-Karmarkar, FOCS’82: OPT + 0(log®(OPT)),

* Hoberg-Rothvoss, SODA ’17: OPT + 0(log(0PT)).




Knapsack Problem

a

Given: I, a set of n items where item i has
profit p; € Z and size s; € Z; Knapsack of size
W e Z.

e Goal: Find the maximum profit subset S € [
that can be packed in the knapsack,
Ki.e., the total size of items in S is at most /. /

~

KNAPSACK
|PROBLEMS

* Weakly NP-hard:
Admits pseudo-polynomial time exact algorithm.

* FPTAS: in O (n logi + E%)-time. [Lawler FOCS '77].




Computational
Geometry Optimization




1. 2-D Geometric Bin Packing



2-D Geometric Bin Packing

|

* Given: Collection of rectangles (by width, height),
* Goal: Pack them into minimum number of unit square bins.

|

- Orthogonal Packing: rectangles packed parallel to bin edges.
- With 90 degree rotations and without rotations.

5

]
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Applications:

* Cloth cutting, steel cutting, wood cutting

* Placing ads in newspapers
* Memory allocation in paging systems

File Tools Help
Y] ’.’ \‘_“ { vy
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— Cut table th
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* Truck Loading
 Palletization by robots




2D BP: Tale of approximability
Hardness

2.125 [Chung Garey Johnson, JACM ‘82] No APTAS (from 3D Matching)
1.69 [Caprara, FOCS'02] 3793/3792 (with rotation),

2197/2196 (w/o rotation)

1.52 [Bansal-Caprara-Sviridenko, FOCS'06] _ _
[Chlebik-Chlebikova ‘09]

1.5 [Jansen-Praedel, SODA’13]
1.405 [Bansal-K., SODA’14] (with and w/o rotations)

« d-dimensional (d>2) geometric bin packing: 1.69%¢~1 [Caprara, FOCS’02].
e APTAS for d-dimensional squares: [Bansal-Sviridenko, SODA’04].
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Configuration LP

» C:setof configurations(possible way of feasibly packing a bin).

" Primal: A 0.75 3 0.6

min {Z xC:ZxC >1(i€lx.=0(CeQ)} = 033
S C Coi y

Dual: h I

max {z vi:zvi <1(CeC),v;=200€l)}
U El teC 4 AAAA BBB ABB BAA

* Problem: Exponential number of configurations!
* Solution: Can be solved within (1 + €) accuracy using separation problem for the dual.



Configuration LP

» C:setof configurations(possible way of feasibly packing a bin).

/Prima

min { ) xc: ) xc=21(i€l),x,=20(CeC)}
i ZCZC C

|: A

C3i
J

Dual:

max {
U

™

Z”Ui:zvi < 1(C S (C),Ui = O(l EI)}

LE] <o -

* Problem: Exponential number of configurations!
* Solution: Can be solved within (1 + €) accuracy using separation problem for the dual.

Dual Separation problem =
2-D Geometric Knapsack:
Given one bin, pack as
much area as possible.

- PTAS [BCJPS ISAAC 2009]



Round and Approx (R&A) Framework [Bansal-K. ‘14]

* Given a packing problem I1
1. If the configuration LP is solved within (1 + €) factor

min {Zxc:z:xc >1(iel),x;=20(CeC)}
C

C3i
2. Thereis a p approximation rounding-based algorithm.

* Then there is (1+In p) approximation for II.



Rounding based Algorithms:

Rounding based algorithms are ubiquitous in bin packing.

ltems are replaced by slightly larger items from O(1) types.

Loss:
Due to larger items. I D I I B
Gain: l

Fewer configurations. O(1) types of large items imply
rounded instance can be solved optimally.

* Example: Linear grouping [delaVega-Luker, Kenyon-Remilla], I I H I i
Geometric Grouping [Karp-Karmarkar], Harmonic Rounding

[Lee-Lee, Caprara, Bansal et al.], JP rounding [JansenPradel].
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Rounding based Algorithms in 2D

* Classification of items into big, wide, long, medium and small by
defining two parameters f(€) and g(€)(K f(€)) such that total
volume of medium rectangles is €. Area(l).

> fle)

>fle) >fle)

<g(e)

BIG WIDE LONG MEDIUM SMALL



Rounding based Algorithms in 2D

e Classification of items into big, wide, long, medium and small by
defining two parameters f(¢) and g(€)(K f(€)) such that total
volume of medium rectangles is €. Area(l).

> fle)

Negligible volume
>f(e) f

—l
a
Can be well packed

<g(e)

BIG WIDE LONG MEDIUM SMALL

>f(e)




Rounding based Algorithms

» Skewed (wide/long) items are packed into containers.
(i) it has large size in each dimensions and
(ii) items are packed into containers with a negligible loss of volume.

* Containers and big items are
rounded to O(1) types so that . LONG CONTAINER

we can find near-optimal

acking of big items and - .
patring o1 D18 = .

containers in polynomial time.
WIDE CONTAINER

BIG MEDIUM SMALL

Rounded to O(1) types



Rounding based Algorithms

e Each item is packed in O(1)-type of containers.

* Existence of such packing implies that constructively we can find it.
1

2/10/20
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Round and Approx Framework (R & A)

* 1. Solve configuration LP using APTAS. Let z* = X.cceqy xé

” Primal: )

min {zxc:zxc >1(i€l),x. =0(CEC))
\ C C>oi Y




Round and Approx Framework (R & A)

* 1. Solve configuration LP using APTAS. Let z* = }.rce( xz,
* 2. Randomized Rounding: For g iterations :

*

select a configuration C’ at random with probability el

« N
Primal;

min {ExC:ZxC >1(i€el),x;,=0(CeC)}
(U C C3i /




Round and Approx Framework (

R & A)

* 1. Solve configuration LP using APTAS. Let z* = X.cceqy xz

* 2. Randomized Rounding: For g iterations

select a configuration C’ at random wit

n probabi

* 3. Approx: Apply a p approximation round
algorithm A on the residual instance S.

ing based

* 4. Combine: the solutions from step 2 and 3.

ity

x*
CI

z*



R & A Rounding Based Algorithms

* Probability item i left uncovered after rand. rounding

xzq

1 .
— (1 — Z{cai};) S; by choosing g = (In p)LP (1)

* Number of items of each type shrinks by a factor p

B.
e.g., ]E[|Bj N S‘ ] = IT".for some item type B;.

* Concentration using Independent Bounded Difference Inequality.



Proof Sketch

* Rounding based Algo : O(1) types of items
= 0(1) number of constraints in configuration LP.

* ALGO(S) =~ OPT(S) = LP(S).
1+€

* As # items for each item type shrinks by p, LP(S) = TLP(f).

* p — approximation: ALGO(I) =~ LP(I) < p OPT(I) + 0(1).
e ALGO(S) =~ OPT(I).



Proof Sketch

* Thm: R&A gives a (1 + In p + €) approximation.
* Proof:

* Randomized Rounding : g=1n p.LP(I)

* Residual Instance S = (1 4+ €)OPT(I) + O(1).

* Round + Approx=>(lnp + 1 + €¢)OPT(I) + O(1).

2/10/20
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Guillotine Packing

Guillotine Cut: Edge to Edge cut across a bin

Objective: Minimize number of bins such that packing in each bin is a guillotine packing.



Guillotine Packing => General Bin packing

Guillotine cut: edge to edge cut across a bin

3

2-stage

* APTAS for guillotine 2-D bin packing [Bansal Lodi Sviridenko, FOCS’05].

4-stage

12 +x

12-x

12 -x 12 +x

12 +x 1/2-x

* Conjecture: Given any packing of m bins, there is a guillotine packing in 4m/3 bins.

This will imply G + e)—approximation for 2-D BP.

2/10/20
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2. Strip Packing



Strip Packing Problem: (2-D)

-

~
- Rectangles R, R,,..., R,; Each R;has integral width and height (w;, A,).

. - A strip of integral width W and infinite height. y
"« Goal A

- Pack all rectangles minimizing the height of the strip.
\- Axis-parallel non-overlapping packing.

T E— Variant 1:
No rotations
are allowed!

Ri(16) R:(32) R;(22) R4(L3) Rs(31)




Strip Packing Problem: (2-D)

-

~
- Rectangles R, R,,..., R, Each R;has integral width and height (w;, A,).

. - A strip of integral width W and infinite height. y
"« Goal A

- Pack all rectangles minimizing the height of the strip.
\- Axis-parallel non-overlapping packing.

Variant 2:
90° rotations
are allowed!

Ri(16) R:(32) R;(22) R4(L3) Rs(31) X




Strip Packing:

e Strip Packing generalizes
- bin packing (when all rectangles have same height),
- makespan minimization (when all rectangles have same width).

2/10/20
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Tale of approximability.

* Asymptotic PTAS [Kenyon-Remila, FOCS’96 ] (Without rotations),
* Asymptotic PTAS [Jansen-vanStee, STOC‘05] (With rotations).

 2.7-appx. [First-Fit-Decreasing-Height, Coffman-Garey-Johnson-Tarjan ‘80].
* 5/3+¢ [Harren-Jansen-Pradel-vanStee, Comp.Geom.14].

* Hardness of appx in poly-time: 3/2 (from Bin Packing).

* Hardness of appx in pseudo poly-time: 5/4 (from 3-partition).

* Pseudo-polytime: (5/4+¢)-appx [Jansen-Rau ESA’19].



3. Dynamic Storage Allocation
(DSA)



DSA

£ Input: Rectangles R, R,,..., R,; Each R; has width w; height /4;, and fixed |
starting position on x-coordinate x;;
_ - Astrip of integral width 7 and infinite height.

%
" Goal: Pack (non-overlapping and axis-parallel) all rectangles into the strip )
of minimum height by sliding the rectangles vertically but not horizontally.

)

il

-
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DSA

* Important applications in contiguous resource allocation (e.g.,
memory, bandwidth)

e Generalizes interval coloring (when items have same height), T

* NP-hard [Stockmeyer ‘76], even for squares. z B |

* Possibility of PTAS is open. 1 N

* Rmax:=maximum height rectangle, LOAD := maximum sum of I I S
helgﬁts of rectangles that intersect any vertical line. Then, OPT = ° — 3 4 ;
LOAD(1 + 0 (*222) ) :

* (2 + €)-appx, even for squares [Buchsbaum et al., STOC’03], LOA%TZZT=03}3T=5

* |f we can drop &-fraction of items, we can achieve a packing in
height (1 + 85) OPT [Momke et al., 20].



4. 2-D Geometric Knapsack
(2-D GK)



Geometric Knapsack: (2-D)

(o )
- Rectangles /:= /R, R,,..., R,}; Each R;has integral width and height (w;, /1;) and profit p;,.
- A Square K x K knapsack.

S /

4 )

* Goal : Find an axis-parallel non-overlapping packing of a subset of input rectangles into

the knapsack that maximizes the total profit.

|8 Y,
Variant 1: 2DK
18 5% No rotations
100 $ 95$ 90$ 60S 5S are allowed!
90 S 60 S
4.4 (23) OPT=155
(9,6) (7,6) (5,8) (4,6)

K=10



Geometric Knapsack: (2-D)

<

&

~

&

K=10

~
- Rectangles /:= /R, R,,..., R,}; Each R;has integral width and height (w;, /1;) and profit p;,.
- A Square K x K knapsack. y
~
* Goal : Find an axis-parallel non-overlapping packing of a subset of input rectangles into
the knapsack that maximizes the total profit.
J
rb Variant 2: (2DKR)
1 55 | 90 degree rotations
» 100'$
100 $ 95 $ 90 $ 60 S 5S are allowed!
(44)  (23) o OPT=165
(9,6) (7,6) (5,8) (4,6)



Geometric Knapsack: Complexity

 Geometric Knapsack is Strongly NP-hard
(even when all items are squares with profit 1), [Leung et al., 1990]
- Remains NP-hard even if the input is given in unary.
- No exact algorithm even in pseudo-polynomial time (unless P=NP).

* Not known whether the problem is APX-hard. So, the existence of a
PTAS/QPTAS/PPTAS is still open!

* (1+€)-approximation known if
- profit of an item is equal to its area. [Bansal et al., ISAAC ‘09].
- items are relatively small [Fishkin et al., MFCS ‘05].
- items are squares [Wiese-Heydrich, SODA '17].

2/10/20
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Geometric Knapsack:

* (2+€)-approximation [Jansen-Zhang, SODA’04]

- for both with and without rotations.
- even in the cardinality case (when all profits are 1).

* Broke the barrier of 2 [Galvez-Grandoni-Ingala-K.-Wiese, FOCS’17]

- Without rotations: (17/9+¢&)<1.89-appx.
- With rotations: (1.5+¢€)-appx.
- Cardinality case: 1.72, (4/3+€)-appx., resp.



5. Storage Allocation Problem
(SAP)



SAP

(o Input: A path with edge capacities and a set of tasks (rectangles) that are
specified by start and end vertices (fixed starting coordinate and width),
. demands (heights) and profits.

~

"« Goal: Select a subset of tasks that can be drawn as non-overlapping
rectangles underneath the capacity profile.

AN

2/10/2(4 I
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SAP: Tale of approximability

Generalizes knapsack.

Special case: Uniform-SAP (when all edges have same capacity)

— 7-appx [Bar-Noy et al, STOC’00].

General case: (9 + €)-approximation [Bar-Yehuda et al, SPAA’13].

(2 + €)-approximation [Momke-Wiese, ICALP’15].

Uniform-SAP: 1.969 [Momke-Wiese, '20].

General-SAP: QPTAS with resource augmentation. [Momke-Wiese, "20].



6. Unsplittable Flow on a Path
(UFP)



UFP (sliced version of SAP)

(o Input: A path with edge capacities and a set of tasks (rectangles) that are A
specified by start and end vertices (fixed starting coordinate and width),
L demands (heights) and profits. y

"« Goal: Select a subset of tasks such that total demand of selected tasks at |

any edge is less than the edge capacity.




UFP: A tale of approximability

Strongly NP-hard, even for uniform edge capacities and uniform profits.
QPTAS [Bansal et al, STOC’06, Batra et al, SODA’15],

O(log n )-apprx. [Bansal et al, SODA’09],

(7 + €)-appx [Bonsma et al, FOCS'11],

(2 + €)-appx [Anagnostopoulos et al, SODA’14],

(g + £)-appx [Grandoni et al. STOC’18],
Possibility of PTAS is still open!



7. Maximum Weighted Independent
Set of Rectangles (MWISR)



MWISR

[ * Input: n axis-parallel rectangles (each with associated profit) on a plane. }

* Goal: Find maximum profit subset of disjoint rectangles.

 Special case: uniform profit (MISR).

e Applications: data-mining, map-labeling, etc.




MWISR: tale of approximability

 NP-hard.

* Folklore: O(log n)

 MISR: O(log log n)-approximation [Chalermsook-Chuzhoy, SODA’09 ]
* MWISR:

* O(log n/log log n) [Chan-HarPeled, SoCG’09]

* PTAS for pseudodiscs (e.g. squares) [Chan-HarPeled, SoCG’09]

e (14 &)-appxin nPo{ogn) [aAdamaszek-Wiese, FOCS’13]

e (14 &)-appx in nPoyloglogn) chyzhoy-Ene, STOC’16]

* PTAS, even O(1)-appx is open!



Pach-Tardos Conjecture



Pach-Tardos Conjecture

Conjecture: For any set of n non-overlapping axis-parallel rectangles
there is a guillotine cutting sequence with only axis-parallel cuts

separating (1(n) of them.

Known upper bound: n/2 (also for squares).
Known lower bound: n/log n.
The conjecture is true for squares! [Abed et al,
APPROX’15]
Theorem: [Abed et al, APPROX’15] If the conjecture
is true, then there is a O(1)-approximation
algorithm for MISR with running time 0(n>).

"
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Other related problems.

Round-UFP, Round-SAP, coloring of rectangles.

Min-area rectangle packing: APTAS [Bansal-Sviridenko, SODA’04]

Circle and other geometric objects.

Vector: when items are multidimensional vectors.

d-dim vector bin packing: 0.81 + O(log d) [Bansal-K.-Elias, SODA’16]
Graph: weighted biparitite edge coloring, weighted biparitite matching,
generalized assignment problem. [K.-Singh, FSTTCS'15]

Approximation and Online Algorithms for Multidimensional Bin Packing: A
Survey, Christensen-K.-Pokutta-Tetali, Computer Science Review 2017.
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Summary of present status

Though these variants are related, their approximability and techniques
are quite diverse, e.g.,
-- Strip packing: admits APTAS,
-- Independent set of rectangles:
admits QPTAS and (logn/loglogn)-polytime approximation.
-- Geometric knapsack:
may or may not admit PTAS/QPTAS/PPTAS, < 2- appx. Known.
-- SAP/DSA: APX-hardness not known, Barrier of 2-approximation.
-- d-dim vector packing: No APTAS. Best known approx.: O(log d)
-- d-dim geometric bin packing: No APTAS. Best known approx.: 1.69%71.

2/10/20

58



Top 10 open problems

Algorithm with OPT+0O(1)-guarantee for bin packing.
A poly(d)-approximation or hardness for d-dim geometric bin packing?
Resolve guillotine conjecture for 2-D bin packing.

(% + &)-approximation for strip packing?

PTAS (or PPTAS or QPTAS) for 2-D geometric knapsack (even with rotations)?
PTAS for unsplittable flow on a path?

Break the barrier of 2 for dynamic storage allocation.

Break the barrier of 2 for storage allocation problem.

Resolve Pach-Tardos conjecture.
10. PTAS for maximum independent set of rectangles?

OO & W E
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