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Talk Overview
• Approximation Algorithms.
• Bin Packing and Knapsack.
• Rectangle Packing Problems:
1. 2D Geometric Bin Packing (2BP), 
2. 2D Strip Packing (2SP), 
3. Dynamic Storage Allocation (DSA), 
4. 2D Geometric Knapsack (2GK), 
5. Unsplittable Flow on a Path (UFP),
6. Storage Allocation Problem (SAP),
7. Maximum Weight Independent Set of Rectangles (MISR).



Approximation Algorithms
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• Approximation algorithms are efficient 
algorithms that find near-optimal solution.
• For a minimization problem, an algorithm 

A is α-(absolute) approximation (α>1)
if 𝐴(𝐼) ≤ 𝛼 𝑂𝑃𝑇(𝐼) for all input 
instances 𝐼 .
• For a minimization problem, an algorithm 

A is α-asymptotic approximation (α>1) 
if 𝐴(𝐼) ≤ 𝛼 𝑂𝑃𝑇(𝐼) + 𝑂(1)
for all input instances 𝐼 .
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PTAS



PTAS
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• Polynomial Time Approximation Schemes (PTAS):  
If for every 𝜀 > 0, there exists a poly-time (𝑂(𝑛0(1))-time)  algorithm 𝐴𝜀
such that 𝐴𝜀(𝐼) ≤ (1 + 𝜀) 𝑂𝑃𝑇(𝐼).

• Efficient PTAS (EPTAS): if running time is 𝑂 𝑓 𝜀 . 𝑛𝑐 .
• Fully PTAS (FPTAS): if running time is 𝑂((𝑛/𝜀)𝑐).
• Asymptotic PTAS (APTAS): 𝐴𝜀(𝐼) ≤ (1 + 𝜀) 𝑂𝑃𝑇(𝐼) + 𝑂(1).
• QuasiPTAS (QPTAS): (1 + 𝜀)-approximation in 𝑛 678 9 :(;)

-time.
• PseudoPTAS (PPTAS): (1 + 𝜀)-approximation in 𝑛<(=)-time, where 𝑛 is the  

number of items and the numeric data is polynomially bounded in 𝑛. 



Packing Problems



Hoffman’s Packing Puzzle

• Given: Twenty-seven identical blocks 
with dimensions 𝐴×𝐵×𝐶 where 

𝐴 + 𝐵 + 𝐶
4

< 𝐴 < 𝐵 < 𝐶.
• Goal: Pack all blocks into a box with 

sides 𝐴 + 𝐵 + 𝐶.
(e.g.,	 𝐴 = 4, 𝐵 = 5, 𝐶 = 6. )



Packing Problems

• Goal: Pack some items under some constraints. 
• Example: Bin Packing, Knapsack – two classical NP-hard problems.



Packing Problems

• Studied in computer science and optimization from 1960’s.
[Gilmore-Gomory, Operations Research ‘61]

• Among  Karp's 21 NP-complete problems.
• The cornerstone of approximation algorithms.
• The term approximation algorithms was first coined for near-

optimal bin packing algorithms [Johnson, STOC ’73].
• Knapsack and Bin Packing has most needed implementations 

among all NP-hard problems [Market Research by Skiena, ‘99].



Bin Packing Problem

• Given : 𝑛 items with  sizes 𝑠=, 𝑠K, … 𝑠9, s.t. 𝑠M ∈ (0,1], 
• Goal: Pack all items into min # of unit bins.
• Example: items {0.8, 0.6, 0.3, 0.2, 0.1} can be 

packed in 2 unit bins: {0.8, 0.2} and {0.6, 0.3, 0.1}.
• 3/2 hardness of approximation (from Partition).
- This does not rule out OPT+1 guarantee.
• delaVega-Lueker, Combinatorica ’81: APTAS,
• Karp-Karmarkar, FOCS ’82: OPT + 𝑂 logK 𝑂𝑃𝑇 ,
• Hoberg-Rothvoss, SODA ’17: OPT + 𝑂 log 𝑂𝑃𝑇 .



• Given:  𝐼, a set of 𝑛 items where item 𝑖 has 
profit 𝑝M ∈ ℤ and size 𝑠M ∈ ℤ;  Knapsack of size 
𝑊 ∈ ℤ.
• Goal:   Find the maximum profit subset 𝑆 ⊆ 𝐼

that can be packed in the knapsack,  
i.e., the total size of items in 𝑆 is at most 𝑊.

Knapsack Problem

• Weakly NP-hard: 
Admits pseudo-polynomial time  exact algorithm.

• FPTAS: in 𝑂 𝑛 log =
[
+ =

[\
-time. [Lawler FOCS ’77].



Rectangle Packing

Approximation Algorithms

Optimization
Computational 
Geometry



1. 2-D Geometric Bin Packing



2-D Geometric Bin Packing
• Given: Collection of rectangles (by width, height),
• Goal: Pack them into minimum number of unit square bins.
- Orthogonal Packing: rectangles packed parallel to bin edges.
- With 90 degree rotations and without rotations.
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Applications:

• Cloth cutting, steel cutting,  wood cutting 
• Placing ads in newspapers
• Memory allocation in paging systems

• Truck Loading
• Palletization by robots
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2D BP: Tale of approximability
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Algorithm (Asymptotic)

2.125  [Chung Garey Johnson, JACM ‘82]

2+𝜖 [Kenyon-Remilla, FOCS’96] 

1.69    [Caprara, FOCS’02]

1.52    [Bansal-Caprara-Sviridenko, FOCS’06]

1.5      [Jansen-Praedel, SODA’13]

1.405 [Bansal-K., SODA’14]  (with and w/o rotations)

Hardness

No APTAS (from 3D Matching)
[Bansal-Sviridenko SODA’04], 

3793/3792 (with rotation), 
2197/2196 (w/o rotation) 
[Chlebik-Chlebikova ‘09]

• d-dimensional (d>2) geometric bin packing:  1.69_`= [Caprara, FOCS’02].
• APTAS for d-dimensional squares:  [Bansal-Sviridenko, SODA’04].



Configuration LP
• ℂ:	set	of	configurations(possible	way	of	feasibly	packing	a	bin).

Primal:

min {s
t

𝑥t:s
t∋M

𝑥t ≥ 1 𝑖 ∈ 𝐼 , 𝑥t ≥ 0 (𝐶 ∈ ℂ)}

Dual:

max {s
M∈z

𝑣M:s
M∈|

𝑣M ≤ 1 𝐶 ∈ ℂ , 𝑣M ≥ 0 𝑖 ∈ 𝐼 }

• Problem: Exponential number of configurations!
• Solution: Can be solved within (1 + 𝜖) accuracy  using separation problem for the dual.
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Dual Separation problem ⇒
2-D Geometric Knapsack: 
Given one bin, pack as 
much area as possible.
- PTAS [BCJPS ISAAC 2009]



Round and Approx (R&A) Framework [Bansal-K. ‘14]

• Given a packing problem Π
1. If the configuration LP is solved within (1 + 𝜖) factor

min {s
t

𝑥t:s
t∋M

𝑥t ≥ 1 𝑖 ∈ 𝐼 , 𝑥t ≥ 0 (𝐶 ∈ ℂ) }

2. There is a ρ approximation rounding-based algorithm.
• Then there is (1+ln ρ) approximation for Π.
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Rounding based Algorithms:

• Rounding based algorithms are ubiquitous in bin packing.
• Items are replaced by slightly larger items from O(1) types.
• Loss: 

Due to larger items.
• Gain:

Fewer configurations. O(1) types of large items imply 
rounded instance can be solved optimally.
• Example: Linear grouping [delaVega-Luker, Kenyon-Remilla],  

Geometric Grouping [Karp-Karmarkar], Harmonic Rounding 
[Lee-Lee, Caprara, Bansal et al.], JP rounding [JansenPradel].

2/10/20 20



Rounding based Algorithms in 2D
• Classification of items into big, wide, long, medium and small by 

defining two parameters 𝑓 𝜖 𝑎𝑛𝑑 𝑔(𝜖)(≪ 𝑓(𝜖)) such that total 
volume of medium rectangles is 𝜖. 𝐴𝑟𝑒𝑎(𝐼).
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Negligible volume

Can be well packed



Rounding based Algorithms
• Skewed (wide/long) items are packed into containers. 

(i)  it has large size in each dimensions and 
(ii) items are packed into containers with a negligible loss of volume.
• Containers and big items are 

rounded to O(1) types so that
we can find near-optimal 
packing of big items and 
containers in polynomial time.
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Rounded to O(1) types



Rounding based Algorithms
• Each item is  packed in O(1)-type of containers.
• Existence of such packing implies that constructively we can find it. 
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Round and Approx Framework (R & A)

• 1. Solve configuration LP using APTAS. Let 𝑧∗ = ∑ t∈ℂ 𝑥t
∗ .

Primal:

min {s
t

𝑥t:s
t∋M

𝑥t ≥ 1 𝑖 ∈ 𝐼 , 𝑥t ≥ 0 (𝐶 ∈ ℂ) }
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Round and Approx Framework (R & A)

• 1. Solve configuration LP using APTAS. Let 𝑧∗ = ∑ t∈ℂ 𝑥t
∗ .

• 2. Randomized Rounding: For q iterations :
select a configuration 𝐶’ at random with probability  

���
∗

�∗
.

Primal:

min {s
t

𝑥t:s
t∋M

𝑥t ≥ 1 𝑖 ∈ 𝐼 , 𝑥t ≥ 0 (𝐶 ∈ ℂ) }
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Round and Approx Framework (R & A)

• 1. Solve configuration LP using APTAS. Let 𝑧∗ = ∑ t∈ℂ 𝑥t
∗ .

• 2. Randomized Rounding: For 𝑞 iterations :

select a configuration 𝐶’ at random with probability  
���
∗

�∗
.

• 3. Approx: Apply a 𝜌 approximation rounding based 
algorithm A on the residual instance S.
• 4. Combine: the solutions from step 2 and 3.
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R & A Rounding Based Algorithms

• Probability item 𝑖 left uncovered after rand. rounding

= 1 − ∑ t∋M
��
∗

�∗

�
≤ =

�
by choosing 𝑞 = (ln 𝜌)𝐿𝑃(𝐼) .

• Number of items of each type shrinks by a factor 𝜌

e.g., 𝔼 |𝐵� ∩ 𝑆 =
|��|
�
.for some item type 𝐵�.

• Concentration using Independent Bounded Difference Inequality.
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Proof Sketch
• Rounding based Algo ∶ O 1 types of items
= 𝑂(1) number of constraints in configuration LP. 
• 𝐴𝐿𝐺𝑂 𝑆 ≈ 𝑂𝑃𝑇( �𝑆) ≈ 𝐿𝑃( �𝑆).

• 𝐴𝑠 # items for each item type shrinks by 𝜌,  𝐿𝑃( �𝑆) ≈ =¡[
�
𝐿𝑃 �𝐼 .

• 𝜌 − approximation: 𝐴𝐿𝐺𝑂 𝐼 ≈ 𝐿𝑃 �𝐼 ≤ 𝜌 𝑂𝑃𝑇 𝐼 + 𝑂 1 .
• 𝐴𝐿𝐺𝑂 𝑆 ≈ 𝑂𝑃𝑇(𝐼).
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Proof Sketch

• Thm: R&A gives a (1 + ln 𝜌 + 𝜖) approximation.
• Proof:
• Randomized Rounding ∶ 𝑞= ln 𝜌.𝐿𝑃(𝐼)
• Residual Instance S  = (1 + 𝜖)𝑂𝑃𝑇(𝐼) + 𝑂(1).

• Round + Approx => (ln 𝜌 + 1 + 𝜖)𝑂𝑃𝑇(𝐼) + 𝑂(1).
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Guillotine Packing
Guillotine Cut: Edge to Edge cut across a bin

2/10/20

Objective: Minimize number of bins such that packing in each bin is a guillotine packing.



Guillotine Packing => General Bin packing
Guillotine cut: edge to edge cut across a bin

23

1 5

3

6

1

2

4

2-stage 4-stage
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• APTAS for guillotine 2-D bin packing [Bansal Lodi Sviridenko, FOCS’05].
• Conjecture: Given any packing of 𝑚 bins, there is a guillotine packing in 4𝑚/3 bins.  

This will imply ¦
§
+ 𝜀 -approximation for 2-D BP.



2. Strip Packing



Strip Packing Problem: (2-D)
• Input :

- Rectangles R1, R2,	,…,	Rn;  Each Ri has integral width and height (wi ,	hi).
- A strip of integral width W and infinite height.
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R1	(1,6) R2 (3,2) R3 (2,2) R4 (1,3) R5 (3,1)

• Goal :
- Pack all rectangles minimizing the height of the strip.
- Axis-parallel non-overlapping packing.

Variant 1:
No rotations 
are allowed!



Strip Packing Problem: (2-D)
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R1	(1,6) R2 (3,2) R3 (2,2) R4 (1,3) R5 (3,1)

Variant 2:
90o rotations 
are allowed!

Strip Packing Problem: (2-D)
• Input :

- Rectangles R1, R2,	,…,	Rn;  Each Ri has integral width and height (wi	,	hi).
- A strip of integral width W and infinite height.
• Goal :

- Pack all rectangles minimizing the height of the strip.
- Axis-parallel non-overlapping packing.



Strip Packing: 
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• Strip Packing generalizes 
- bin packing (when all rectangles have same height),
- makespan minimization (when all rectangles have same width).



Tale of approximability.
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• Asymptotic Approximaton:
• Asymptotic PTAS [Kenyon-Remila, FOCS’96 ] (Without rotations),
• Asymptotic PTAS [Jansen-vanStee, STOC‘05]  (With rotations).
• Absolute Approximation:
• 2.7-appx. [First-Fit-Decreasing-Height, Coffman-Garey-Johnson-Tarjan ‘80].
• 5/3+ε [Harren-Jansen-Pradel-vanStee, Comp.Geom.‘14].
• Hardness of appx in poly-time: 3/2 (from Bin Packing).
• Hardness of appx in pseudo poly-time: 5/4 (from 3-partition).
• Pseudo-polytime: (5/4+ε)-appx [Jansen-Rau ESA’19].



3. Dynamic Storage Allocation
(DSA)
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DSA
• Input: Rectangles R1, R2,	,…,	Rn;  Each Ri has width wi , height hi , and fixed 

starting position on x-coordinate xi ; 
- A strip of integral width 1 and infinite height.
• Goal:  Pack (non-overlapping and axis-parallel) all rectangles  into the strip 

of minimum height by sliding the rectangles vertically but not horizontally.  
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DSA
• Important applications in contiguous resource allocation (e.g., 

memory, bandwidth)
• Generalizes interval coloring (when items have same height),
• NP-hard [Stockmeyer ‘76], even for squares.
• Possibility of PTAS is open.
• ℎ¬­�:=maximum height rectangle, 𝐿𝑂𝐴𝐷 := maximum sum of 

heights of rectangles that intersect any vertical line. Then, 𝑂𝑃𝑇 =
𝐿𝑂𝐴𝐷(1 + 𝑂 ¯°±²

³

=/´
) .

• (2 + 𝜀)-appx, even for squares [Buchsbaum et al., STOC’03], 
• If we can drop 𝜀-fraction of items, we can achieve a packing in 

height (1 + 𝜀) 𝑂𝑃𝑇 [Momke et al., ‘20].

ℎ¬­�=3, 
𝐿𝑂𝐴𝐷=4, 𝑂𝑃𝑇=5



4. 2-D Geometric Knapsack
(2-D GK)



Geometric Knapsack: (2-D)
• Input :

- Rectangles I:=	{R1, R2,	,…,	Rn}; Each Ri has integral width and height (wi ,	hi) and profit pi .
- A Square K	× K knapsack.

K=10

Variant 1: 2DK
No rotations 
are allowed!

OPT=155
90 $ 60 $

5 $

• Goal : Find an axis-parallel non-overlapping  packing of a subset of input rectangles into
the knapsack that maximizes the total profit. 

100 $ 95 $ 90 $ 60 $ 5 $
1 $

(9,6) (7,6) (5,8)
(4,4) (2,3)

60 $

(4,6)



Geometric Knapsack: (2-D)
• Input :

- Rectangles I:=	{R1, R2,	,…,	Rn}; Each Ri has integral width and height (wi ,	hi) and profit pi .
- A Square K	× K knapsack.

K=10

Variant 2: (2DKR)
90 degree rotations 

are allowed!

OPT=165
60 $

5 $
100 $

• Goal : Find an axis-parallel non-overlapping  packing of a subset of input rectangles into
the knapsack that maximizes the total profit. 

100 $ 95 $ 90 $ 60 $ 5 $
1 $

(9,6) (7,6) (5,8)
(4,4) (2,3)

60 $

(4,6)



Geometric Knapsack: Complexity
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• Geometric Knapsack is Strongly NP-hard 
(even when all items are squares with profit 1), [Leung et al., 1990]
- Remains NP-hard even if the input is given in unary.
- No exact algorithm even in pseudo-polynomial time (unless P=NP).
• Not known whether the problem is APX-hard. So, the existence of a 

PTAS/QPTAS/PPTAS is still open!
• (1+ε)-approximation known if

- profit of an item is equal to its area. [Bansal et al., ISAAC ‘09].
- items are relatively small [Fishkin et al., MFCS ‘05].
- items are squares [Wiese-Heydrich,  SODA ’17].



Geometric Knapsack:

• (2+ε)-approximation [Jansen-Zhang, SODA’04]
- for both with and without rotations.
- even in the cardinality case (when all profits are 1).
• Broke the barrier of 2 [Galvez-Grandoni-Ingala-K.-Wiese, FOCS’17]

- Without rotations: (17/9+ε)<1.89-appx.
- With rotations: (1.5+ε)-appx. 
- Cardinality case: 1.72, (4/3+ε)-appx., resp. 



5. Storage Allocation Problem
(SAP)
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SAP
• Input: A path with edge capacities and a set of tasks (rectangles) that are 

specified by start and end vertices (fixed starting coordinate and width), 
demands (heights) and profits.  
• Goal:  Select a subset of tasks that can be drawn as non-overlapping 

rectangles underneath the capacity profile.



SAP: Tale of approximability

• Generalizes knapsack.
• Special case: Uniform-SAP (when all edges have same capacity) 

– 7-appx [Bar-Noy et al, STOC’00].
• General case: (9 + 𝜀)-approximation [Bar-Yehuda et al, SPAA’13].
• (2 + 𝜀)-approximation [Momke-Wiese, ICALP’15].
• Uniform-SAP: 1.969 [Momke-Wiese, ’20].
• General-SAP: QPTAS with resource augmentation. [Momke-Wiese, ’20].



6. Unsplittable Flow on a Path       
(UFP)
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UFP (sliced version of SAP)
• Input: A path with edge capacities and a set of tasks (rectangles) that are 

specified by start and end vertices (fixed starting coordinate and width), 
demands (heights) and profits.  
• Goal:  Select a subset of tasks such that total demand of selected tasks at 

any edge is less than the edge capacity.  



UFP: A tale of approximability

• Strongly NP-hard, even for uniform edge capacities and uniform profits. 
• QPTAS [Bansal et al, STOC’06, Batra et al, SODA’15] ,
• O(log n )-apprx. [Bansal et al,  SODA’09],
• (7 + 𝜀)-appx [Bonsma et al, FOCS’11],
• (2 + 𝜀)-appx [Anagnostopoulos et al, SODA’14], 
• (¸

§
+ 𝜀)-appx [Grandoni et al. STOC’18],

• Possibility of PTAS is still open!



7. Maximum Weighted Independent 
Set of Rectangles (MWISR)
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MWISR
• Input: n axis-parallel rectangles (each with associated profit) on a plane.
• Goal:  Find maximum profit  subset of disjoint rectangles.
• Special case: uniform profit (MISR).
• Applications: data-mining, map-labeling, etc.



MWISR: tale of approximability

• NP-hard.
• Folklore: O(log n) 
• MISR: O(log log n)-approximation [Chalermsook-Chuzhoy, SODA’09 ]
• MWISR:
• O(log n/log log n) [Chan-HarPeled, SoCG’09]
• PTAS for pseudodiscs (e.g. squares) [Chan-HarPeled, SoCG’09]
• 1 + 𝜀 -appx in 𝑛¹º»¼(678 9) [Adamaszek-Wiese, FOCS’13]
• 1 + 𝜀 -appx in 𝑛¹º»¼(678 678 9) [Chuzhoy-Ene, STOC’16]
• PTAS, even O(1)-appx is open!



Pach-Tardos Conjecture



Pach-Tardos Conjecture

• Conjecture: For any set of 𝑛 non-overlapping axis-parallel rectangles 
there is a guillotine cutting sequence with only axis-parallel cuts 
separating Ω(𝑛) of them. 

• Known upper bound: n/2 (also for squares).
• Known lower bound: n/log n.
• The conjecture is true for squares! [Abed et al, 

APPROX’15] 
• Theorem: [Abed et al, APPROX’15] If the conjecture 

is true, then there is a 𝑂(1)-approximation 
algorithm for MISR with running time 𝑂(𝑛¸).
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• Round-UFP, Round-SAP, coloring of rectangles.
• Min-area rectangle packing: APTAS [Bansal-Sviridenko, SODA’04]
• Circle and other geometric objects.
• Vector: when items are multidimensional vectors. 

d-dim vector bin packing: 0.81 + 𝑂(log 𝑑) [Bansal-K.-Elias, SODA’16]
• Graph: weighted biparitite edge coloring, weighted biparitite matching, 

generalized assignment problem. [K.-Singh, FSTTCS’15] 
• Approximation and Online Algorithms for Multidimensional  Bin Packing: A 

Survey, Christensen-K.-Pokutta-Tetali,  Computer Science Review 2017.

Other related problems.
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Summary of present status
• Though these variants are related, their approximability and techniques

are quite diverse, e.g., 
-- Strip packing: admits APTAS, 
-- Independent set of rectangles: 

admits QPTAS and (log 𝑛/ log log 𝑛)-polytime approximation.
-- Geometric knapsack: 

may or may not admit PTAS/QPTAS/PPTAS, < 2- appx. Known. 
-- SAP/DSA: APX-hardness not known, Barrier of 2-approximation.
-- 𝑑-dim vector packing: No APTAS. Best known approx.: 𝑂(log 𝑑)
-- 𝑑-dim geometric bin packing: No APTAS. Best known approx.: 1.69_`=.
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1. Algorithm with OPT+O(1)-guarantee for bin packing.
2. A poly(d)-approximation or hardness for d-dim geometric bin packing?
3. Resolve guillotine conjecture for 2-D bin packing.
4. (§

K
+ 𝜀)-approximation for strip packing?

5. PTAS (or PPTAS or QPTAS) for 2-D geometric knapsack (even with rotations)?
6. PTAS for unsplittable flow on a path?
7. Break the barrier of 2 for dynamic storage allocation.
8. Break the barrier of 2 for storage allocation problem.
9. Resolve Pach-Tardos conjecture.
10. PTAS for maximum independent set of rectangles?

Top 10 open problems


