Perspective of extended Higgs sectors in beyond Standard Model scenarios

IOPB-2020

Bhubaneswar 15/01/2020

Priyotosh Bandyopadhyay IIT, Hyderabad, India

Plan

- Standard Model Higgs Boson
- Towards Higgs discovery and status
- Possible non-SUSY extensions in the Higgs sector
 - Singlet Higgs boson: Real and Complex
 - Doublet Higgs boson: Type-I, II, III, IV
 - Triplet Higgs boson: Real and complex
 - Inert Higgs bosons: Singlet, Doublet and Triplet

Extended Higgs sectors with supersymmetry

Forces of Nature

- 12 fermions constitute the matter.
- 12 gauge bosons are the force carriers
- They constitute the ~ 5% observed matter
- Unobserved matter, called as Dark Matter

Particle physics is summarised as 'Standard Model'

- Quarks come in pairs with charge 2/3 e and -1/3 e
- Each leptons has its own neutrinos
- Forces carriers communicate between the quarks and leptons

Fermi theory

 Enrico Fermi in 1933 proposed theory for Nuclear beta decay with effective four fermion interaction

- That Fermi Theory can be seen as a result of exchange of force carrier
- A massive gauge boson W

With effective coupling

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8m_W^2}$$

Fermi theory

 Enrico Fermi in 1933 proposed theory for Nuclear beta decay with effective four fermion interaction

- That Fermi Theory can be seen as a result of exchange of force carrier
- A massive gauge boson W

With effective coupling

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8m_W^2} =$$

- Local gauge invariance of $SU(2)_L \times U(1)_Y$ gauge theory unifies electromagnetic and weak interactions
- Glashow, Weinberg, Salam were awarded the Nobel Prize in Physics in 1979
- In the same way local gauge invariance of SU(3) gauge group gives rise to Gluons

- Gauge theory describes the interaction between gauge bosons and fermions
- Leaves both the gauge bosons and fermions as massless

What we observed

- Gluon and photon are massless
- W/Z are required to be heavy

WHY?

Why is Mass a Problem?

- Gauge invariance is guiding principle
- Mass term for gauge boson

$$\frac{1}{2}m^2A_{\mu}A^{\mu}$$

Violates gauge invariance

The explanation of this phenomenon leads to Spontaneous Electro-Weak symmetry Breaking

Solution

Lagrangian is gauge invariant at high scale

Symmetry is broken only at the minima

$$SU(2)_L \times U(1)_Y \to U(1)_{\rm EM}$$

Generates mass to the gauge bosons of the broken group

- Known as Higgs mechanism
- $U(1)_{\mathrm{EM}}$ is unbroken so photon remains massless

Standard Model Higgs boson

Standard Model has a complex scalar SU(2) doublet

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$

The scalar Lagrangian density is given by

$$\mathcal{L}_s = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - \mu^2 \mid \Phi^{\dagger}\Phi \mid -\lambda \left(\mid \Phi^{\dagger}\Phi \mid\right)^2,$$

where,
$$D_{\mu}=\partial_{\mu}-i\frac{g_2}{2}\tau\cdot W_{\mu}-i\frac{g_1}{2}B_{\mu}Y~.$$

• At the minimum,
$$\langle \Phi^+ \Phi \rangle = v^2 = \sqrt{-\frac{\mu^2}{2\lambda}} \quad , \quad \Phi = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v+h \end{array} \right)$$

$$\mathcal{L}_{s} = \frac{1}{2} \partial^{\mu} h \partial_{\mu} h + \frac{(v+h)^{2}}{4} \left[g_{2}^{2} W^{-\mu} W^{+}_{\mu} + \frac{1}{2} (g_{2}^{2} + g_{1}^{2}) Z^{\mu} Z_{\mu} \right] + \lambda v^{2} h^{2} + \lambda v h^{3}$$

- The gauge bosons and fermions become massive $\mathcal{L}_{Yuk} = -\frac{y_f}{\sqrt{2}}(v+h)\bar{f}f$
- The Higgs mass is given by $m_H = 2 \lambda v^2$

Higgs mechanism: an analogy

 Any field that couples to the Higgs field gets mass! Higgs field also gives mass to itself

Hunt for Higgs boson!

It took almost 50 years!

Looking back in our universe

 Popular Big bang theory predicts that universe was created by a big bang around 13.7 billion years ago

How to rediscover the theory?

- We have to look inside the matter
- Rutherford first collided alpha particles to the gold foil to see inside the atom
- Present day colliders are using the same technology

Large electron positron collider (LEP)

- It was a electron-positron collider at CERN
- It ran till 2000 with energy reached to 209 GeV
- LEP searched for Higgs boson
- Put a lower bound on the mass $m_H > 114.4~{\rm GeV}$
- Associated production put bound $m_A \gtrsim 93\,{
 m GeV}$

Electro-weak precision test

The blue band implies that

$$m_H \simeq 85 \pm_{28}^{39} {
m GeV}$$
 at 1σ level

$$\Rightarrow m_H \lesssim 124 \, \mathrm{GeV}$$

Tevatron

 It was a proton anti-proton collider at Fermilab with energy reached till
 2 TeV

- It discovered 'top' quark the missing Standard Model quark.
- It could not find the Higgs boson but put some exclusion limits.

Large Hadron Collider (LHC)

- It is a proton proton collider
- It lies in a tunnel of 27 km in circumference, around 100 m beneath the Franco-Swiss border near Geneva, Switzerland.
- It has four main detectors

CMS, ATLAS, ALICE and LHCb

- It finished run of centre of mass energy of 7 and 8 TeV, 13 TeV
- Next run is expected in Spring 2021

We first observed Higgs boson in di-photon mode

Discovery of Higgs boson

- ATLAS reported discovery of spin even-integer-spin particle with mass of 126.5 GeV at 5.0σ
- CMS finds a particle with a mass of 125.3 ± 0.6 GeV with 4.9σ significance.

4th July, 2012

The real announcement

Peter Higgs and François Englert were given Nobel Prize in 2013

Does discovery of Higgs boson complete the Standard Model?

Well!

We have to look into other problems inside SM

A little list of problems

Dark Matter

Tiny neutrino masses

Higgs mass Hierarchy

Fermion mass hierarchy

Does Higgs potential say something?

Quantum corrections can limit the theory as well as the predictions

Standard Model Higgs mass bound

$$V(\Phi) = \mu^2 |\Phi^+ \Phi| + \lambda (|\Phi^+ \Phi|)^2$$

 If the Higgs boson did not exist, we should have to invent something very much like it.

Standard Model Higgs potential

$$V(\Phi) = \mu^2 |\Phi^+ \Phi| + \lambda (|\Phi^+ \Phi|)^2$$

SM Higgs potential faces strong constraints

- 1. From triviality
- 2. Vacuum Stability
- 3. Unitarity

This is due to the running of couplings.

At large field values
$$\mu \frac{d\lambda}{d\mu} \simeq \frac{3}{2\pi^2} \lambda^2$$

$$\lambda(\mu) = \frac{\lambda(v)}{1 - \frac{3}{2\pi^2}\lambda(v)\ln\frac{\mu}{v}}$$

• At some scale $\mu = \Lambda$, $\lambda(\mu)$ diverges, hitting the Landau pole.

Higgs mass bounds from Triviality

$$\Lambda \sim v e^{\frac{2\pi^2}{3\lambda}} = v e^{\frac{4\pi^2 v^2}{3m_h^2}}$$

Where we use
$$m_h^2 = 2\lambda v^2$$

- This leads to upper bounds on the Higgs boson mass $m_h^2 < \frac{4\pi^2 v^2}{3 \ln \frac{\Lambda}{a}}$
- The following bounds can be derived from the above expressions

$$\begin{split} \Lambda \sim 10^3 GeV \Rightarrow m_h < 700 GeV \\ \Lambda \sim 10^8 GeV \Rightarrow m_h < 246 GeV \\ \Lambda \sim 10^{24} GeV \Rightarrow m_h < 125 GeV \end{split}$$

Stability bounds

Higgs couples to fermions via Yukawa couplings

$$\mathcal{L}_Y = Y_t Q \phi t_R$$

At low values the top quark contribution is important

$$\mu \frac{d\lambda}{d\mu} \simeq -\frac{3}{8\pi^2} Y_t^4$$

The solution takes a form,

$$\lambda(\mu) = \lambda - \frac{3}{8\pi^2} \lambda_t^4 \ln \frac{\mu}{v}$$

where at some point we hit $\lambda(\mu) < 0$, leading instability to Higgs potential

$$m_h^2 > \frac{3m_t^2}{\pi^2 v^2} \ln \frac{\Lambda}{v}$$

Stability of the potential

If your mexican hat turns out to be a dog bowl you have a problem...

from A. Strumia

Theoretical Prediction of Higgs boson mass

- Perturbative unitarity $\Rightarrow m_H < 870 \text{ GeV}$
- Triviality $\Rightarrow m_H < 160$ GeV
- Stability $\Rightarrow m_H > 126$ GeV.

Generic guide lines of SM extensions

- Any addition of scalar will enhance the stability of the potential for larger scale.
- Any addition with fermions
 with large Yukawa can turn
 λ negative making the
 potential unstable.

Extending Higgs sector will enhance vacuum stability

Possible Potentials

- Various configurations of the effective potential.
- Local minimum near the original is the electroweak vacuum.

Status of SM

Within the uncertainty of top mass we are in a metastable vacuum

SM+ Singlet

$$V(\phi, S) = \mu^2 |\phi|^2 + \lambda |\phi|^4 + m_S^2 S^2 + \lambda_{S\phi} S^2 |\phi^2| + \lambda_S S^4$$

Khan et al, PRD 90, 113008 (2014)

Cross over region shifted towards higher scale from SM

Scalar extension with right-handed neutrino

$$V(H,\chi) = m_1^2 H^{\dagger} H + m_2^2 \chi^{\dagger} \chi + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (\chi^{\dagger} \chi)^2 + \lambda_3 (H^{\dagger} H)(\chi^{\dagger} \chi)$$

$$-\mathcal{L}_{Y}=Y_{d}^{ij}\overline{Q_{L}^{i}}Hd_{R}^{j}+Y_{u}^{ij}\overline{Q_{L}^{i}}\tilde{H}u_{R}^{j}+Y_{e}^{ij}\overline{L^{i}}He_{R}^{j}+Y_{\nu}^{ij}\overline{L^{i}}\tilde{H}\nu_{R}^{j}+Y_{N}^{ij}\overline{(\nu_{R}^{i})^{c}}\nu_{R}^{j}\chi+h.c.$$

$$\beta^{(1)}_{\lambda_1} \simeq \lambda_3^2 - 6Y_t^4$$

Stability

Scale

$$\beta^{(1)}_{\lambda_1} \simeq \lambda_3^2 - 6Y_t^4$$
 $\beta_{\lambda_2}^{(1)} \simeq 2\lambda_3^3 - 48Y_N^4$ $m_{\nu_h} = Y_N v'$

Coriano et al. Phys.Lett. B738 (2014) 13-19, JHEP 1602 (2016) 135

Inverse seesaw

Large Yukawa spoils the stability earlier

Rose et al. JHEP 1512 (2015) 050

Discovered Higgs bosons decay modes

• Higgs boson is discovered above 5σ

$$h o b ar{b} \ o au ar{ au}$$
 Lepton and quark modes $o au au ar{ au}$ Phys. Rev. Lett. 121 (2018) 121801. Phys. Lett. B 779 (2018) 283 $o au ZZ^* \ o au WW^*$ Gauge bosons $o au au au$ Loop decay

Higgs to invisible

- CMS at 13 TeV put $\mathcal{B}(H \to inv) \lesssim 0.33$ at 95% CL
- A combined analysis of 7,8 and 13 TeV shows $\mathcal{B}(H \to inv) \lesssim 0.19$

CMS: Phys. Lett. B 793 (2019) 520

Higgs boson decaying to anything undetected

Higgs measured couplings

Are there other Higgs boson(s)?

May be yes!

What are there gauge representations?

We start with simple SM gauge singlet

Standard Model + SM gauge Singlet

- Why?
- Other benefits?
- Higgs mass gets any corrections?
- Dark singlet?
- Vacuum stability?

SM + Real Singlet

The Higgs potential look like

$$V(\phi, S) = \mu^2 |\phi|^2 + \lambda |\phi|^4 + m_S^2 S^2 + \lambda_{S\phi} S^2 |\phi^2| + \lambda_S S^4$$

This vev can generate both the mass terms for $\,\phi\,{
m and}\,{
m S}$

$$\langle S \rangle = v_S \text{ and } S = v_S + S_r$$

Similarly, $<\phi>=v+h$

 $\lambda_{S\phi} < S > < \phi > = \lambda_{S\phi} v_S v$ generates the bi-linear mixing term

At the end we have two physical Higgs bosons

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \mathcal{R} \begin{pmatrix} h \\ S \end{pmatrix}$$

SM + Complex scalar

Now the singlet has two components

$$S = S_r + ia$$

The potential takes a form given below:

$$V(\phi, S) = \mu^{2} \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^{2}$$

$$+ (\delta_{1} \phi^{\dagger} \phi S + \delta_{3} \phi^{\dagger} \phi S^{2} + a_{1} S + b_{1} S^{2}$$

$$+ c_{1} S^{3} + c_{2} S |S|^{2} + d_{1} S^{4} + d_{3} S^{2} |S|^{2} + c.c.)$$

$$+ \delta_{2} \phi^{\dagger} \phi |S|^{2} + b_{2} |S|^{2} + d_{2} |S|^{4}$$

However depending on the demand of additional symmetries we can remove some of the terms

Application of Z_2 symmetry : $S \rightarrow -S$

prohibits all the odd terms in S

S can be dark matter candidate

SM+ complex scalar

Additional symmetries such as U(1) global will remove

$$\delta_1, \, \delta_3, \, a_1, \, b_1, \, c_1, \, c_2, \, d_1 \, \text{and} \, d_3$$

$$V(\phi, S) = \mu^{2} \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^{2} + \delta_{2} \phi^{\dagger} \phi |S|^{2} + b_{2} |S|^{2} + d_{2} |S|^{4}$$

Giving vev to the singlet: $\langle S \rangle = v_S + S_r + ia$

 (h, S_r) will mix and a remains as Goldstone mode,

a massless degrees of freedom!

This cannot give a viable dark matter

SM+ complex scalar

- To have massive Goldstone We need to break the Global symmetry softly
- Non-zero b_1 naturally breaks U(1) and give mass to a
- Giving vev to the singlet, breaks both the U(1) and z_2 symmetry! Leads to domain wall problem Breaks U(1)
- Choosing non-zero a_1 breaks Z_2 explicitly

$$V(\phi, S) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^4 + \delta_2 \phi^{\dagger} \phi |S|^2 + b_2 |S|^2 + d_2 |S|^4 + (b_1 S^2 + a_1 S + c.c)$$

• In stead of Z_2 , if we apply $S \to S^* \Rightarrow a \to -a$

Breaks Z_2 symmetry

Barger et al. Phys.Rev.D79:015018,2009 Costa et al. JHEP06(2016)034

Symmetry

Gauge U(1) scalar extension

- In stead of Z_2 , if we apply $S \to S^* \Rightarrow a \to -a$
- For $v_a=0$ and $\mathbf{v_S}\neq 0$, $(h,S_r)\to (h_1,h_2)$, and aa becomes DM candidate

CP-even Higgs bosons mix

- For $v_a \neq 0$ and $v_S \neq 0$, $(h, S_r, a) \rightarrow (h_1, h_2, h_3)$
 - ⇒ Spontaneous CP-violation.

Costa et al. JHEP06(2016)034

Higgs portal dark matter in $U(1)_{B-L}$ with RHN

B-L scalar

RHN

$$\mathcal{L}_{\text{NP}} = -m_S^2 |S|^2 - \frac{1}{2} \lambda_{SH} |S|^2 |\Phi|^2 - \lambda_S (S^{\dagger}S)^2 - \lambda_{N_i} S \bar{N}_i^c N_i - y_{ij} \bar{L}_i \Phi^{\dagger} N_j$$
$$- m_D^2 |\phi_{\text{DM}}|^2 - \frac{1}{2} \lambda_{DH} |\phi_{\text{DM}}|^2 |\Phi|^2 - \frac{1}{2} \lambda_{DS} |\phi_{\text{DM}}|^2 |S|^2 - \lambda_D (\phi_{\text{DM}}^{\dagger} \phi_{\text{DM}})^2.$$

Dark matter annihilation modes

Scalar DM

Type-I Seesaw also generates small neutrino mass

SS PB, RM, EJC Phys.Rev. D97 (2018) no.1, 015001

Higgs portal dark matter in $U(1)_{B-L}$ with RHN

• We get $y_N \sim 10^{-8} \, \mathrm{for} \, \mathrm{m_N} \sim 100 \, \mathrm{GeV}$

Right-Handed Neutrino portal Dark Matter

The RHN as a portal to DM was suggested in a simple setup assuming the coupling among RHN, fermion χ and scalar ϕ

$$-\mathcal{L} \subset \frac{1}{2}m_0^2\phi^2 + \kappa\phi^2|H|^2 + \left\{\frac{1}{2}m_\chi\chi\chi + \frac{1}{2}m_NNN + y_NLHN + \lambda N\chi\phi + \text{h.c.}\right\}.$$
(1)

- Here both $\chi \operatorname{or} \phi$ can be dark matter candidate
- DM can annihilates via RHN portal

Loop induced Higgs-DM coupling

- No tree-level coupling of the fermionic DM to the Higgs boson
- An effective h-χ-χ coupling arises from the one-loop diagram

$$-\mathcal{L}_{h\chi\chi} = \kappa' h \bar{\chi}\chi \quad \text{where}$$

$$\kappa' \equiv \frac{\lambda^2 \kappa v}{16\pi^2} \frac{m_{\chi} c_1(x) - m_N c_0(x)}{m_{\phi}^2},$$

and $c_{1,0}(x)$ are loop-functions of $x \equiv m_N^2/m_\phi^2$

Figure 4: The interaction of the DM χ with the Higgs h induced at one-loop level.

- Latest data from XENON1T experiment excludes |λ²κ| ≥ O(1) for m_x ≤ 150 GeV
- Future sensitivity of XENONnT can rule out such value of |λ²κ| up to 600GeV DM mass

Two Higgs doublet model

Here we have two SU(2) Higgs doublets with same hyper charges

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_{1r} + ia_1 \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_{2r} + ia_2 \end{pmatrix}$$

The general Higgs potential takes the form

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + H.c) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left[\frac{\lambda_{5}}{2} ((\Phi_{1}^{\dagger} \Phi_{2})^{2}) + \lambda_{6} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{1}^{\dagger} \Phi_{2}) + \lambda_{7} (\Phi_{2}^{\dagger} \Phi_{2}) (\Phi_{1}^{\dagger} \Phi_{2}) + H.c \right]$$

The Yukawa part of the Lagrangian is

$$-\mathcal{L}_Y = Y_{u1,2}^{ij} \tilde{\Phi}_{1,2} Q_i u_j^c + Y_{d1,2}^{ij} \Phi_{1,2} Q_i d_j^c + Y_{d1,2}^{ij} \Phi_{1,2} L_i e_j^c + h.c.$$

2HDN

After EWSB:

$$\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \frac{1}{\sqrt{2}} [v_{1,2} + h_{1,2} + ia_{1,2}] \end{pmatrix}$$

$$\begin{pmatrix} G^0 \\ A \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ s_{\beta} & -c_{\beta} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \quad \begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

$$\begin{pmatrix} G^{\pm} \\ H^{\pm} \end{pmatrix} = \begin{pmatrix} c_{\beta} & s_{\beta} \\ s_{\beta} & -c_{\beta} \end{pmatrix} \begin{pmatrix} \phi_{1}^{\pm} \\ \phi_{2}^{\pm} \end{pmatrix}, \quad \tan \beta = \frac{v_{2}}{v_{1}}$$

We have four massive Higgs bosons: $h(\simeq h_{125}), H, A, H^{\pm}$

2HDM and Flavour problem

Generic Yukawa coupling leads to FCNC:

$$-\mathcal{L}_{Y} = Y_{u1,2}^{ij} \tilde{\Phi}_{1,2} Q_{i} u_{j}^{c} + Y_{d1,2}^{ij} \Phi_{1,2} Q_{i} d_{j}^{c} + Y_{d1,2}^{ij} \Phi_{1,2} L_{i} e_{j}^{c} + h.c.$$

$$(Y_{f_{1}}^{ij} c_{\beta} + Y_{f_{2}}^{ij} s_{\beta}) \frac{v}{\sqrt{2}} f_{i} f_{j}^{c} \quad \text{vs} \quad (Y_{f_{1}}^{ij} c_{\alpha} - Y_{f_{2}}^{ij} s_{\alpha}) \text{hf}_{i} f_{j}^{c}$$

$$\downarrow \qquad \qquad \downarrow$$

$$m_{f}^{ij} \quad \text{Mass} \neq \text{Yukawa} \quad Y_{f}^{ij}$$

- FCNC's arise because of the impossibility to simultaneously diagonalise two arbitrary complex matrices.
- One way to eliminate non-diagonal terms in the Lagrangian is by imposing flavour blind \mathbb{Z}_2 discrete symmetry

Types of 2HDM

Type	$Z_2 { m charges}$					
	Φ_1	Φ_2	Q_L/L	u_R	d_R	e_R
$\ $ I	-	+	+	+	+	+
II	-	+	+	+	-	-
Lepto-specific/X	_	+	+	+	+	-
Fliped	_	+	+	+	-	+

Given a fermion couples only to one Higgs doublet

Heavy Higgs bounds

 H->WW: Combined upper limits at 95% confidence level on the product of the cross section and branching fraction exclude a heavy Higgs boson with SM-like couplings and decays up to 1870 GeV

CMS: arXiv:1912.01594 [hep-ex]

 H->ZZ: Bounds cross-section in ZZ decay modes are given till 3 TeV.

CMS:JHEP 06 (2018) 127

• $A \to b \bar b / \tau \bar \tau$: Bounds on cross-section give till 900 GeV in $2b + 2\tau$ mode

CMS:Phys. Lett. B 778 (2018) 101