"la Caixa" Foundation

Phase Transitions in the Early Universe

Luigi Delle Rose

26/02/2021
based on JHEP 12 (2019) 149 arXiv:1909.07894, JHEP 04 (2020) 025, arXiv:1912.06139

Thermal History of the Universe

Phase transitions are important events in the evolution of the Universe

- the SM predicts two of them (QCD confinement and EW symmetry breaking)

Phase transitions in the SM

In the SM the QCD and EW PhT are extremely weak
\rightarrow the two phases are smoothly connected (cross over)

- no barrier is present in the effective potential
- the field gently "rolls down" towards the global minimum when $T<T_{c}$

- no strong breaking of thermal equilibrium
- no distinctive experimental signatures

Phase transitions beyond the SM

New physics may provide first order phase transitions

- a barrier in the potential may be generated from tree-level deformations, thermal or quantum effects
- the field tunnels from false to true minimum at $T=T_{n}<T_{c}$

- the transition proceeds through bubble nucleation
- significant breaking of thermal equilibrium
- interesting experimental signatures (eg. gravitational waves)

Bubble nucleation

Bubble dynamics can produce gravitational waves and baryogenesys

Thermal History of the Universe

Additional phase transitions could be present due to new-physics well motivated example:

- Peccei-Quinn symmetry breaking connected to QCD axion

How to get a first-order PhT

I. "Single field" transitions

- barrier coming from:
- quantum corrections due to additional fields
- thermal effects

II. "Multiple field" transitions
- barrier can be present already at tree-level and T=0
- minima in different directions in field space

Extended Higgs sectors

New Physics
in the Higgs sector

DM candidate

New Physics in the Higgs sector

First order
 phase transitions

DM candidate

Collider - cosmology synergy

Gravitational waves

testable at
future interferometers

Deviations in Higgs couplings + new states

testable at
future colliders

SM + singlet scalar

Higgs + singlet scalar potential (Z_{2} symmetric $)$
in the high-temperature limit

$$
\begin{aligned}
& \qquad V(h, \eta, T)=\frac{\mu_{h}^{2}}{2} h^{2}+\frac{\lambda_{h}}{4} h^{4}+\frac{\mu_{\eta}^{2}}{2} \eta^{2}+\frac{\lambda_{\eta}}{4} \eta^{4}+\frac{\frac{\lambda_{h \eta}}{2} h^{2} \eta^{2}}{}+\left(c_{h} \frac{h^{2}}{2}+c_{\eta} \frac{\eta^{2}}{2}\right) T^{2} \\
& \text { important to create } \\
& \text { with thermal masses } \\
& \qquad c_{h}=\frac{1}{48}\left(9 g^{2}+3 g^{\prime 2}+12 \eta_{t}^{2}+24 \lambda_{h}+2 \lambda_{h \eta}\right) \quad c_{\eta}=\frac{1}{12}\left(4 \lambda_{h \eta}+\lambda_{\eta}\right)
\end{aligned}
$$

- EW symmetry is restored at very high T

$$
\langle h, \eta\rangle=(0,0)
$$

- Two interesting patterns of symmetry breaking (as the Universe cools down)
i. I-step PhT $\quad(0,0) \rightarrow(v, 0)$
ii. 2-step PhT $\quad(0,0) \rightarrow(0, w) \rightarrow(v, 0)$

- 2-step naturally realized since singlet is destabilized before the Higgs $\left(c_{\eta}<c_{h}\right)$

Phenomenology

Very weak constraints

- $m_{\eta}<m_{h} / 2$ excluded by invisible Higgs decays
- direct searches very challenging: only possible at FCC 100 TeV (interesting channel: $p p \rightarrow \eta \eta j j$ (VBF))
- indirect searches:
- modification of Higgs self couplings ($\left.\lambda_{3}=\frac{m_{h}^{2}}{2 v}+\frac{\lambda_{h n}^{3}}{24 \pi^{2}} \frac{v^{3}}{m_{\eta}^{2}}+\cdots\right)$
- corrections to Zh cross section at lepton colliders
- dark matter direct detection
- the singlet can contribute to DM abundance (but can not provide all DM)
- constraints are very model dependent (cosmological history depends on hidden sector details)

The parameter space

[Curtin, Meade, Yu '14]

Note: PhT parameter space shrinks if nucleation probability is taken into account

The parameter space

[Curtin, Meade, Yu '14]

Note: PhT parameter space shrinks if nucleation probability is taken into account

The parameter space

[Curtin, Meade, Yu '14]

Note: PhT parameter space shrinks if nucleation probability is taken into account

The parameter space

[Curtin, Meade, Yu '14]

Note: PhT parameter space shrinks if nucleation probability is taken into account

The parameter space

[Curtin, Meade, Yu 'I4]

Note: PhT parameter space shrinks if nucleation probability is taken into account

A strongly coupled realisation

with S. De Curtis and G. Panico

JHEP 12 (2019) 149, arXiv:1909.07894

Phase transitions in Composite Higgs

Higgs as a Goldstone from spontaneously broken global symmetry in a strongly-coupled sector

Multiple phase transitions expected:

- breaking of the global symmetry in the strong sector

$$
G \rightarrow H \quad \text { at } \quad T \sim \mathrm{TeV}
$$

- EW symmetry breaking

$$
\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{\mathrm{EM}} \quad \text { at } \quad T \sim 100 \mathrm{GeV}
$$

Mass spectra

we borrow the idea from QCD where we observe that the (pseudo) scalars are the lightest states
the Higgs could be a kind of pion arising from a new strong sector

Symmetry structure of the strong sector

G	H	N_{G}	NGBs rep. $[H]=$ rep. $[\mathrm{SU}(2) \times \mathrm{SU}(2)]$
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	4	$\mathbf{4}=(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	5	$\mathbf{5}=(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	8	$\mathbf{4}_{+\mathbf{2}}+\overline{\mathbf{4}}_{-\mathbf{2}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	6	$\mathbf{6}=2 \times(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	G_{2}	7	$\mathbf{7}=(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(5) \times \mathrm{SO}(2)$	10	$\mathbf{1 0}_{\mathbf{0}}=(\mathbf{3}, \mathbf{1})+(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$[\mathrm{SO}(3)]^{3}$	12	$(\mathbf{2}, \mathbf{2}, \mathbf{3})=3 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	8	$(\mathbf{4}, \mathbf{2})=2 \times(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{2})+2 \times(\mathbf{2}, \mathbf{1})$
$\mathrm{SU}(5)$	$\mathrm{SU}(4) \times \mathrm{U}(1)$	8	$\mathbf{4}_{-5}+\overline{\mathbf{4}}_{+\mathbf{5}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SU}(5)$	$\mathrm{SO}(5)$	14	$\mathbf{1 4}=(\mathbf{3}, \mathbf{3})+(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1})$

Symmetry structure of the strong sector

Minimal scenario: SO(5)/SO(4)
one Higgs doublet

Symmetry structure of the strong sector

Next to minimal scenario: $\mathrm{SO}(6) / \mathrm{SO}(5)$
one Higgs doublet

+ a scalar singlet

G	H	N_{G}	NGBs rep. $[H]=$ rep. $[\mathrm{SU}(2) \times \mathrm{SU}(2)]$
$\mathrm{SO}(5)$	$\mathrm{SO}(4)$	4	$\mathbf{4}=(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(5)$	5	$\mathbf{5}=(\mathbf{1}, \mathbf{1})+(\mathbf{2 , 2})$
$\mathrm{SO}(6)$	$\mathrm{SO}(4) \times \mathrm{SO}(2)$	8	$\mathbf{4}_{+\mathbf{2}}+\overline{\mathbf{4}}_{-\mathbf{2}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(6)$	6	$\mathbf{6}=2 \times(\mathbf{1}, \mathbf{1})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	G_{2}	7	$\mathbf{7}=(\mathbf{1}, \mathbf{3})+(\mathbf{2 , 2})$
$\mathrm{SO}(7)$	$\mathrm{SO}(5) \times \mathrm{SO}(2)$	10	$\mathbf{1 0}_{\mathbf{0}}=(\mathbf{3}, \mathbf{1})+(\mathbf{1}, \mathbf{3})+(\mathbf{2}, \mathbf{2})$
$\mathrm{SO}(7)$	$[\mathrm{SO}(3)]^{3}$	12	$(\mathbf{2}, \mathbf{2}, \mathbf{3})=3 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{Sp}(6)$	$\mathrm{Sp}(4) \times \mathrm{SU}(2)$	8	$(\mathbf{4}, \mathbf{2})=2 \times(\mathbf{2}, \mathbf{2}),(\mathbf{2}, \mathbf{2})+2 \times(\mathbf{2}, \mathbf{1})$
$\mathrm{SU}(5)$	$\mathrm{SU}(4) \times \mathrm{U}(1)$	8	$\mathbf{4}_{-5}+\overline{\mathbf{4}}_{+\mathbf{5}}=2 \times(\mathbf{2}, \mathbf{2})$
$\mathrm{SU}(5)$	$\mathrm{SO}(5)$	14	$\mathbf{1 4}=(\mathbf{3}, \mathbf{3})+(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1})$

the scalar potential

$$
V(h, \eta)=\frac{\mu_{h}^{2}}{2} h^{2}+\frac{\lambda_{h}}{4} h^{4}+\frac{\mu_{\eta}^{2}}{2} \eta^{2}+\frac{\lambda_{\eta}}{4} \eta^{4}+\frac{\lambda_{h \eta}}{2} h^{2} \eta^{2}
$$

Top partners

The quantum numbers of the fermionic top partners under SO (6) control the Higgs potential

■ 4 - not suitable for the top quark: large Zbıbı coupling
■ 10 - no potential for the scalar singlet η
■ 6, 15,20' - viable representations for the top quark
($\quad\left(q_{L}, t_{R}\right) \sim(\mathbf{6}, 6)$
typically predicts $\quad \lambda_{\eta} \simeq 0, \quad \lambda_{h \eta} \simeq \lambda_{h} / 2$
it requires large tuning in bottom quark sector
$\square\left(q_{L}, t_{R}\right) \sim(\mathbf{1 5}, 6)$
less-tuned scenario: no need to rely on bottom partners
but λ_{η} still small
$\square\left(q_{L}, t_{R}\right) \sim(\mathbf{6}, \mathbf{2 0})$
large parameter space available without large tuning

Parameter space

Properties of the EWPhT

$\left(q_{L}, t_{R}\right) \sim\left(6,20^{\prime}\right)$

v_{n} / T_{n} : strength of the PhT

Gravitational waves

|st order phase transitions are sources of a stochastic background of GW:

- bubble collision
- sound waves in the plasma
. turbulence in the plasma

$$
f_{\text {peak }}=f_{*} \frac{a_{*}}{a_{0}} \sim 10^{-3} \mathrm{mHz}\left(\frac{f_{*}}{\beta}\right)\left(\frac{\beta}{H_{*}}\right)\left(\frac{T_{*}}{100 \mathrm{GeV}}\right)\left(\frac{g_{*}}{100}\right)^{1 / 6} \quad \begin{array}{ll}
f_{*} / \beta \equiv\left(f_{*} / \beta\right)\left(v_{w}\right) \\
& \beta / H_{*} \simeq \mathcal{O}\left(10^{2}\right)-\mathcal{O}\left(10^{3}\right)
\end{array}
$$

peak frequencies within the sensitivity reach of future experiments for a significant part of the parameter space

GW spectra with non trivial structure

EW Baryogenesis

Sakharov's conditions

* B violation
* Out of equilibrium dynamics
* C and $C P$ violation

SM	SO(6)/SO(5)
EW sphaleron processes violate $B+L$	\checkmark as in the $S M$
X EWPhT not first order	EWPhT can be $1^{\text {st }}$ order and sufficiently strong
X CP violation too small	CP violation in the $\eta \bar{t} t$ coupling

EW Baryogenesis: CP violation

an additional source of CP violation is naturally present due to the non-linear dynamics of the Goldstones

$$
\mathcal{O}_{t}=y_{t}\left(1+i \frac{b}{f} \eta\right) \frac{h}{\sqrt{2}} \bar{c}_{L} t_{R}+\text { h.c. }
$$

A phase in the quark mass is generated. The phase becomes physical during the EW phase transition at $T \neq 0$, when η changes its vev
this is realised in the two-step phase transition

$$
(0,0)->(0, w)->(v, 0)
$$

EW Baryogenesis

$b / f \sim$ phase in the top mass needed to guarantee the amount of CPV for EWBG
$b / f \leqslant T e V-1$ is enough to reproduce the observed baryon asymmetry
there is a region where EWBG and an observable GW spectrum can be achieved simultaneously

The Peccei-Quinn phase transition

with G. Panico, M. Redi and A. Tesi
JHEP 04 (2020) 025, arXiv:1912.06139

The axion

The axion offers an elegant solution to the strong CP problem

$$
\mathscr{L} \supset-\frac{\alpha_{s}}{8 \pi}\left(\frac{a}{f_{a}}-\theta\right) G_{\mu \nu}^{A} \tilde{G}^{A \mu \nu}
$$

Small size of θ angle explained dynamically

- Goldstone boson of a spontaneously broken $\mathrm{U}(\mathrm{I})$ anomalous under QCD
- symmetry breaking at very high scale $f_{a} \gtrsim 10^{9} \mathrm{GeV}$

B Is the phase transition of the PQ symmetry first order?

- Is there any signal of gravity waves?

The minimal PQ model

Single scalar field (the axion) coupled to coloured fermions

$$
\mathcal{L}=\lambda_{X}\left(|X|^{2}-f^{2} / 2\right)^{2}+\left(y X Q Q^{c}+\text { h.c. }\right)
$$

It displays a second order phase transition for several reasons:
I. No massless bosonic states coupled to X where $P Q$ is restored
II. Fermion contribution to I-loop Coleman-Weinberg has "wrong" sign
III. Potential is always well approximated by $m^{2}(T)|X|^{2}+\lambda(T)|X|^{4}$

Peccei-Quinn breaking must be non-minimal to have first-order phase transition

The Higgs portal

Coupling with the Higgs boson is typically present

$$
V=-\mu^{2}|H|^{2}+\lambda|H|^{4}+{\underline{\lambda_{X H}}|X|^{2}|H|^{2}}^{2}+\lambda_{X}\left(|X|^{2}-f^{2} / 2\right)^{2}
$$

[Dev, Ferrer, Zhang, Zhang 'I9]

Lagrangian similar to the Higgs + singlet case, but with crucial differences:
I. huge hierarchy of scales $v \lll f$

- tuning of parameters: $\mu^{2}=\lambda_{X H} / 2 f^{2}+O\left((100 \mathrm{GeV})^{2}\right)$
- matching to the Higgs mass: $\frac{M_{h}^{2}}{2 v^{2}}=\lambda-\frac{\lambda_{X H}^{2}}{4 \lambda_{X}}$
II. both fields must have $V E V$ at $T=0$
- two step transition not possible (due to minimum structure of tree-level potential)

Radiative PQ breaking at weak coupling

Radiative PQ breaking

Collection of scalar fields (some of which charged under PQ)
[Gildener, Weinberg '76]

$$
V=\frac{\lambda_{i j k l}}{4} \phi_{i} \phi_{j} \phi_{k} \phi_{l}
$$

Flat direction in the potential at scale Λ

$$
\lambda_{\mathrm{eff}}(\mu)=\lambda_{i j k l}(\mu) n_{i} n_{j} n_{k} n_{l}, \quad \lambda_{\mathrm{eff}}(\Lambda)=0, \quad \phi_{i}=n_{i} \sigma
$$

Dynamics mainly controlled by field σ

Radiative PQ breaking

Radiative corrections can lift the flat direction and stabilize the field

$$
V_{\text {eff }}(\sigma) \approx \frac{\beta_{\lambda_{\text {eff }}}}{4} \sigma^{4}\left(\log \frac{\sigma}{\langle\sigma\rangle}-\frac{1}{4}\right) \quad\langle\sigma\rangle \approx \Lambda
$$

- beta function needs to be positive at the reference scale

Thermal corrections

Due to flatness of the potential thermal corrections are always important
$m_{i} \sim \hat{g} \sigma$
[Witten '8।]

$$
F(\sigma ; T) \simeq \frac{N}{24} \hat{g}^{2} \sigma^{2} T^{2}+\sum_{i} \frac{m_{i}^{4}}{64 \pi^{2}} \log \frac{T^{2}}{m_{i}^{2}}+V_{\text {eff }}(\sigma)
$$

even for $T \ll f$

one can formally expand at hight-T
close to the origin
barrier lasts for arbitrarily low temperatures!

Nucleation and supercooling

Due to small deviation from conformal invariance we expect significant supercooling

- the integral of the bounce action can be done exactly
[Brézin, Parisi '78]

$$
\frac{S_{3}}{T} \approx 18.9 \frac{\sqrt{N / 12}}{\hat{g}^{3}} \frac{16 \pi^{2} / b_{\mathrm{eff}}}{\log (M / T)}, \quad \begin{array}{r}
\beta \equiv b_{\text {eff }} \hat{g}^{4} /\left(16 \pi^{2}\right) \\
\begin{array}{c}
\mathrm{S}_{3} / T \text { scales logarithmically } \\
\text { with the temperature }
\end{array}
\end{array}
$$

- given the peculiar form of the bounce action $S_{3} / T=\# / \log (M / T)$ we find lower bound on the nucleation temperature

$$
T_{n} \gtrsim \sqrt{M H_{I}} \sim 0.1 f\left(\frac{f}{M_{\mathrm{Pl}}}\right)^{\frac{1}{2}}
$$

- the beta parameter in minimized for large supercooling

$$
\beta / H=\# / \log ^{2}(M / T)
$$

this scenario has the maximal effect on the amplitude of gravitational wave power spectrum generated during the bubble collisions

An explicit realisation

Two complex scalars: one charged under PQ and one with $\mathrm{U}(\mathrm{I})$ gauge charge
$\mathcal{L}=-\frac{1}{4 g^{2}} F^{2}+\left|D_{\mu} S\right|^{2}+\left|\partial_{\mu} X\right|^{2}+\left(y X Q Q^{c}+\right.$ h.c. $)-\lambda_{S}|S|^{4}-\lambda_{X}|X|^{4}-\lambda_{X S}|S|^{2}|X|^{2}$
[see related Hambye, Strumia, Teresi 'I 8]

A tree-level flat direction is realized for $\lambda_{X S}=-2 \sqrt{\lambda_{S} \lambda_{X}}$
... lifted by the running induced by the quartic couplings and by the gauge interactions

An explicit realisation: results

Results with quartic coupling dominance:

a sizable region wit large supercooling and $\beta / H \sim$ few
approximate analytic results work remarkably well!

Results with gauge coupling dominance:

results insensitive to improvement (small running)

Gravitational waves

For large supercooling spectrum within the range of ground based experiments Portion of the parameter space accessible at LIGO

$$
\left.h^{2} \Omega_{\mathrm{gw}}\right|_{\text {peak }} \simeq 1.27 \times 10^{-10}\left(\frac{100}{\beta / H}\right)^{2} \quad f_{\text {peak }} \simeq 3.83 \times 10^{5} \mathrm{~Hz}\left(\frac{\beta / H}{100}\right)\left(\frac{T}{10^{11} \mathrm{GeV}}\right)
$$

Radiative PQ breaking at strong coupling

Confinement phase transition

We consider a model with the axion together with a dilaton:
PQ breaking linked to confinement PhT
strongly coupled large-N CFT at finite temperature with global Peccei-Quinn $U(I)$
tiny deviation from scale invariance realises a Ist order phase transition with a large amount of supercooling (in the same spirit as in the weakly coupled case)
breaking of scaling invariance at a scale f also triggers PQ breaking

$$
\langle 0| j_{\mathrm{PQ}}^{\mu}(p)|a\rangle \sim \frac{N}{4 \pi} f p^{\mu}
$$

The dilaton potential

CFT explicitly broken by (almost) marginal deformation

$$
\mathrm{CFT}+\frac{g}{\Lambda^{\epsilon}} \mathcal{O} \quad \rightarrow \quad \beta_{g}=\epsilon g+a N \frac{g^{3}}{16 \pi^{2}}+\ldots
$$

Dilaton potential from running of quartic coupling

Analytic approximations

At large supercooling tunnelling happens very close to the origin

- the 3D bounce action is given by

$$
\frac{S_{3}}{T}=28.5 \frac{N^{2}}{16 \pi^{2}} \times \frac{\left(16 \pi^{2}\right)^{1 / 4}}{\left|\lambda_{0}\right|^{3 / 4}} \times \frac{1}{|g(T, \epsilon)|^{3 / 4}}
$$

- 4D bounce can also be relevant (dominant at low T)

$$
S_{4} \sim 26 \frac{N^{2}}{16 \pi^{2}} \times \frac{1}{\left|\lambda_{0}\right|} \frac{1}{|g(T, \epsilon)|}
$$

Properties of the phase transition

Most of the effects controlled by the size of the free energy
(shape of the CFT potential almost irrelevant)

- $\beta / H \sim$ few can be obtained but only in small portion of the parameter space

Gravitational waves

Portion of the parameter space accessible at LIGO

Gravitational waves

Conclusions

Phase transitions are important events in the evolution of the Universe

New physics can significantly modify the SM predictions and open appealing scenarios:

- strong first-order EW phase transition from extended Higgs sector
- possibility to achieve EW baryogenesys
- collider signatures (at future machines)
- detectable gravitational wave signal (at space-based interferometers)
- Peccei-Quinn phase transition
- minimal scenarios predict second-order transition
- possible first order for axion + scalar and axion + dilaton systems
- detectable gravitational wave signal (at ground-based interferometers)
- Baryon and Lepton numbers are classically conserved in the SM
- Conservation is spoiled by quantum corrections

$$
\partial_{\mu} j_{B}^{\mu}=\partial_{\mu} j_{L}^{\mu}=N_{f}\left(\frac{g^{2}}{32 \pi^{2}} W \widetilde{W}-\frac{g^{\prime 2}}{32 \pi^{2}} Y \widetilde{Y}\right)
$$

- B-L is conserved while $\mathrm{B}+\mathrm{L}$ is anomalous

$$
\begin{gathered}
\Delta B=\Delta L=N_{f} \Delta N_{C S} \\
N_{C S}=\frac{g^{2}}{32 \pi^{2}} \int d^{3} x \epsilon^{i j k}\left(W_{i j}^{a} W_{k}^{a}-\frac{g}{3} \epsilon_{a b c} W_{i}^{a} W_{j}^{b} W_{k}^{c}\right)
\end{gathered}
$$

We want to compute ΔB between two configurations of gauge fields with vanishing field strength tensor.
the corresponding potential are not necessarily zero but can be pure gauge fields

$$
W_{\mu}=-\frac{i}{g} U(x) \partial_{\mu} U^{-1}(x)
$$

There are two classes of gauge transformations that keep $W_{\mu \nu}=0$

- trivial continuous transformations of the potential with $\Delta N_{C S}=0$
- continuous transformations of the potential with $\Delta N_{C S} \neq 0$ must enter regions where $W_{\mu \nu} \neq 0$
vacuum states with different topological charge are separated by a barrier!

- transition rate for barrier penetration (instanton)

$$
\Gamma \sim \exp \left(-\frac{4 \pi}{\alpha_{W}}\right) \sim 10^{-162}
$$

- transition rate for "jumping over" the barrier (sphaleron) static and unstable solutions of the eom
in the symmetric phase

$$
\Gamma=k\left(\alpha_{W} T\right)^{4}
$$

in the broken phase
$\Gamma \sim 2.8 \times 10^{5} T^{4}\left(\frac{\alpha_{W}}{4 \pi}\right)^{4} \kappa \exp \left(-\frac{E_{\text {sph }}(T)}{T}\right) \quad E_{\text {sph }}(T)=\frac{2 m_{W}(T)}{\alpha_{W}} B\left(\lambda / g_{W}^{2}\right)$

