Obscurum Higgs @ Colliders

Antonio Costantini

antonio.costantini@uclouvain.be - antonio.costantini@bo.infn.it

HEP Seminars @ IITH

March 5th 2021

based on arXiv:2010.02597 P. Bandyopadhyay, AC Phys.Rev.D 103 (2021) 1

arXiv:2005.10289

AC, F. De Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz and X. Zhao JHEP 09 (2020) 080

Content

- Introduction
- Simple SM Extension
- Phenomenology of cTSM
 - 🗼 Dark Matter
 - Long-Lived Particles
 - Collider Signatures
- Conclusions

Introduction

The Higgs Boson @ LHC - (Run 1)

ATLAS and CMS, JHEP 08 (2016) 045

The Higgs Boson @ LHC - (Run 2)

ATLAS and CMS (Sopczak), PoS FFK2019 (2020) 006

Simple SM Extension

SM + Complex Triplet

Scalar Sector

$$\Phi = \begin{pmatrix} \varphi^+ \\ \Phi_0 \end{pmatrix} \qquad \mathsf{T} = \frac{1}{\sqrt{2}} \begin{pmatrix} t_0 & \sqrt{2} t_1^+ \\ \sqrt{2} t_2^- & -t_0 \end{pmatrix}$$

Massive Vector Bosons

$$\begin{split} m_W &= \frac{1}{2} g_2 \sqrt{v^2 + 4 v_T^2} \quad m_Z = \frac{1}{2} \sqrt{\left(g_1^2 + g_2^2\right)} v \\ & \downarrow \\ v_T \lesssim 5 \text{ GeV} \end{split}$$

SM + Complex Triplet: Scalar Spectrum

$$V = V_1 + V_2$$

$$V_{1} = \mu^{2} \Phi^{\dagger} \Phi + \frac{\lambda_{H}}{2} \Phi^{\dagger} \Phi \Phi^{\dagger} \Phi + m_{T}^{2} \operatorname{tr}[T^{\dagger}T] + \frac{\lambda_{T}}{2} \operatorname{tr}[T^{\dagger}T] \operatorname{tr}[T^{\dagger}T] + \frac{\lambda_{T'}}{2} \operatorname{tr}[T^{\dagger}TT^{\dagger}T] + \frac{\lambda_{HT}}{2} \Phi^{\dagger} \Phi \operatorname{tr}[T^{\dagger}T] + \kappa_{HT} (\operatorname{tr}[\Phi^{\dagger}T\Phi] + \operatorname{h.c.})$$

$$V_{2} = \left(m_{T}^{\prime 2} \operatorname{tr}[T T] + \frac{\lambda_{T}^{(2)}}{2} \operatorname{tr}[T T T] + \frac{\lambda_{T}^{(3)}}{2} \operatorname{tr}[T^{\dagger} T T] \right) + \frac{\lambda_{HT}^{(3)}}{2} \operatorname{tr}[T^{\dagger} T T] + \frac{\lambda_{HT}^{(2)}}{2} \Phi^{\dagger} \Phi \operatorname{tr}[T T] + \operatorname{h.c.}$$

SM + Complex Triplet: Scalar Spectrum

After EWSB

$$\begin{split} m_{a_{P}}^{2} &= \kappa_{HT} \frac{v^{2}}{2v_{T}} - 4m_{T}^{\prime 2} - \lambda_{HT}^{(2)}v^{2} - (4\lambda_{T}^{(2)} + \lambda_{T}^{(3)})v_{T}^{2} \quad \leftarrow \text{ pure state} \\ m_{h_{T}^{\pm}}^{2} &= \kappa_{HT} \left(\frac{v^{2}}{2v_{T}} + 2v_{T} \right) \\ m_{h_{P}^{\pm}}^{2} &= \kappa_{HT} \frac{v^{2}}{2v_{T}} - 4m_{T}^{\prime 2} - \lambda_{HT}^{(2)}v^{2} - (2\lambda_{T}^{(2)} + \lambda_{T}^{(3)} + \frac{\lambda_{T'}}{2})v_{T}^{2} \quad \leftarrow \text{ pure state} \\ m_{h_{D}}^{2} &= \lambda_{H}v^{2} - 2\kappa_{HT}v_{T} + 2\left(\lambda_{HT} + 2\lambda_{HT}^{(2)} - 2\lambda_{H}\right)v_{T}^{2} \\ m_{h_{T}}^{2} &= \frac{\kappa_{HT}}{2v_{T}}\left(v^{2} + 4v_{T}^{2}\right) + \left(4\lambda_{H} - 2\lambda_{HT} - 4\lambda_{HT}^{(2)} + \lambda_{T} + \frac{\lambda_{T'}}{2} + 2(\lambda_{T}^{(2)} + \lambda_{T}^{(3)})\right)v_{T}^{2} \end{split}$$

Physical Pseudoscalar: Features

 a_P is a pure pseudoscalar state

∜

no interaction with fermions (triplet!)

↓

no loop-level coupling with massless gauge bosons pseudoscalar nature

₩

no interaction with massive gauge bosons

pNG Dark Matter candidate

∜

3-point vertices are $a_P W^{\pm} h_P^{\mp}$, $a_P a_P h_{D/T}$, ... (purity must be conserved in each vertex)

pNG Dark Matter: other Examples

		Probing pseudo-G Katri Huitu (Helsinki U.) U.), Takashi Toma (Kyo Published in: Phys.Rev.	oldstone dark r , Niko Koivunen (He to U.) (Dec 14, 2018 D 100 (2019) 1, 015	natter at the LHC Isinki U.), Oleg Lebedev (Helsinki U.), Subhadeep Mondal (Helsinki) 009 • e-Print: 1812.05952 [hep-ph]	#1		
	Is a Miracle-less WIMP Ruled Out? Jason Arakawa, Tim M.P. Tait (Jan 26, 2021)	🖹 pdf 🕜 DOI	⊡ cite	23 citatio	ns		
	e-Print: 2101.11031 [hep-ph] [2] pdf (Ξ cite		Direct and ind Tommi Alanne (H Keus (Helsinki U. Tuominen (Helsin	irect probes of Goldstone dark matter eidelberg, Max Planck Inst.). Matti Heikinheimo (Helsinki U. and Hel and Helsinki Inst. of Phys.). Niko Koivunen (Helsinki U. and Helsinki K. U. and Helsinki Inst. of Phys.). (Dec 14. 2018)	#1 sinki Inst. of Phys.), Venus Inst. of Phys.), Kimmo		
Pseud Xve:Mit Xv:Ran Publish	do-Nambu-Goldstone dark matter and two-Higgs-dou n Jiang (Zhongshan U. and Yunnan U.), Chengfeng Cai (Zhongshan U Legg (Zhongshan U.), Hong-Hao Zhang (Zhongshan U.) (Jul 22, 201 ed in: Phys.Rev.D 100 (2019) 7, 075011 - e-Print: 1907.09684 (hep-pt	iblet models J.), Zhao-Huan Yu (Zhongshan 9) 1]	Published in: <i>Phys.RevD</i> 99 (2019) 7, 075028 • e-Print: 1812.055996 [hep-ph]		€ 15 citations		
👌 pdf	∂ DOI ⊑ cite	7 cita	⊕ 7 citations Pseudo-Nambu-Goldstone dark matter from gauged U(1) _{B-L} symmetry Yoshihiko Abe (Kyoto U.), Takashi Toma (McGill U.), Koji Tsumura (Kyushu U.) (Jan 12, 2020 Published in: JHEP 05 (2020) 057 • e-Print: 2001.03954 [hep-ph]			#1	
Pseudo Nan Cross Sectio Dimitrios Karam	Pseudo Nambu-Goldstone Dark Matter: Examples of Vanishing Direct Detection #1 Cross Section Jimitrios Karamitros (NCBJ, Warsaw) (Jan 28, 2019)			[∄ pdf ∂ DOI ⊟ cite		7 citations	
Published in: Ph	ys.kex.u ay (2019) y, uasuso • e Print: 1901.09/51 (hep-ph) DOI (Ξ cite	Global fit of pseudo-Nam Chiara Arina (Louvain U., CP3), / Heisig (Louvain U., CP3), Andre Published in: JHEP04 (2020) 01	al fit of pseudo-Nambu-Goldstone Dark Matter #1 I Arina (Louvain U, CP3), Ankit Benival (Louvain U, CP3), Céline Degrande (Louvain U, CP3), Jan 1 I (Louvain U, CP3), Ankit Benival (Melbourne U) (Dec 9, 2019) 1 ine JHEP04 (2020) 015, JHEP 04 (2020) 015 • e-Print: 1912.04008 [hep-ph] 1				
	1	🖹 pdf 🕜 DOI 🖃 cite					

Why pNG Dark Matter?

Tree-level amplitude for $\chi N \rightarrow \chi N$

cancellation spoiled at loop level and/or with higher-order breaking terms

Why pNG Dark Matter?

XENON collaboration, JCAP 11 (2020) 031

Phenomenology of cTSM

Dark Matter Phenomenology: Relic Density and Direct Detection

generated with MadDM

$$\begin{split} m_{h_D} &= 125.18 \pm 0.16 \text{ GeV} \qquad |\mathcal{R}_{11}^S| \ge 99/100 \\ \mu_{\gamma\gamma} &= \Gamma_{h \to \gamma\gamma}^{SM} / \Gamma_{\Phi \to \gamma\gamma} \longrightarrow \mu_{\gamma\gamma}^{ATLAS} = 0.99^{+0.15}_{-0.14} , \quad \mu_{\gamma\gamma}^{CMS} = 1.10^{+0.20}_{-0.18} \end{split}$$

Long-Lived Charged Particle

Pure charged Higgs h_P^{\pm} only possible decay is $h_{P}^{\pm} \rightarrow a_{P} (W^{\pm})^{*}$ with $\frac{d\Gamma}{dx_1 dx_2}(h_P^{\pm} \to a_P W^{*\pm} \to a_P ff') = \frac{9}{8\pi^3} G_F^2 m_W^4 m_{h_P^{\pm}} F_{a_P W^{\pm}}(x_1, x_2)$ ╢ $\tau_{h_{\Theta}^{\pm}} = \mathcal{O}(10^{15}) \, \text{GeV}^{-1} = \mathcal{O}(1) \, \text{m}$ h_P^{\pm} is a long-lived state

Long-Lived Charged Particle

Beacham, Exploring the Lifetime Frontier at the LHC and Beyond

Long-Lived Charged Particle

Generic Process at μ Collider

Different class of processes are relevant at different \sqrt{s}

Lepton vs. Hadron Colliders

$$\Phi_{W_{\lambda_1}^+W_{\lambda_2}^-}(\tau,\mu_f) = \int_{\tau}^1 \frac{d\xi}{\xi} f_{W_{\lambda_1}/\mu}(\xi,\mu_f) f_{W_{\lambda_2}/\mu}\left(\frac{\tau}{\xi},\mu_f\right)$$

cTSM @ multi-TeV μ Collider

S is a scalar boson, B' can be either a scalar or a massive vector boson, V, V' are vector bosons

cTSM @ multi-TeV μ Collider

	σ [fb]					
Production modes	$\sqrt{s} = 1$	14 TeV	$\sqrt{s} = 30 \text{ TeV}$			
	BP1	BP2	BP1	BP2		
$\mu^+\mu^- ightarrow h_T v_\mu \bar{v}_\mu$	$1.8 \cdot 10^{-2}$	$6.2 \cdot 10^{-1}$	$2.9 \cdot 10^{-2}$	$9.6 \cdot 10^{-1}$		
$\mu^+\mu^- ightarrow h_T^+ \mu^- ar{ u}_\mu$	$5.3 \cdot 10^{-3}$	$1.8 \cdot 10^{-1}$	$8.4 \cdot 10^{-3}$	$2.8 \cdot 10^{-1}$		
$\mu^+\mu^- ightarrow h_T \ h_T \ u_\mu ar{ u}_\mu$	$1.9 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$	$4.8 \cdot 10^{-2}$	$5.1 \cdot 10^{-2}$		
$\mu^+\mu^- ightarrow a_P a_P v_\mu \bar{v}_\mu$	$1.8 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$	4.7.10-2	$5.0 \cdot 10^{-2}$		
$\mu^+\mu^- ightarrow h_T^+ h_T^- u_\mu ar{ u}_\mu$	$1.3 \cdot 10^{-2}$	$1.4 \cdot 10^{-2}$	3.4 · 10 ⁻²	$3.6 \cdot 10^{-2}$		
$\mu^+\mu^- ightarrow h_P^+ h_P^- u_\mu ar{ u}_\mu$	$1.3 \cdot 10^{-2}$	$1.4 \cdot 10^{-2}$	$3.4 \cdot 10^{-2}$	$3.6 \cdot 10^{-2}$		
$\mu^+\mu^- ightarrow h_D \ h_T \ v_\mu ar{v}_\mu$	$1.6 \cdot 10^{-4}$	$5.7 \cdot 10^{-3}$	$3.7 \cdot 10^{-4}$	$1.3 \cdot 10^{-2}$		
$\mu^+\mu^- ightarrow h_D \ h_T^+ \ \mu^- \ \bar{\mathbf{v}}_\mu$	$4.8 \cdot 10^{-5}$	$1.6 \cdot 10^{-3}$	$1.1 \cdot 10^{-4}$	$3.8 \cdot 10^{-3}$		
$\mu^+\mu^- ightarrow h_T \ Z \ u_\mu ar{ u}_\mu$	$7.7 \cdot 10^{-4}$	$2.6 \cdot 10^{-2}$	$1.7 \cdot 10^{-3}$	$5.6 \cdot 10^{-2}$		
$\mu^+\mu^- \to h_T \ W^+\mu^- \bar{\nu}_\mu$	$4.1 \cdot 10^{-4}$	$1.4 \cdot 10^{-2}$	$1.0 \cdot 10^{-3}$	$3.4 \cdot 10^{-2}$		
$\mu^+\mu^- ightarrow h_T^+ \ Z \ \mu^- ar{ u}_\mu$	$1.4 \cdot 10^{-4}$	$4.8 \cdot 10^{-3}$	$3.6 \cdot 10^{-4}$	$1.2 \cdot 10^{-2}$		
$\mu^+\mu^- ightarrow h_T^+ W^- \nu_\mu \bar{ u}_\mu$	$9.7 \cdot 10^{-4}$	$3.2 \cdot 10^{-2}$	$1.9 \cdot 10^{-3}$	$6.1 \cdot 10^{-2}$		

generated with MadGraph5_aMC@NLO

cTSM @ multi-TeV μ Collider

background is $VBF_{W^+W^-}$ or $VBF_{W^\pm Z}$ or $VBF_{W^+W^-Z}$ with $M_{W^+W^-} = m_{h_T}$ or $M_{W^\pm Z} = m_{h_T^\pm}$

exclusion plot from VBF production of h_T

Conclusions

- _____ astonishing tests of the SM at the LHC but....BSM is still needed
- simple extensions of the SM scalar sector can address DM pheno
- ____ interplay between collider and cosmological experiments
- multi-TeV μ -collider is suitable for both precision AND discovery
- ___ multi-Higgs model can shed light on EWSB

Thanks

Backup Slides

SM + Singlet

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^2 \sigma^2 - \frac{\lambda_{\sigma}}{4!} \sigma^4 - \frac{\kappa_{\sigma}}{2} \sigma^2 \Phi^{\dagger} \Phi.$$
$$\langle \sigma \rangle = v_s$$

$$\lambda_{hhh} = -\frac{3m_h^2}{v v_s} (v_s \cos^3 \theta + v \sin^3 \theta)$$
$$\lambda_{sss} = \frac{3m_s^2}{v v_s} (v \cos^3 \theta - v_s \sin^3 \theta)$$
$$\lambda_{hss} = -\frac{(m_h^2 + 2m_s^2)}{2v v_s} \sin 2\theta (v \cos \theta + v_s \sin \theta)$$
$$\lambda_{hhs} = \frac{(2m_h^2 + m_s^2)}{2v v_s} \sin 2\theta (v_s \cos \theta - v \sin \theta)$$

SM + Singlet: Inert Pair Production vs. Loop Corrections

$$\delta g_h = -\frac{\kappa_\sigma^2 v^2}{16\pi^2 m_h^2} \left(1 - 4m_S^2 \frac{\tan^{-1} \sqrt{\frac{m_h^2}{(4m_S^2 - m_h^2)}}}{\sqrt{m_h^2 (4m_S^2 - m_h^2)}} \right)$$

Heinemann, Nir, Phys.Usp. 62 (2019) no.9, 920-930

2HDM

$$\begin{split} V &= \mu_{1} \Phi_{1}^{\dagger} \Phi_{1} + \mu_{2} \Phi_{2}^{\dagger} \Phi_{2} + \left(\mu_{3} \Phi_{1}^{\dagger} \Phi_{2} + \text{H.c.}\right) + \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2} + \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2} \\ &+ \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1}\right) \left(\Phi_{2}^{\dagger} \Phi_{2}\right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2}\right) \left(\Phi_{2}^{\dagger} \Phi_{1}\right) + \left(\lambda_{5} \left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2} + \text{H.c.}\right) \\ &+ \Phi_{1}^{\dagger} \Phi_{1} \left(\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{2}\right) + \text{H.c.}\right) + \Phi_{2}^{\dagger} \Phi_{2} \left(\lambda_{7} \left(\Phi_{1}^{\dagger} \Phi_{2}\right) + \text{H.c.}\right) \end{split}$$

$$\Phi_{1} \equiv \begin{pmatrix} -ih_{1}^{+} \\ \frac{h_{1}^{0} + ia_{1} + \nu}{\sqrt{2}} \end{pmatrix} \quad \text{and} \quad \Phi_{2} \equiv \begin{pmatrix} h_{2}^{+} \\ \frac{h_{2}^{0} + ia_{2}}{\sqrt{2}} \end{pmatrix}$$
$$\begin{pmatrix} h_{1}^{0} \\ h_{2}^{0} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$$

where *h* is identified as the observed, SM-like Higgs boson with $m_h \approx 125$ GeV and *H* is heavier with $m_H > m_h$

GM Model

$$\Phi = \begin{pmatrix} \varphi^{0*} & \varphi^+ \\ -\varphi^{+*} & \varphi^0 \end{pmatrix} , \quad X = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

$$V(\Phi, X) = \frac{\mu_2^2}{2} \operatorname{Tr}(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} \operatorname{Tr}(X^{\dagger} X) + \lambda_1 [\operatorname{Tr}(\Phi^{\dagger} \Phi)]^2 + \lambda_2 \operatorname{Tr}(\Phi^{\dagger} \Phi) \operatorname{Tr}(X^{\dagger} X) + \lambda_3 \operatorname{Tr}(X^{\dagger} X X^{\dagger} X) + \lambda_4 [\operatorname{Tr}(X^{\dagger} X)]^2 - \lambda_5 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) \operatorname{Tr}(X^{\dagger} t^a X t^b) - M_1 \operatorname{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) (U X U^{\dagger})_{ab} - M_2 \operatorname{Tr}(X^{\dagger} t^a X t^b) (U X U^{\dagger})_{ab}$$

Custodial Limit

$$\langle \chi^0 \rangle = \langle \xi^0 \rangle \equiv v_X$$

 $(\sqrt{2}G_F)^{-1} = v_{\varphi}^2 + 8v_X^2$

cTSM @ Hadron Colliders

	σ [fb]					
Production modes	$\sqrt{s} = 1$	14 TeV	$\sqrt{s} = 100 \text{ TeV}$			
	BP1	BP2	BP1	BP2		
$p p \rightarrow h_T$	$6.7 \cdot 10^{-7}$	$2.7 \cdot 10^{-5}$	$8.4 \cdot 10^{-5}$	$3.2 \cdot 10^{-3}$		
$p \ p o h_T^\pm$	$8.2 \cdot 10^{-7}$	$3.2 \cdot 10^{-5}$	$9.5 \cdot 10^{-5}$	$3.5 \cdot 10^{-3}$		
$p p \rightarrow h_T h_T$	$2.3 \cdot 10^{-7}$	$1.6 \cdot 10^{-8}$	$4.3 \cdot 10^{-4}$	$2.7 \cdot 10^{-5}$		
$p p \rightarrow a_P a_P$	$2.2 \cdot 10^{-7}$	$1.1 \cdot 10^{-9}$	$4.2 \cdot 10^{-4}$	$1.8 \cdot 10^{-6}$		
$p \ p ightarrow h_T^+ \ h_T^-$	$3.9 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	$1.3 \cdot 10^0$.	$1.4 \cdot 10^0$		
$p p \rightarrow h_P^+ h_P^-$	$3.9 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	$1.3 \cdot 10^0 \cdot$	$1.4 \cdot 10^0$		
$p p ightarrow h_D h_T$	$1.5 \cdot 10^{-5}$	$5.4 \cdot 10^{-4}$	$5.1 \cdot 10^{-3}$	$1.8 \cdot 10^{-1}$		
$p \ p o h_D \ h_T^{\pm}$	$1.7 \cdot 10^{-6}$	$6.7 \cdot 10^{-5}$	$1.1 \cdot 10^{-4}$	$4.1 \cdot 10^{-3}$		
$p p \rightarrow h_T Z$	$1.3 \cdot 10^{-6}$	$5.0 \cdot 10^{-5}$	$1.0 \cdot 10^{-4}$	$3.7 \cdot 10^{-3}$		
$p \ p ightarrow h_T \ W^{\pm}$	$1.9\cdot10^{-6}$	$7.3 \cdot 10^{-5}$	$1.2 \cdot 10^{-4}$	$4.3 \cdot 10^{-3}$		
$p \ p ightarrow h_T^{\pm} Z$	$1.9 \cdot 10^{-6}$	$7.5 \cdot 10^{-5}$	$1.2 \cdot 10^{-4}$	$4.4 \cdot 10^{-3}$		
$p \ p o h_T^+ \ W^-$	$2.4 \cdot 10^{-5}$	$9.1 \cdot 10^{-4}$	$4.2 \cdot 10^{-2}$	$1.5\cdot 10^0$		
$p p ightarrow h_T p p'$	$3.1 \cdot 10^{-7}$	$1.4 \cdot 10^{-5}$	$7.9 \cdot 10^{-5}$	$3.9 \cdot 10^{-3}$		
$p \ p o h_T^\pm \ p \ p'$	$3.6 \cdot 10^{-7}$	$1.4 \cdot 10^{-5}$	8.5 · 10 ⁻⁵	$3.1 \cdot 10^{-3}$		

μ Collider

J. P. Delahaye et al., arXiv:1901.06150

Muon Accelerator Program map.fnal.gov Low EMittance Muon Accelerator web.infn.it/LEMMA

New results on μ cooling by MICE collaboration Nature 508(2020)53

μ Collider: Interest is Growing...

	2101.10334	 2101.10469
	2101.04956	 2012.14818
	2012.03928	 2012.02769
	2011.03055	 2009.11287
	2008.12204	 2007.15684
	2007.14300	 2006.16277
<u></u>	2003.13628	 1910.04170

...definitely a non-exhaustive list...

μ Collider: Pros and Cons

 μ vs. e (circular collider)

Pros 🖒

- reduced synchrotron radiation
- \checkmark increased \pounds
- cool physics

Cons 🌄

- 🗶 μ decay
- X v radiation
- ¥ lots of R&D (true cons?)

μ Collider: SM Processes

 $VBF \equiv W^+W^- \rightarrow X \qquad s - ch. \equiv \mu^+\mu^- \rightarrow X$

a [fb]	$\sqrt{s} = 1 \text{ TeV}$		$\sqrt{s} = 3 \text{ TeV}$		$\sqrt{s} = 14 \text{ TeV}$		$\sqrt{s} = 30 \text{ TeV}$	
0 [10]	VBF	s-ch.	VBF	s-ch.	VBF	s-ch.	VBF	s-ch
tī	$4.3 \cdot 10^{-1}$	$1.7 \cdot 10^{2}$	5.1·10 ⁰	$1.9 \cdot 10^{1}$	2.1.10 ¹	$8.8 \cdot 10^{-1}$	3.1·10 ¹	$1.9 \cdot 10^{-1}$
tτΖ	$1.6 \cdot 10^{-3}$	$4.6 \cdot 10^{0}$	$1.1 \cdot 10^{-1}$	$1.6 \cdot 10^{0}$	1.3-10 ⁰	$1.8 \cdot 10^{-1}$	2.8·10 ⁰	$5.4 \cdot 10^{-2}$
ttH	$2.0 \cdot 10^{-4}$	2.0·10 ⁰	1.3.10-2	$4.1 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$	$3.0 \cdot 10^{-2}$	$3.1 \cdot 10^{-1}$	7.9·10 ⁻³
ttWW	4.8.10-6	$1.4 \cdot 10^{-1}$	2.8.10-3	$3.4 \cdot 10^{-1}$	$1.1 \cdot 10^{-1}$	$1.3 \cdot 10^{-1}$	$3.0 \cdot 10^{-1}$	$5.8 \cdot 10^{-2}$
tŦZZ	2.3.10 ⁻⁶	$3.8 \cdot 10^{-2}$	1.4.10 ⁻³	$5.1 \cdot 10^{-2}$	$5.8 \cdot 10^{-2}$	$1.3 \cdot 10^{-2}$	$1.7 \cdot 10^{-1}$	$5.4 \cdot 10^{-3}$
ttHZ	7.1.10-7	$3.6 \cdot 10^{-2}$	3.5.10-4	$3.0 \cdot 10^{-2}$	$1.0 \cdot 10^{-2}$	$5.3 \cdot 10^{-3}$	$2.7 \cdot 10^{-2}$	$1.9 \cdot 10^{-3}$
ttHH	7.2·10 ⁻⁸	$1.4 \cdot 10^{-2}$	3.4.10 ⁻⁵	$6.1 \cdot 10^{-3}$	$6.4 \cdot 10^{-4}$	$5.4 \cdot 10^{-4}$	$1.6 \cdot 10^{-3}$	$1.5 \cdot 10^{-4}$
tīttī (i)	5.1·10 ⁻⁸	$5.4 \cdot 10^{-4}$	6.8·10 ⁻⁵	$6.7 \cdot 10^{-3}$	1.1.10 ⁻³	$2.5 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$
н	2.1·10 ²	-	5.0·10 ²	-	9.4-10 ²	-	1.2·10 ³	-
HH	7.4.10 ⁻²	-	8.2.10-1	-	4.4-10 ⁰	-	7.4·10 ⁰	-
HHH	3.7.10-6	-	3.0.10-4	-	7.1.10-3	-	$1.9 \cdot 10^{-2}$	-
HZ	1.2·10 ⁰	1.3·10 ¹	9.8·10 ⁰	1.4-10 ⁰	$4.5 \cdot 10^{1}$	$6.3 \cdot 10^{-2}$	7.4·10 ¹	$1.4 \cdot 10^{-2}$
HHZ	$1.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-1}$	$9.4 \cdot 10^{-3}$	$3.3 \cdot 10^{-2}$	$1.4 \cdot 10^{-1}$	$3.7 \cdot 10^{-3}$	$3.3 \cdot 10^{-1}$	$1.1 \cdot 10^{-3}$
HHHZ	1.5·10 ⁻⁸	4.1.10-4	4.7.10-6	1.6.10-4	1.9.10-4	1.6.10-5	$5.1 \cdot 10^{-4}$	$5.4 \cdot 10^{-6}$
HWW	$8.9 \cdot 10^{-3}$	3.8·10 ⁰	$3.0 \cdot 10^{-1}$	1.1.10 ⁰	3.4-10 ⁰	$1.3 \cdot 10^{-1}$	7.6·10 ⁰	$4.1 \cdot 10^{-2}$
HHWW	7.2.10-7	1.3·10 ⁻²	2.3.10-4	$1.1 \cdot 10^{-2}$	9.1·10 ⁻³	$2.8 \cdot 10^{-3}$	$2.9 \cdot 10^{-2}$	1.2·10 ⁻³
HZZ	$2.7 \cdot 10^{-3}$	$3.2 \cdot 10^{-1}$	1.2.10-1	8.2·10 ⁻²	1.6·10 ⁰	8.8.10-3	3.7·10 ⁰	$2.5 \cdot 10^{-3}$
HHZZ	2.4·10 ⁻⁷	$1.5 \cdot 10^{-3}$	9.1.10 ⁻⁵	$9.8 \cdot 10^{-4}$	3.9.10 ⁻³	$2.5 \cdot 10^{-4}$	1.2·10 ⁻²	$9.5 \cdot 10^{-5}$
ww	1.6·10 ¹	2.7·10 ³	1.2·10 ²	4.7·10 ²	5.3·10 ²	3.2·10 ¹	8.5·10 ²	8.3·10 ⁰
ZZ	$6.4 \cdot 10^{0}$	$1.5 \cdot 10^{2}$	$5.6 \cdot 10^{1}$	$2.6 \cdot 10^{1}$	2.6·10 ²	1.8-10 ⁰	4.2·10 ²	$4.6 \cdot 10^{-1}$
WWZ	$1.1 \cdot 10^{-1}$	$5.9 \cdot 10^{1}$	4.1.10 ⁰	3.3·10 ¹	$5.0.10^{1}$	6.3·10 ⁰	1.0·10 ²	2.3·10 ⁰
ZZZ	2.3.10-2	$9.3 \cdot 10^{-1}$	9.6.10-1	$3.5 \cdot 10^{-1}$	1.2·10 ¹	$5.4 \cdot 10^{-2}$	2.7·10 ¹	$1.9 \cdot 10^{-2}$

μ Collider: SM Processes

heavier final state \rightarrow larger \sqrt{s} for t-channel to win

possible exceptions, e.g. HZZ vs HWW, ZZZ vs WWZ

VBF for various BSM Models

results are qualitatively similar for SM+Singlet, 2HDM, GM Model, VLQ Models, MSSM, Heavy Neutrino Models, etc.

VBF for various BSM Models

$$rac{\sigma^{VBF}}{\sigma^{s-ch.}}\sim rac{s}{m_X^2}\log^2rac{s}{m_V^2}\lograc{s}{m_X^2}$$

New Physics Reach (via VBF) @ μ Collider

dashed lines $\rightarrow \sqrt{s} = 30 \text{ TeV}$ solid lines $\rightarrow \sqrt{s} = 14 \text{ TeV}$

Luminosity required for 25 events, with assumed zero background