Production of Leptoquarks and Zeros of Amplitude at $e - \gamma$ Collider

ArXiv: 2003.11751 (accepted in EPJC)

Anirban Karan

Co-authors: Priyotosh Bandyopadhyay, Saunak Dutta

IIT Hyderabad

June 22, 2020

Leptoquarks:

- Proposed particles.
- Couple to quarks and leptons simultaneously.
- Colour triplet, electromagnetically charged, bosons (spin 0 or 1).
- Singlet, doublet or triplet under $SU(2)_L$.
- Can explain anomalies in B sector, muon g 2 and $h \rightarrow \mu^{\pm} \tau^{\mp}$.
- Lots of experimental searches. No success yet.

Radiation Amplitude Zero (RAZ):

- First described for $ar{u} \, d o W^- \gamma$. \sim K. Mikaelian, et al. [Phys. Rev. Lett. 43 (1979) 746]
- In non-Abelian theories, single photon tree-level amplitude vanishes in certain kinematical zones depending on the charge and four momenta of external particles.
- For $2 \rightarrow 2$ process with photon in final state, this happens at:

$$\cos heta^* = (Q_{f_2} - Q_{f_1})/(Q_{f_2} + Q_{f_1})$$

where, Q_{f_1} and Q_{f_2} are the charges for the incoming particles f_1 and f_2 and θ^* is the angle between photon and f_1 in the centre of momentum (CM) frame at which RAZ occurs provided that the masses of colliding particles are negligible w.r.t. \sqrt{s} .

• General Criterion: $\left(\frac{p_j \cdot k}{Q_j}\right)$ same for all the external particles (other than photon). \sim 5. J. Brodsky and R. W. Brown, [Phys. Rev. Lett. 49 (1982) 966]

ヘロト 不得 とうき とうとう ほう

RAZ for $\bar{u} d \rightarrow W^- \gamma$:

$e - \gamma$ colliders:

- Proposed collider.
- Linear $e^+ e^-$ colliders (like ILC) can be used to study $e \gamma$ interaction at high energy.
- Less background, \sqrt{s} is exactly known (monochromatic).
- Our mode: $e^-\gamma \rightarrow q \, \phi^c$ (or $\bar{q} \, \phi$); ϕ is LQ.

Details of $e^-\gamma
ightarrow q \, \phi^c$:

•
$$\sum_{spin} |\mathcal{M}|^2 \propto \left[(s - M_{\phi}^2)(1 - \cos heta) + 2sQ_q
ight]^2$$

- Zero amplitude: $\cos \theta^* = 1 + rac{2 \, Q_q}{[1 (M_\phi^2/s)]} = f(Q_q, M_\phi^2/s)$
- It follows the general condition: $\frac{p_e \cdot p_{\gamma}}{-1} = \frac{p_q \cdot p_{\gamma}}{Q_q} = \frac{p_{\phi} \cdot p_{\gamma}}{Q_{\phi}}$
- Condition for occurrence: $Q_q < 0$ and $rac{M_\phi}{\sqrt{s}} \leq \sqrt{-Q_\phi}$

$$\implies -1 < {\it Q}_{\phi} < {\tt 0}$$

$\cos\theta^*$ vs \sqrt{s} :

Figure: Variation of $\cos \theta^*$ with respect to \sqrt{s} for $Q_q = -1/3$ and $Q_{\bar{q}} = -2/3$, respectively for different masses of leptoquark.

3

イロト イ理ト イヨト イヨト

Scalar Leptoquarks:

LQ	Y	Q _{em}	Interaction	Process	$\cos heta^*$
<i>S</i> ₁	2/3	1/3	$ \overline{\Psi}_{q}^{c} P_{L} i\sigma_{2} \Psi_{I} S_{1}, \overline{q}_{u}^{c} P_{R} I_{e} S_{1} $	$\bar{u}\left(S_1^{+1/3}\right)^c$	$f\left(-2/3, M_{\phi}^2/s\right)$
\widetilde{S}_1	8/3	4/3	$\bar{q}_d^c P_R I_e \widetilde{S}_1$	$\bar{d}\left(\widetilde{S}_{1}^{+4/3}\right)^{c}$	
\vec{S}_3	2/3	$\frac{4}{3}$ $\frac{1}{3}$ $-\frac{2}{3}$	$\overline{\Psi}_{q}^{c} P_{L}(i\sigma_{2}S_{3}^{ad})\Psi_{I}$	$ \begin{array}{c} \bar{d} \left(S_3^{+4/3} \right)^c \\ \bar{u} \left(S_3^{+1/3} \right)^c \\ \hline \end{array} $	$f(-2/3, M_{\phi}^2/s)$
<i>R</i> ₂	7/3	5/3 2/3	$\overline{\Psi}_{q} P_{R} R_{2} I_{e},$ $\bar{q}_{u} P_{L} (R_{2}^{T} i\sigma_{2}) \Psi_{I}$	$ \begin{array}{c} u \left(R_2^{+5/3} \right)^c \\ d \left(R_2^{+2/3} \right)^c \end{array} $	$f\left(-\frac{1}{3}, M_{\phi}^2/s\right)$
R ₂	1/3	$\frac{2/3}{-1/3}$	$\bar{q}_{d} P_{L}(\widetilde{R}_{2}^{T} i\sigma_{2}) \Psi_{l}$	$d\left(\widetilde{R}_{2}^{+2/3}\right)^{c}$	$f\left(-\frac{1}{3}, \frac{M_{\phi}^2}{s}\right)$

- 2 June 22, 2020 8 / 30

イロト イポト イヨト イヨト

Vector Leptoquarks:

LQ	Y	Q _{em}	Interaction	Process	$\cos heta^*$
V2,,	5/3	4/3	$\overline{\Psi}_{q}^{c}\gamma^{\mu}P_{R}\left(i\sigma_{2}V_{2\mu}\right)I_{e},$	$\left \bar{d} \left(V_{2\mu}^{+4/3} \right)^c \right $	
- 2µ		1/3	$\bar{q}_d^c \gamma^\mu P_L \left(V_{2\mu}^T i \sigma_2 \right) \Psi_l$	$\bar{u}\left(V_{2\mu}^{+1/3}\right)^{c}$	$f(-2/3, M_{\phi}^2/s)$
$\widetilde{V}_{2\mu}$	-1/3	1/3	$\bar{q}^{c}_{\mu}\gamma^{\mu}P_{L}(\widetilde{V}^{T}_{2\mu}i\sigma_{2})\Psi_{\mu}$	$\bar{u}\left(\widetilde{V}_{2\mu}^{+1/3}\right)^{c}$	$f(-2/3, M_{\phi}^2/s)$
		$ ^{-2/3} $		_	
$U_{1\mu}$	4/3	2/3	$\overline{\Psi}_{q} \gamma^{\mu} P_{L} \Psi_{I} U_{1\mu}, \ \overline{q}_{d} \gamma^{\mu} P_{R} I_{e} U_{1\mu}$	$d\left(U_{1\mu}^{+2/3}\right)^{c}$	$f\left(-1/3, M_{\phi}^2/s\right)$
$\widetilde{U}_{1\mu}$	10/3	5/3	$ar{q}_u \gamma^\mu P_R I_e \widetilde{U}_{1\mu}$	$u\left(\widetilde{U}_{1\mu}^{+5/3} ight)^{c}$	
		5/3		$u\left(U_{3\mu}^{+5/3}\right)^{c}$	
$\vec{U}_{3\mu}$	4/3	2/3	$\overline{\Psi}_q \gamma^\mu P_L U^{ad}_{3\mu} \Psi_l$	$d\left(U_{3\mu}^{+2/3}\right)^{c}$	$f(-1/3, M_{\phi}^2/s)$
		-1/3			—

- 2 June 22, 2020 9 / 30

イロト イポト イヨト イヨト

Background:

Decay of LQ: $\phi^{c} \rightarrow e^{-}q$ (or \bar{q}) $\implies e^{-} + 2$ light-jets signal at detector.

Anirban Karan (IIT Hyderabad) Leptoquark, amplitude-zero, e-γ collider June 22, 2020

Simulation:

- $\sqrt{s} = \{200 \text{ GeV}, 2 \text{ TeV}, 3 \text{ TeV}\}$, Luminosity: 100 fb⁻¹.
- Model: SARAH; event generation: CalcHEP; simulation: PYTHIA.

•
$$p_{T,min}^{jet} = 20.0 \text{ GeV}; \ p_{T,min}^{\ell} \ge 10 \text{ GeV}.$$

• Signal-background separation: Cut1 \Rightarrow $|M_{lj}-M_{\phi}| \leq$ 10,

$$Lut2 \Rightarrow Angular cut$$

• We have simulated — Scalars: $(S_1^{+1/3})^c$, $(\widetilde{R}_2^{+1/3})^c$, $(R_2^{+5/3})^c$, $(S_3^{+4/3})^c$ Vectors: $(U_{1\mu}^{+2/3})^c$, $(\widetilde{V}_{2\mu}^{+1/3})^c$, $(U_{3\mu}^{+5/3})^c$, $(V_{2\mu}^{+4/3})^c$

LQ	BP	M_{ϕ} GeV	Y_{L}^{11}	Y_{L}^{22}	Y _L ³³	Y_{R}^{11}	Y_{R}^{22}	Y_{R}^{33}
$(S_1^{+1/3})^c$	BP1	70	0.035	0.04	0.035	0.03	0.03	0.03
	BP2	650	0.1	0.1	0.1	0.1	0.1	0.1
	BP3	1500	0.1	0.1	0.1	0.1	0.1	0.1

Choice for BPs:

June 22, 2020 12 / 30

Signal-background separation for $(S_1^{_{+1/3}})^c$ at $\sqrt{s} = 3$ TeV :

Anirban Karan (IIT Hyderabad) Leptoquark, amplitude-zero, $e-\gamma$ collider

June 22, 2020

Signal-background analysis for $(S_1^{+1/3})^c$:

Bench- mark points	\sqrt{s} in TeV	Cut Signal Back- ground		Signi- ficance		
	0.2	$ M_{lj}-M_{\phi} \leq$ 10 GeV	11133.6	43725.0	47.5	
	0.2	$cut1+(-0.2) \le \cos heta_{\ell j} \le 1$	10537.8	32989.8	50.5	
BP1	2	$ M_{lj}-M_{\phi} \leq$ 10 GeV	147.5	319.4	6.8	
	2	$cut1+(0.9) \le \cos heta_{\ell j} \le 1$	91.5	114.2	6.4	
	3	$ M_{lj}-M_{\phi} \leq$ 10 GeV	61.2	219.8	3.7	
		$cut1+(0.9) \le \cos heta_{\ell j} \le 1$	34.5	44.2	3.9	
	2	$ M_{lj}-M_{\phi} \leq$ 10 GeV	394.4	2003.6	8.1	
BP2		$cut1+0 \leq \cos \theta_{\ell j} \leq 1$	299.5	129.1	14.5	
	2	$ M_{lj}-M_{\phi} \leq$ 10 GeV	176.5	1660.7	4.1	
	5	$cut1+0 \leq \cos \theta_{\ell j} \leq 1$	159.0	167.5	8.8	
	2	$ M_{lj}-M_{\phi} \leq 10~{ m GeV}$	280.8	1061.6	7.7	
BP3	2	$cut1+(-0.9) \le \cos heta_{\ell j} \le 1$	199.8	391.5	8.2	
2.3	2	$ M_{lj}-M_{\phi} \leq$ 10 GeV	106.2	815.0	3.5	
	3	$cut1+(-0.8) \le \cos heta_{\ell j} \le 1$	101.6	254.7	5.4	

Anirban Karan (IIT Hyderabad)

Leptoquark, amplitude-zero, $e-\gamma$ collider

June 22, 2020

Position of the zeros of angular distribution:

Benchmark	Values of $\cos heta^*$ for zeros of $(d\sigma/d\cos heta)$ at different \sqrt{s}								
points	For $Q_{\bar{q}} =$	-2/3 or ($Q_{\phi}=-1/3$	3 For $Q_q = -1/3$ or $Q_\phi = -2$					
	0.2 TeV	2 TeV	3 TeV	0.2 TeV	2 TeV	3 TeV			
BP1	- 0.52	- 0.33	- 0.33	0.24	0.33	0.33			
BP2	_	- 0.49	- 0.40	_	0.25	0.30			
BP3			- 0.78		-0.52	0.11			

Anirban Karan (IIT Hyderabad) Leptoquark, amplitude-zero, $e-\gamma$ collider JL

3. 3

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Angular distribution for $(S_1^{+1/3})^c$:

Anirban Karan (IIT Hyderabad) Leptoquark, amplitude-zero, $e-\gamma$ collider

June 22, 2020

э

16 / 30

・得い くまい くまい

Angular distribution for $(\widetilde{R}_{2}^{+2/3})^{c}$:

э June 22, 2020 17 / 30

・ 回 と ・ ヨ と ・ ヨ と

Angular distribution for $(R_2^{+5/3})^c$:

Anirban Karan (IIT Hyderabad) Leptoquark, amplitude-zero, $e-\gamma$ collider

→ < ∃ →</p> June 22, 2020 18 / 30

э

Angular distribution for $(S_3^{+4/3})^c$:

Anirban Karan (IIT Hyderabad) Leptoquark, amplitude-zero, $e-\gamma$ collider

A.

э

Few Comments:

- Similar analysis are done for the following vectors: $(U_{1\mu}^{+2/3})^c, (\widetilde{V}_{2\mu}^{+1/3})^c, (U_{3\mu}^{+5/3})^c, (V_{2\mu}^{+4/3})^c.$
- There exist only left handed couplings for $(\widetilde{R}_2^{+2/3})^c, (S_3^{+4/3})^c, (\widetilde{V}_{2\mu}^{+1/3})^c, (U_{3\mu}^{+5/3})^c.$
- Significances for $(\widetilde{R}_2^{+2/3})^c$ and $(S_3^{+4/3})^c$ are very small, specially for BP2 and BP3. Higher luminosity is needed for them.
- Vector LQs have higher production cross-sections than the scalar ones.
- Systematic errors have not been considered. They will further reduce the significances in real experiments.

Non-monochromatic photon:

- Current technology cannot provide high-energetic monochromatic photon source.
- Laser Backscattering (LB):
 ~ I.F. Ginzburg, et al., Nucl. Instrum.
 Methods Phys. Res. 205(1-2), 47–68 (1981)
- Equivalent Photon Approximation (EPA): Any fast moving charged particle can be considered as an electromagnetic radiation field. This radiation can be interpreted as a flux of quasi-real photons with some energy distribution.

~ V. M. Budnev, et al., [Phys. Rept. 15 (1975) 181-281]

LB vs EPA:

LB

- Real photons.
- Highly collimated.
- *p_T* distribution of photon goes to zero very fast while moving away from origin.
- Distributions w.r.t angles between (e^-, ϕ) and (γ, ϕ) are similar.
- Production cross section and significance get enhanced than monochromatic.
- Available in CalcHEP.

EPA

- Quasi-real photons.
- Not highly collimated.
- Though small, still photon has non-zero probability for gettimg very high p_T.
- Distributions w.r.t angles between (e^-, ϕ) and (γ, ϕ) are very different.
- Production cross section and significance get diminished than monochromatic.
- Available in CalcHEP & MadGraph.

< 🗗 🕨

э

Monochromatic vs non-monochromatic photons:

Figure: The comparison among LB, EPA and monochromatic photons (represented by orange, blue and green line respectively) in terms of weighted differential distribution $(\frac{1}{\sigma} \cdot \frac{d\sigma}{dcos\theta})$ for the production of $(\widetilde{V}_{2\mu}^{+1/3})^c$ in BP1 scenario at $\sqrt{s} = 0.2$ TeV is shown in the left panel. The distribution for transverse momentum of photon from 100 GeV positron under EPA scheme is shown in right panel.

Summary:

- Unlike other colliders, the position of zeros of single photon tree-level amplitude in $e \gamma$ collider does depend on \sqrt{s} and M_{ϕ} along with Q_{ϕ} .
- Depending on sign of Q_{ϕ} , $\cos \theta^*$ approaches $\pm 1/3$ for $\sqrt{s} >> M_{\phi}$.
- Zero in amplitude can be found iff $\frac{M_{\phi}}{\sqrt{s}} \leq \sqrt{-Q_{\phi}}$ and $Q_q < 0$.
- In a PYTHIA based analysis we look for both light and heavy leptoquarks of various charges and spin at both low and high energy scales with monochromatic photons.
- About non-monochromatic photon source, LB enhances production cross-section and significance whereas EPA decreases them.
- EPA smears off the zeros of angular distributions completely whereas LB preserves them (though slightly deviated from the monochromatic case).
- Finding this kind of zero at $e-\gamma$ collider will indicate the presence of some leptoquarks.

(日) (周) (日) (日) (日)

Thanks!

Anirban Karan (IT Hyderabad) Leptoquark, amplitude-zero, e-γ collider June 22, 2020 25 / 30

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Back up :-

Anirban Karan (IIT Hyderabad) Leptoquark, amplitude-zero, e-γ collider June 22, 2020

・ロト ・聞ト ・ヨト ・ヨトー

3

LQ	BP	M_{ϕ}	Y ¹¹	Y_{L}^{22}	Y _L ³³	Y_{R}^{11}	Y_{R}^{22}	Y_{R}^{33}
$(S_1^{+1/3})^c$,	BP1	70	0.035	0.04	0.035	0.03	0.03	0.03
$(R_2^{+5/3})^c$,	BP2	650	0.1	0.1	0.1	0.1	0.1	0.1
$(U_{1\mu}^{+2/3})^c$	BP3	1500	0.1	0.1	0.1	0.1	0.1	0.1
$(\widetilde{R}_2^{+2/3})^c$,	BP1	70	0.07	0.07	0.1	_		
$(S_3^{+4/3})^c$,	BP2	650	0.07	0.07	0.1			
$(\widetilde{V}_{2\mu}^{+1/3})^{c},\ (U_{3\mu}^{+5/3})^{c}$	BP3	1500	0.07	0.07	0.1			
	BP1	70	0.05	0.05	0.1	0.1	0.1	0.1
$(V_{2\mu}^{+4/3})^c$	BP2	650	0.05	0.05	0.1	0.1	0.1	0.1
	BP3	1500	0.05	0.05	0.1	0.1	0.1	0.1

Anirban Karan (IIT Hyderabad) Leptoquark, amplitude-zero, $e-\gamma$ collider

(ロ) (個) (主) (主) (主) のへで June 22, 2020

\sqrt{s} in	Cross-section in fb			\sqrt{s} in	Cross	-section in	fb	
TeV	BP1	BP2	BP3	TeV	BP1	BP2	BP3	
	Leptoquark	$(S_{1}^{+1/3})^{c}$			Leptoquark	$(U_{{\bf 1}\mu}^{+{f 2}/{f 3}})^c$		
0.2	430.24	—	—	0.2	482.41	_	—	
2.0	6.61	50.65	31.95	2.0	803.82	58.95	14.84	
3.0	3.30	26.03	17.98	3.0	812.59	68.04	10.55	
	Leptoquark	$(R_2^{+5/3})^c$			Leptoquark	$(V^{+4/3}_{2\mu})^c$		
0.2	517.5	—	—	0.2	12343.51	_	—	
2.0	8.10	59.30	35.96	2.0	19110.75	152.70	15.38	
3.0	3.70	30.79	20.70	3.0	19214.64	181.61	21.40	
	Leptoquark	$(\widetilde{R}_{2}^{+\mathbf{2/3}})^{c}$		Leptoquark $(\widetilde{V}^{+1/3}_{2\mu})^c$				
0.2	226.83	—	—	0.2	2127.02	_	—	
2.0	3.61	2.89	1.78	2.0	485.34	26.58	16.38	
3.0	1.66	1.49	1.02	3.0	477.98	15.46	9.18	
Leptoquark $(S_3^{+4/3})^c$					Leptoquark	$(U^{+{\bf 5/3}}_{{\bf 3}\mu})^c$		
0.2	327.44	—	—	0.2	9579.55	—	—	
2.0	5.33	3.95	2.27	2.0	11769.27	117.41	21.17	
3.0	2.43	2.08	1.36	3.0	11783.95	124.50	20.50	

Table: Production cross-sections for the chosen leptoquarks at $e-\gamma$ collider for the benchmark points at centre of momentum energies to be 200 GeV, 2 TeV and 3 TeV.

Anirban Karan (IIT Hyderabad) Leptoquark, amp

June 22, 2020

Madas	Branching fraction			Madaa	Branching fraction			
Modes	BP1	BP2	BP3	wodes	BP1	BP2	BP3	
Lep	otoquark ($S_{1}^{+1/3})^{c}$		Lep	otoquark ($U_{1\mu}^{+2/3})^{c}$		
ue	0.245	0.229	0.223	đe	0.222	0.225	0.223	
cµ	0.288	0.229	0.223	$\bar{s}\mu$	0.261	0.225	0.223	
$t\tau$	—	0.199	0.218	$\bar{b}\tau$	0.222	0.225	0.223	
$d\nu_e$	0.141	0.114	0.112	$\bar{u}\nu_e$	0.128	0.112	0.111	
$s u_{\mu}$	0.185	0.114	0.112	$\bar{c}\nu_{\mu}$	0.167	0.112	0.111	
$b\nu_{ au}$	0.140	0.114	0.112	$\bar{t}\nu_{\tau}$	—	0.101	0.109	
Leptoquark $(R_2^{+5/3})^c$				Leptoquark $(V_{2\mu}^{+4/3})^c$				
ūe	0.458	0.349	0.336	de	0.278	0.278	0.278	
$\bar{c}\mu$	0.542	0.349	0.336	sμ	0.278	0.278	0.278	
$\bar{t}\tau$	—	0.302	0.327	b au	0.444	0.444	0.444	
Lep	otoquark ($\widetilde{R}_{2}^{+2/3})^{c}$		Leptoquark $(\widetilde{V}^{+1/3}_{2\mu})^c$				
đe	0.248	0.247	0.247	ue	0.500	0.261	0.250	
$\bar{s}\mu$	0.248	0.247	0.247	сμ	0.500	0.261	0.250	
$\bar{b}\tau$	0.503	0.505	0.505	tτ	_	0.478	0.500	
Leptoquark $(S_3^{+4/3})^c$				Leptoquark $(U^{+5/3}_{3\mu})^c$				
$\overline{d}e^+$	0.248	0.247	0.247	ue ⁺	0.5	0.261	0.25	
$\overline{s}\mu^+$	0.248	0.247	0.247	$c\mu^+$	0.5	0.261	0.25	
$\overline{b}\tau^+$	0.503	0.505	0.505	$\overline{b}\tau^+$	0.503	0.505	0.505	

Anirban Karan (IIT Hyderabad)

(ロ) (個) (主) (主) (主) のへで June 22, 2020

	Cross-section in fb							
Photon	$(S_{1}^{+1/3})^{c}$, BP1 $\sqrt{s}=0.2$ TeV	$(\widetilde{R}_2^{+^{2/3}})^c$, BP2 $\sqrt{s} = 2$ TeV	$(U_{1\mu}^{+\mathbf{2/3}})^{c}$, BP3 $\sqrt{s}=2$ TeV	$(\widetilde{V}_{2\mu}^{+\mathbf{1/3}})^c$, BP1 $\sqrt{s}=0.2~{ m TeV}$				
Laser back- scattering	688.20	4.87	11.11	3337.54				
EPA	101.42	0.81	0.40	486.94				
Monochromatic	430.24	2.89	14.84	2127.02				

Table: Cross-section for production of leptoquarks in the chosen four scenarios with laser backscattering, equivalent photon approximation and monochromatic photon at $e-\gamma$ collider.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э