
Understanding of Schrödinger Equations in Quantum

Systems

Ananya Janardhanan
BS-MS 2nd year, IISER Bhopal

SUPERVISOR: DR. PRIYOTOSH BANDYOPADHYAY

Project Duration: May’19 to June’19

Abstract

In this project we describe the different quantum systems and their properties. In the
process we also analyse the different possible differential equations and their solutions.
Most of the project we use Mathematica as a tool. The expressions of various functions
are also studied and given in the Appendix.
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1 Introduction

The quantum systems of the one-dimensional Linear Harmonic Oscillator and the Hydrogen Atom will be
analysed and their solutions detailed before proceeding to more advanced quantum systems involving the use
of Quantum Perturbation Theory. The text has been presented in such a manner that an undergraduate in
physics who has completed a basic course in quantum mechanics will be able to easily understand the theory
and work out the calculations as and when required. This text is also suitable for readers who just wish to look
up certain calculations that are now fuzzy.
As we progress in our analysis, the emphasis will be on studying the properties of polynomial solutions that
arise as a part of the total solution to quantum systems. Angular momentum algebra comes up naturally as
a consequence of raising-lowering operator algebra applied to the system of one-dimensional Linear Harmonic
Oscillator. The section on Spherical Harmonics is an essential prerequisite to the study of Hydrogen Atom.

2 The Linear Harmonic Oscillator

2.1 Schrödinger Equation for the Linear Harmonic Oscillator Potential

In linear harmonic oscillators we have a particle that experiences a force proportional but opposite to it’s
displacement from a fixed point in one dimension. Therefore, we have F = −kx as the force considering origin
as fixed point and the potential energy as V (x) = 1

2kx
2.

The corresponding 1-D Schrödinger eigenvalue equation is

− ~2

2m

d2ψ(x)

dx2
+

1

2
kx2ψ(x) = Eψ(x) (1)

Non-dimensionalizing the above equation using two dimensionless quantities

λ =
2E

~ω
ξ = αx

where

ω =

(
k

m

) 1
2

α =
(mω

~

) 1
2

The equation becomes
d2ψ(ξ)

dξ2
+ (λ− ξ2)ψ(ξ) = 0 (2)

We now analyse the equation in the asymptotic region of |ξ| → ∞. For finite E, λ << ξ2 and the equation
simplifies to

d2ψ(ξ)

dξ2
= ξ2ψ(ξ) (3)

The asymptotic function therefore has the form ψ(ξ) = e±
ξ2

2 . You can simply substitute to check this. The
wave-function must be bounded everywhere, so we discard the positive sign in the exponent.

Asymptotic analysis therefore, suggests solutions of the form

ψ(ξ) = H(ξ)e−
ξ2

2 (4)

where H(ξ) does not affect the asymptotic behaviour of ψ.
Substituting 4 in 3 we get the Hermite Equation

d2H

dξ2
− 2ξ

dH

dξ
+ (λ− 1)H = 0 (5)
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2.2 Potentials and Symmetry

The linear harmonic potential is special because of it’s symmetric nature. This section will be about a few
interesting consequences of this ‘symmetry’ in quantum mechanics.

Figure 1: Graphs of some 1-D potentials

2.2.1 The Parity Operation

The 1-D Schrödinger eigenvalue equation is given by

− ~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (6)

The operation of reflection through the origin, x → −x is called the parity operation. If the potential is

symmetric, the Hamiltonian − ~2

2m
d2

dx2 + V (x) does not change when x is replaced with −x and is said to be
invariant under the parity operation.

Now, if we change the sign of x in 6 we get

− ~2

2m

d2ψ(−x)

dx2
+ V (x)ψ(−x) = Eψ(−x) (7)

and we realize that both ψ(x) and ψ(−x) are solutions to the same equation, with the same eigenvalue E.

2.2.2 Eigenfunctions with definite parity

An interesting consequence of our observations in section 2.2.1 is

Theorem: For a symmetric one-dimensional potential, the eigenfunctions of 1-D Schrödinger eigenvalue
equation can always be chosen to have definite parity.

Let us detail a proof.

Case 1: The eigenvalue E is non-degenerate or in other words linearly independent eigenfunctions have
distinct eigenvalues. Thus
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ψ(x) = αψ(−x)

=⇒ ψ(−x) = αψ(x)

=⇒ ψ(x) = α2ψ(x) (8)

We get α = ±1 and therefore,

ψ(x) = ±ψ(−x) (9)

Therefore, ψ(x) has a definite parity in case of the eigenfunctions being non-degenerate.

Case 2: The eigenvalue E is degenerate or in other words, at least two linearly independent eigenfunctions
have the same eigenvalue.
(Note: n-fold degeneracy of an eigenvalue implies n linearly independent eigenfunctions have the same eigen-
value)

Let us assume that any one of degenerate eigenfunctions say ψ(x) does not have a definite parity. But we
can always write

ψ(x) = ψ+(x) + ψ−(x)

where

ψ+(x) =
1

2
[ψ(x) + ψ(−x)] (10)

ψ−(x) =
1

2
[ψ(x)− ψ(−x)] (11)

A simple calculation will tell you that both ψ+(x) and ψ−(x) are eigenfunctions with eigenvalue E. Therefore,
you can always find a set of n eigenfunctions (linearly independent of course) with definite parity for an n-fold
degenerate eigenvalue.

This completes the proof.

Often this theorem largely simplifies calculations as we will see in the next section.

2.3 Hermite Polynomials

For solving the Hermite Equation, we expand H(ξ) as a power series. For a parity symmetric potential, we
know that the eigenfunctions can always be chosen to have a definite parity. Therefore, we have

ψ(ξ) = ±ψ(−ξ)⇒ H(ξ) = ±H(−ξ)

from 4.

Even States

H(ξ) =

∞∑
k=0

ckξ
2k

is substituted in 5 to get
∞∑
k=0

[2(k + 1)(2k + 1)ck+1 + (λ− 1− 4k)ck+1]ξ2k = 0

For the equation to be satisfied each coefficient has to separately go to zero and therefore we get

ck+1 =
4k + 1− λ

2(k + 1)(2k + 1)
ck (12)

We realize that H(ξ) must be a polynomial that terminates in the variable ξ2. Otherwise ψ(ξ) does not
have finite value for |ξ| → ∞.
Let 2n be the highest power of the polynomial H(ξ) then cn 6= 0 and cn+1 = 0. Therefore

λ = 4n+ 1 n = 0, 1, 2, ...
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Odd States

H(ξ) =

∞∑
k=0

dkξ
2k+1

is substituted in 5 to get

dk+1 =
4k + 3− λ

2(k + 1)(2k + 3)
dk (13)

(The calculations are similar to that for even states)
Let 2n+1 be the highest power of the polynomial H(ξ) then dn 6= 0 and dn+1 = 0. Therefore

λ = 4n+ 3 n = 0, 1, 2, ...

Solving the Hermite Equation We will use mathematica as a tool. Since, it is a second order differential
equation we need to specify two initial conditions.
They should be such that we get Physicist’s Hermite Polynomials which look like

H0(ξ) = 1

H1(ξ) = 2ξ

H2(ξ) = 4ξ2 − 2

H3(ξ) = 8ξ3 − 12ξ

H4(ξ) = 16ξ4 − 48ξ2 + 12 (14)

We observe that the coefficient of the highest power of ξ in Hn(ξ) is 2n. This fact is used to find coefficients
of smaller order of the Hermite Polynomial taking cn = 2n and evaluating cn−1, cn−2, ... by substituting in
recursion relations (7) or (8) depending on whether n is even or odd.

Here are the mathematica generated graphs.

Figure 2: Hermite Polynomials

Note y(n) is the same as Hn(ξ).

Energy Levels

λ = 2n+ 1 n = 0, 1, 2, ...

λ =
2E

~ω

Therefore we get

En =
(2n+ 1)

2
~ω = (n+

1

2
)hν

We get infinite discreet equally spaced energy levels.

En+1 − En = hν

We have the zero point energy as

E0 =
~ω
2

This is a quantum phenomenon since a particle at rest with zero potential energy is prohibited by the Uncertainty
Principle but is otherwise possible for a classical particle.
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The final wave equation looks like

ψn(x) = Nne
−α2x2

2 Hn(αx)

The coefficient Nn will be determined in the following section using a very different method.

2.3.1 Properties of Hermite Polynomials

1 One alternate definition of Hermite Polynomials in mathematics:

Hn(ξ) = (−1)neξ
2 dne−ξ

2

dξn

2 Generating Function of Hermite Polynomials G(ξ, s) = e−s
2+2sξ =

∑∞
n=0

Hn(ξ)
n! sn

3 Recursion Relation Using G one can show that Hermite polynomials satisfy the recursion relation

Hn+1(ξ)− 2ξHn(ξ) + 2nHn−1(ξ) = 0∗∗ (15)

4 Orthogonality The polynomials are orthogonal with respect to the weight function(measure) w(x) =

e−
x2

2 .Thus, we have ∫ ∞
−∞

Hn(x)Hm(x)w(x)dx = 0 ,m 6= n

5 Completeness The Hermite polynomials form an orthogonal basis of the Hilbert space of functions
satisfying ∫ ∞

−∞
|f(x)|2w(x)dx <∞

in which the inner product is given by the integral

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)w(x)dx

2.4 Raising and Lowering Operators

For those who are unfamiliar with Dirac’s Bra and Ket notation, we first describe a short section on it. (The
reader is advised to refer to any standard quantum mechanics textbook as a follow up if the notation is completely
new)

2.4.1 Dirac’s Bra and Ket Algebra

We will derive the final wave equation for Linear Harmonic Oscillator Potential using Dirac’s Bra and Ket
Algebra which is far more elegant than solving the Schrödinger Equation.

Few definitions and their consequences:

1 Scalar Product: If we have two square integrable functions ψ1 and ψ2 then their scalar product is given
by

〈ψ1|ψ2〉 =

∫
ψ∗1(r)ψ2(r)dr

where the integration is over entire ’space’. Here 〈ψ1| is called a bra while |ψ2〉 is called a ket. We’ll list
a few consequences of this definition.

1.1 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉∗ where the * denotes conjugate.

1.2 〈ψ|ψ〉 ≥ 0

1.3 〈ψ|ψ〉 = 1 =⇒ ψ is normalised.

2 What are these kets and bras? Kets are column vectors while bras are conjugate row vectors (or the
conjugate transpose of ket vectors).

2.1 |ψ1〉 = c |ψ2〉 =⇒ 〈ψ1| = c∗ 〈ψ2|
2.2 You can think of these ket vectors to be a part of some abstract vector space(spanned by a ket

vector basis) while the corresponding bra vectors to be a part of a conjugate space satisfying relation 2.1.

Remark: This abstract ’space’ that we keep talking about is a Hilbert Space. At this stage we don’t
need to confuse ourselves with it’s definition. In quantum mechanics, wave functions sit inside a Hilbert
Space.
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3 Operators: An operator α (say) converts a bra or ket into a different bra or ket. We will only encounter
linear operators which satisfy the condition

α(c1 |ψ1〉+ c2 |ψ2〉+ ...) = c1α |ψ1〉+ c2α |ψ2〉+ ...

Some properties satisfied by operators:

3.1 Sum/Diff (α± β) |ψ〉 = α |ψ〉 ± β |ψ〉
3.2 Associative Law (α+ β) + γ = α+ (β + γ)

3.3 Product (βα |ψa〉 = β(α |ψa〉) = β |ψb〉

4 Eigenvalue Equation: If operator satisfies

α |ψn〉 = αn |ψn〉

then αn is an eigenvalue of the operator α corresponding to eigenfunction |ψn〉.

5 Observables: Any dynamical quantity that can be measured is an observable. Observables are assumed
to be represented by linear operators. The eigenfunctions(or eigenkets if you wish) corresponding to the
observable satisfy the following properties.

Orthogonality: The ψs satisfy
〈ψn|ψm〉 = cnmδnm

where cnm’s are constants. The eigenfunctions can be normalized so that we can set cnm = 1. We then
say that the set of eigenfunctions is orthonormal.

Completeness: We’ll represent ψs as ns for short.The ns form a complete set or we have the
completeness condition ∑

n

|n〉 〈n| = I

Some important types of operators:

6 Adjoint Operator: We now have an idea that |ψ〉 is a column vector while 〈ψ| is a conjugate row vector
and operator α is a matrix. Adjoint operator α† of α is the transpose conjugate of the matrix α and
satisfies condition

〈ψ1|α†|ψ2〉 = 〈ψ1|α|ψ2〉∗

An important property to list is when we change bras to kets or vice-versa.

α |ψ3〉 = |ψ4〉 =⇒ 〈ψ3| = 〈ψ4|α† (16)

7 Hermitian Operator: If the operator A satisfies the condition

〈ψ1|A|ψ2〉 = 〈(Aψ2)|ψ1〉

then it is a Hermitian operator by definition. These operators are transpose conjugates of themselves!
They also are a special class of linear operators representing observables that have real eigenvalues only
(which is a direct consequence of the definition, proof outlined below).

(a) Taking ψ1 = ψ2 = ψn, 〈ψn|A|ψn〉 = a 〈ψn|ψn〉
(b) (Aψn)∗ = a∗nψ

∗
n

(c) As a consequence of (b), we have 〈(Aψn)|ψn〉 = a∗n 〈ψn|ψn〉

Equating (a) and (c), we get

a∗n = an

Therefore, a sufficient condition for operators to have real eigenvalues is for them to be Hermitian. But,
this is not necessary a condition.

8 Unitary Operator: An operator U is unitary if it satisfies UU† = 1.

Also, U can be represented as U = eiA where A is a Hermitian operator.
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2.4.2 Commutator Algebra for Operators

Commutator algebra for operators will be introduced here.

1. If A and B are operators then their commutator is defined as

[A,B] = AB −BA

and the operators are said to commute if

AB −BA = 0

2. The first example that comes to mind is [x, px]. We see that

[x, px] = [y, py] = [z, pz] = i~

3. Rest of the pairs commute. For example [x, py] = 0, [x, y] = 0. In the following sections we’ll use
commutator algebra everywhere.

2.4.3 Introduction to raising and lowering operators

The usefulness of these operators will be demonstrated for the linear harmonic oscillator case, but the method
is very general. A few points are enlisted before the final result. We have the Hamiltonian

− p2x
2m

+
1

2
mω2x2 = ~ω(x

√
mω

2~
− ipx

1√
2m~ω

)(x

√
mω

2~
+ ipx

1√
2m~ω

)− 1

2
~ω

We have the extra 1
2~ω because x and px do not commute

1 Inspired by the above relation we introduce two operators, the raising and lowering (or the creation and
annihilation) operators.

a± = x

√
mω

2~
∓ ipx

1√
2m~ω

(17)

a+ and a− are adjoints of each other (because x and px are Hermitian i.e. they are adjoints of themselves

and so only i switches signs when we take a†+)

2 Commutation relation
[a−, a+] = 1 (18)

3 From 17 and 18 we get

H = ~ω(a+a− +
1

2
)

4 From 17 we can see that

px =
1

i

√
m~ω

2
[a− − a+] (19)

and

x =

√
~

2mω
[a− + a+] (20)

5
[H, a±] = ±~ωa± (21)

(Hint:For proving this result use 18)

6 Final Result If |E〉 is an eigenvector of H corresponding to eigenvalue E we have

H |E〉 = E |E〉

and from 21

Ha± |E〉 = (a±H ± ~ωa±) |E〉
= (E ± ~ω)a± |E〉 (22)

We see that L±f is an eigenfunction of H with new eigenvalue µ± ~. Therefore, a+ raises the value of E
by ~ω while a− lowers E by ~ω.

We are moving along a ”ladder” of states. Does this ladder have a lowest state?
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Zero point energy using lowering operator Since H only contains squares of operators px and x, the
expectation value of H in any state cannot be negative, hence eigenvalues of H must be non-negative. Let E0

be the smallest eigenvalue then
a− |E0〉 = 0

otherwise we will have a smaller eigenvalue for energy contrary to what we have assumed. If we operate
Hamiltonian on E0 we get

H |E0〉 = (a+a− +
1

2
~ω) |E0〉 =

1

2
~ω |E0〉

So the zero point energy is 1
2~ω as we already obtained before!

Say a+ is repeatedly operated on |E0〉 n times we raise the energy by n~ω. then eigenket an+ |E0〉 corresponds
to energy

En = (n+
1

2
)~ω n = 0, 1, 2, ...

2.4.4 Trans-state Relations

a− |n〉 = cn |n− 1〉

Here a simpler notation for energy eigenstates has been used that is |n〉 = |En〉. cn or the normalisation constant
is to be found.
When we change kets to bras according to the previous properties

〈n| a†− = c∗n 〈n− 1|

Combining the two equations we get

〈n|a+a−|n〉 = 〈n|a+cn|n− 1〉 = |cn|2 〈n− 1|n− 1〉 = |cn|2

~ω 〈n|a+a−|n〉 = ~ω 〈n|n|n〉 = n~ω

Therefore we get |cn| =
√
n.

Let’s derive another important relation. From previous result we have

a− |n+ 1〉 =
√
n+ 1 |n〉 =⇒ a+a |n+ 1〉 = a+

√
n+ 1 |n〉 =⇒

√
n+ 1 |n+ 1〉 = a+ |n〉

Finally we have

a− |n〉 =
√
n |n− 1〉

a+ |n〉 =
√
n+ 1 |n+ 1〉 (23)

2.5 Normalisation constants using raising operator

N0 can be easily obtained using normalisation integral involving just e−
α2x2

2 and we get

N0 =

(
α√
π

) 1
2

We can now elegantly obtain not only Nn but also all of the eigenfunctions after ψ0 using the raising operator.

From 23 we have

|ψn+1〉 =
1√
n+ 1

a+ |ψn〉

Substituting value of a+ from 17 and making change of variable from x to ξ we get

ψn+1(ξ) =
1

[2(n+ 1)]
1
2

(ξ − d

dξ
)ψn(ξ)

Now from ψ0(ξ) we can get ψ1(ξ) as

ψ1(ξ) =

(
α

2
√
π

) 1
2

(2ξ)e−
1
2 ξ

2

Generalizing,

Nn =

(
α√
π2nn!

) 1
2
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2.6 Expectation Values: Position and Momentum

The expectation or average value of a dynamical variable A (with respect to a system described by the wave
function ψ) is given by

〈A〉ψ =
〈ψ|A|ψ〉
〈ψ|ψ〉

(24)

When the wave functions are noramlized energy eigenfunctions of SHO and the dynamical variable is

1. Position: We have

〈x〉 =

∫ ∞
−∞

ψ∗n(x) x ψn(x)

Since ψ∗n(x) times ψn(x) is even, the function inside the integral is odd. Therefore we get

〈x〉 = 0

2. Momentum: We have

〈p〉 =

∫ ∞
−∞

ψ∗n(x)
d

dx
(ψn(x))

By replacing x→ −x we realize that the function inside the integral is odd and we get

〈p〉 = 0

Theorem: A similar argument as above gives us

〈x2n+1〉 = 0

2.7 Energy Eigenfunctions: The Final Expression

ψn(x) =

(
α√
π2nn!

) 1
2

e−
α2x2

2 Hn(αx)

Mathematica generates these beautiful graphs for different values of n and α = 1.
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Figure 3: Energy eigenfunctions of the Linear Harmonic Oscillator

3 Angular Momentum Algebra

First we describe a short section introducing angular momentum algebra for readers who are new to this.

3.1 Introduction

• L = r × p is the angular momentum with respect to some origin.Converting these classical symbols into
operators and evaluating the cross product we get Lx, Ly, Lz or th orbital angular momentum operators
in the X,Y,Z directions respectively as

Lx = ypz − zpy (25)

Ly = zpx − xpz (26)

Lz = xpy − ypx (27)

• They satisfy the commutation relations(using results of section 2.4.2)

[Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly (28)

or in short
[Li, Lj ] = i~εijkLk (29)

(The εijk is just the Levi-Civita symbol. It belongs to the set {−1, 0, 1 }. If any of the indices are
equal it becomes zero. If all indices are unequal and two of them are interchanged then it switches sign,
interchanging twice makes it revert back. By convention ε123 = 1)

• [L2, L] = 0 where L = Lx + Ly + Lz.

This is an extremely important relation because it means we can find simultaneous eigenfunctions for L2 and
Lz(say).
These eigenfunctions are given by Spherical Harmonics represented by Ylm(θ, φ).

12



3.2 Eigenvalues of L2 and Lz

Let the simultaneous eigenfunctions be called f for now. We then have

L2f = ηf (30)

Lzf = µf (31)

Later on we’ll use the standard notation Y instead of f .

Now introduce L+ and L− as
L± = Lx ± iLy (32)

We can prove that
[Lz, L±] = ±~L±

This is very similar to 21.
Therefore, L+ raises the value of Lz by ~ while L− lowers the value of Lz by ~ that is

Lz(L±f) = (µ± ~)(L±f) (33)

For a given value of η we again obtain a ”ladder” of states. This ladder must have a top rung ft because the
z-component cannot exceed the total angular momentum’s value.

L+ft = 0

Let ~l be the eigenvalue of Lz on the top rung.

Lzft = ~lft, L2ft = ηft (34)

Verifying that
L±L∓ = L2 − L2

z ∓ i(i~Lz) (35)

we can deduce

L2ft = (L−L+ + L2
z + ~Lz)ft = (0 + ~2l2 + ~2l)ft = ~2l(l + 1)ft (36)

Therefore,
η = ~2l(l + 1) (37)

For the same reason that a top rung exists, we have a bottom rung for which

L−fb = 0

.
Let ~l∗ be the eigenvalue of Lz at the bottom rung. From (35) we can similarly deduce that

η = ~2l∗(l∗ − 1) (38)

From (37) and (38) we see that either l∗ = l + 1 (which is clearly wrong since bottom rung would be higher
than top) or else

l∗ = −l (39)

We realize that the eigenvalues m~ of Lz vary with m going from −l to l in integer steps.Let the number of
steps be N .

l = −l +N =⇒ l =
N

2
(40)

Observe that l can be an integer or half integer.

l = 0,
1

2
, 1,

3

2
, ... (41)

For a given value of l there are 2l + 1 values of m or 2l + 1 ”rungs” on the ladder!

Also, notice that the eigenfunctions (which we will derive in the section 4) are characterised by l and m.

Lzf
m
l = ~mfml , L2fml = ~2l(l + 1)fml (42)

13



3.3 Group Representations and SO(3)

*This section is for advanced readers and can be omitted.

When you think angular momentum, you naturally also think of rotations. Maybe you think of a clas-
sical object spinning about its axis in empty space. Angular momentum classically as well as quantum
mechanically is considered to be the generator of rotations.
Once we enter the realm of quantum mechanics, there comes the need to specify not just the orbital angular
momentum of a particle, but also its spin angular momentum. We conveniently choose not to deal with spin of
the particle in this text, though the algebra that spin operator follows is similar and is introduced in section 6.
Before proceeding further, I suggest to read up on what ‘groups’ and ‘homomorphisms’ are in mathematics.
You must have studied rotations in 3-dimensions, where the coordinates (x, y, z) are transformed into a new
set (x′, y′, z′). This transformation is produced by an appropriate 3 × 3 matrix determined by the rotation in
question.
As an example consider a rotation about the z-axis by an angle θ which leaves the z coordinate unchanged.
Simple calculations tell us

x′ = x cos θ − y sin θ

y′ = y cos θ + x sin θ

z′ = z (43)

which is the same as saying, cos θ − sin θ 0
sin θ cos θ 0

0 0 1

xy
z

 =

x′y′
z′


Therefore, a physical rotation about the z-axis through an angle θ is represented by the rotation matrix

R(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (44)

For the particular angles 0, 2π/3 and 4π/3 we obtain the matrices D(e), D(g), D(g2) which represent elements
of the cyclic group C3.

D(e) = R(0) =

1 0 0
0 1 0
0 0 1


D(g) = R(2π/3) =

−1/2 −
√

3/2 0√
3/2 −1/2 0
0 0 1


D(g2) = R(4π/3) =

 −1/2
√

3/2 0

−
√

3/2 −1/2 0
0 0 1

 (45)

One of the crucial properties that makes these matrices a ‘representation’ is D(g2) = (D(g))2. This should
immediately remind you of homomorphisms!

Definition: A representation of dimension n of the abstract group G is defined as a homomorphism
given by D : G 7→ GL(n,C), the group of non-singular n× n matrices with complex entries.
In other words, it is a mapping g 7→ D(g) preserving the group structure:

D(g1g2) = D(g1)D(g2) (46)

Now you should be able to guess what equation 44 means. These rotation matrices belong to a more
restricted ‘subgroup’ of GL(n,C). Restricted because all the entries x, y, z are real while the matrix itself is
orthogonal since the rotation leaves invariant the length of the vectors. Also, the matrices have a determi-
nant equal to +1. The technical name of this group is SO(3) or the special orthogonal group in three dimensions.

Notice that SO(3) is not finite unlike C3. It not only consists of rotations of finite order i.e. through
an angle 2π/n, but also of ‘infinitesimal’ rotations. It is the group of all proper rotations in 3-dimensions i.e.
rotations through any arbitrary angle about an axis in the direction of some unit vector n̂ (in 44 it was the
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z-direction). SO(3) therefore, belongs to the family of continuous or Lie groups.
For Lie groups, it is also useful to talk of their infinitesimal generators which form a structure called Lie
Algebra. This is how the angular momentum operators Lx, Ly, Lz or the generators satisfying commutation
relations arise in the context of the rotation group SO(3).

Infinitesimal Generator(Lz) The generators of continuous (Lie) groups in a general representation D
are introduced by elements infinitesimally near the identity element. For small θ we have a Taylor expansion
that looks like

D(θ) = I− iθX +O(θ2) (47)

which is equivalent to,

− iX =
dD(θ)

dθ

∣∣∣∣
θ=0

(48)

X here is the infinitesimal generator and the i has been included in the expansion so that if the representation
is unitary, the X will be a Hermitian operator.
On substituting D(θ) = R(θ) (refer to 44) and evaluating at θ = 0 we get

− iX3 =

0 −1 0
1 0 0
0 0 0

 (49)

The use of index 3 is to denote the z-direction.

Note: The most general definition of orbital angular momentum is as the generator of spatial rotations
and for dimensional reasons we have

Lz = ~X3 (50)

We cannot stop here because two other generators exist for the x and y directions. You could use the same
definitions as 47 to obtain X1 and X2, but to calculate Lx and Ly, I suggest the use of raising and lowering
operators (a good exercise for advanced readers). We get

−iX1 =

0 0 0
0 0 −1
0 1 0

 (51)

−iX2 =

 0 0 1
0 0 0
−1 0 0

 (52)

The structure formed by the infinitesimal generators Xi is known as an algebra. This algebra is a vector space
since (complex) linear combinations of the Xi are generators too. When we also consider the binary operation of
the commutator bracket i.e. [X,Y ] which satisfies the Jacobi Identity, it is called a Lie Algebra. The generators
on the other hand satisfy ‘commutation’ relations which we have already come across. Simple but satisfying
calculations tell us

−[X1, X2] =

0 −1 0
1 0 0
0 0 0

 = −iX3

=⇒ [X1, X2] = iX3 (53)

Similarly for other cyclic permutations which we can summarize neatly as

[Xi, Xj ] = iεijkXk (54)

For further reading refer to Groups, Representations and Physics by H.F. Jones. Most of the theory presented
here has been borrowed from Chapters 3 and 6 of the book.
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4 Spherical Harmonics

Spherical harmonics are defined as the eigenfunctions of the angular part of the Laplacian in three dimensions.
The Laplacian appears frequently in physical equations (like the Schrödinger equation, the Heat equation,
the Poisson equation,..) and therefore, the Spherical Harmonics are important for representing solutions that
have physical significance.
We will study their most notable application in representing orbitals of the H-atom in section 5 while this
section will cover solving for them as simultaneous eigenfunctions of the familiar operators L and L2.

4.1 Operators in the Spherical Polar Coordinates

The calculations are a bit involved so the reader has to patiently solve for the relations.

• Some familiar relations:

r2 = x2 + y2 + z2

tan θ = x2+y2

z2

tanφ = y
x

• Find ∂r
∂x ,

∂θ
∂x ,

∂φ
∂x ,

∂r
∂y , ... using the equations above.

• Lzψ(r, θ, φ) = i~[x∂ψ∂y − y
∂ψ
∂x ]

To convert to spherical coordinates we just split the partial derivatives.

For example ∂ψ
∂y = ∂ψ

∂r
∂r
∂y + ∂ψ

∂θ
∂θ
∂y + ∂ψ

∂φ
∂φ
∂y and so on.

Similarly, for Lx, Ly.

We get

Lz = −i~ ∂

∂φ
(55)

Ly = i~(− cosφ
∂

∂θ
+ cot θ sinφ

∂

∂φ
) (56)

Lx = i~(sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ
) (57)

• Finally solving for L2

L2 = L2
x + L2

y + L2
z = −~2[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂2φ2
] (58)

4.2 Eigenfunctions of L2

To solve
L2Y (θ, φ) = λ~2Y (θ, φ) (59)

Y is a function of θ and φ only because operator L2 does not contain terms in r!

Substituting 58 in 59 we get

1

sin θ

∂

∂θ
(sin θ

∂Y

∂θ
) +

1

sin2 θ

∂2Y

∂2φ2
+ λY (θ, φ) = 0 (60)

We try the method of separation of variables.

Y (θ, φ) = Θ(θ)Φ(φ)

∴
sin2 θ

Θ
[

1

sin θ

∂

∂θ
(sin θ

dΘ

dθ
) + λΘ(θ)] = − 1

Φ(φ)

d2Φ

dφ2
(61)
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4.2.1 Solving for Φ(φ)

− 1

Φ(φ)

d2Φ

dφ2
= m2 =⇒ Φ(φ) ∼ eimφ

For the wave function to be single valued(using concepts from complex analysis),

Φ(φ+ 2π) = Φ(φ) =⇒ e2πmi = 1

Therefore,
m = 0,±1,±2, ....

Normalization of Φ(φ) gives

Φm(φ) =
1√
2π
eimφ (62)

4.2.2 Solving for Θ(θ)

sin2 θ

Θ(θ)
[

1

sin θ

∂

∂θ
(sin θ

dΘ

dθ
) + λΘ(θ)] = m2

1

sin(θ)

∂

∂θ
(sin θ

dΘ

dθ
) + (λ− m2

sin2 θ
)Θ(θ) = 0 (63)

We make a change of variables cos θ = µ and Θ(θ) = F (µ). 63 becomes

d

dµ
[(1− µ2)

dF (µ)

dµ
] + [λ− m2

1− µ2
]F (µ) = 0 (64)

Case I: m=0

(1− µ2)
d2F (µ)

dµ2
− 2µ

dF (µ)

dµ
+ λF (µ) = 0 (65)

This differential equation is called the Legendre equation. Since µ = 0 is an ordinary point of this equation
we can try power series solution of the form

F (µ) =

∞∑
k=0

akµ
k

Substituting the power series into 65 we get

∞∑
k=0

[(k + 1)(k + 2)ak+2 + λ− k(k + 1)ak]µk = 0

This equation is satisfied if the coefficient of each power of µ vanishes. We therefore get the recursion relation

ak+2 =
k(k + 1)− λ

(k + 1)(k + 2)
ak (66)

Therefore we get

F (µ) = a0[1 +
a2
a0
µ2 +

a4
a0
µ4 + ...] + a1[µ+

a3
a1

+ ...] (67)

Note that limk→∞
ak+2

ak
= 1 and therefore at µ = ±1 the sequence clearly diverges. The series has to terminate.

Let l be the highest power of the polynomial then

λ = l(l + 1) (68)

as one obtained in section 3.2, but with a different method.

Now notice that for λ = 0, 2, 6, ... one of the series will terminate at alµ
l. For an even l, the odd series will

not terminate and we set a1 = 0 and vice versa. The two polynomial solutions (even and odd) are then called
independent solutions.
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Let F (µ) = Pl(µ) and we take l = 4 as an example.

P4(µ) = a0[1− 10µ2 +
70

6
µ4]

a0 is always chosen such that Pl(1) = 1 and in the case of l = 4 comes out to be 3
8 .

Therefore,

Θl(θ) = NθPl(cos θ) (69)

where the function is yet to be normalized.

4.2.3 Legendre Polynomials

P0(µ) = 1

P1(µ) = µ

P2(µ) =
1

2
(3µ2 − 1)

P3(µ) =
1

2
(5µ3 − 3µ)

(70)

and so on.

Figure 4: Legendre Polynomials

Some other properties of Legendre Polynomials are enlisted.

1. Orthonormality
∫ +1

−1 Pl(µ)Pl′(µ)dµ = 2
2l+1δll′

2. Recurrence Relation Pl(µ) = 2l−1
l µPl−1(µ)− l−1

l Pl−2(µ)

3. Completeness Given any piecewise continuous function f(x) with finitely many discontinuities in the
interval [−1, 1], the sequence of sums

fn(x) =

n∑
l=0

alPl(x)

converges in the mean to f(x) as n→∞ provided we take

al =
2l + 1

2

∫ 1

−1
f(x)Pl(x)dx
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Our solution to 60 can now be written with subscripts as

Ylm(θ, φ) = Θl(θ)Φm(φ) (71)

and we now know

Yl,0 =
1√
2π

Θl(θ) =

(
2l + 1

4π

) 1
2

Pl(cos θ)

where the normalization constant for Θl(θ) comes from the orthonormality condition for Legendre Polynomials.

Case II: m 6= 0

Let us define the Associated Legendre function P
|m|
l (µ) of degree l(l = 0, 1, 2, ...) and order |m| ≤ l by the

relation

P
|m|
l (µ) = (1− µ2)

|m|
2
d|m|

dµ|m|
Pl(µ) |m| = 0, 1, 2, .. (72)

Note for m = 0 we have P 0
l (µ) = Pl(µ).

Differentiating m times the Legendre equation by substituting λ = l(l + 1) we find that P
|m|
l (µ) satisfies the

differential equation

[(1− µ2)
d2

dµ2
− 2µ

d

dµ
+ l(l + 1)− m2

1− µ2
]P
|m|
l (µ) = 0 (73)

which is the same as 64.

Allowed values of m: Since Pl(µ) is of degree l, for m > l we have P
|m|
l (µ) = 0. Therefore, for a fixed value

of l we get (2l + 1) different values for m.

m = −l,−l + 1, ..., l (74)

Some other properties of Associated Legendre Polynomials:

1. Orthonormality
∫ 1

−1 P
m
l (x)Pml′ (x)dx = 2(l+m)!

(2l+1)(l−m)!δll′

2. Completeness They form a complete set too!

Spherical Harmonics:The Final Expression

We finally obtain the eigenfunctions of L2 and Lz for non-negative m as

Ylm(θ, φ) = (−1)m[
(2l + 1)(l −m)!

4π(l +m)!
]
1
2Pml (µ)eimφ (75)

and for negative m as
Ylm(θ, φ) = (−1)mYl,−m(θ, φ) (76)

The phase convention adopted is the usual one.

Ylm(θ, φ) also form a complete set.

Illustrations of the real part of Spherical Harmonics for l = 2 using the ‘SphericalPlot3D’ function on mathe-
matica are given on the next page.
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Figure 5: Real Spherical Harmonics for l=2

(We have clockwise from left: m = −2,m = −1,m = 0,m = 1 and m = 2)
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5 The Hydrogen Atom

5.1 Central Potentials and the Schrödinger Equation

The nucleus of a hydrogen atom and the electron orbiting it interact by means of the Coulomb potential

V (r) = − Ze2

4πε0r
(77)

For a two-body problem like the Hydrogen atom problem, when we work with the centre of mass coordinates
the Hamiltonian becomes

H =
p2

2µ
− Ze2

4πε0r
(78)

where p is the relative momentum and µ is the reduced mass. r is of course the relative distance between the
electron and the proton.

5.1.1 Hamiltonian and Commutators

Before just using 78 in our familiar time-independent Schrödinger Equation, we’ll consider three things.

1. 78 when used in Hψ = Eψ, gives ψ(r) which describes the internal motion of the atom and not how the
hydrogen atom is moving as a whole.

ψin(r,R) = ψ(r)Φ(R)

Φ(R) which describes how the centre of mass is moving (where R represents the position of centre of
mass) completes the time-independent Schrödinger equation’s solution. Φ(R) turns out to be a plane
wave describing the uniform translational motion of the Hydrogen Atom.

(To understand where Φ(R) came from look at the derivation for 78)

2. V (r) from before is Coulombic as well as central (i.e potential depends only on the magnitude of position
vector r) and therefore we can separate the Schrödinger equation in spherical polar coordinates.

Using Hamiltonian in SPC,

H =
−~2

2µ
[

1

r2
∂

∂r
(r2

∂

∂r
)− L2

~2r2
] ψ(r) + V (r, θ, φ) ψ(r) = Eψ(r) (79)

This comes from

H =
−~2

2µ
∇2 + V (r, θ, φ) (80)

=⇒ H =
−~2

2µ
[

1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂2φ2
] + V (r, θ, φ) (81)

L2 in SPC was talked about in the Spherical Harmonics section and recollect that it only depended on
(θ, φ) and not on r. Also V (r, θ, φ) = V (r). Therefore, 79 has solutions of the separable form

ψ(r) = R(r)Y (θ, φ) (82)

3. The Hamiltonian clearly commutes with L and L2 i.e.

[H,L] = [H,L2] = 0 (83)

Therefore we can find simultaneous eigenfunctions of H,Lz, L
2. In other words solutions to 79 will be

eigenfunctions of Lz and L2 too. We know that Ylm(θ, φ) are simultaneous eigenfunctions of L2 and Lz.
Therefore, 82 must look like

ψElm(r) = RElm(r)Ylm(θ, φ) (84)

R(r) needs to be found and can therefore depend on all of E, l,m.
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First encounter with Veff : Substituting 84 into 79 and using L2Ylm(θ, φ) = l(l + 1)~2Ylm(θ, φ),

[(
−~2

2µ

d2

dr2
+ 2

d

dr
) + Veff (r)] REl(r) = EREl(r) (85)

where

Veff (r) = V (r) +
l(l + 1)~2

2µr2
(86)

Note: There is no dependence of R on m so we dropped that subscript.

5.1.2 Schrödinger Equation for the Hydrogen Atom

[− ~2

2µ
− Ze2

4πε0r
]ψ(r) = Eψ(r) (87)

Since the Coulomb potential is central, solutions of the above equation take the form

ψElm(r) = REl(r)Ylm(θ, φ) (88)

Taking

uEl(r) = rREl(r) (89)

we get

− ~2

2µ

d2uEl(r)

dr2
+ Veff (r) uEl(r) = EuEl(r) (90)

where again

Veff (r) = − Ze2

4πε0r
+
l(l + 1)~2

2µr2
(91)

Note that 90 is very similar to the 1-D time independent Schrödinger Equation.

5.1.3 Behaviour of uEl(r) at the origin

Since REl(r) = r−1uEl(r), for the radial function to be finite at the origin we must have

uEl(0) = 0

Therefore, for uEl(r) near origin we have

uEl(r) ∼ rs, s > 0

Substituting in 61 we get
~2

2µ
s(s− 1) +

l(l + 1)~2

2µ
+ V (r)r2 = Er2

As r → 0 we get
s(s− 1) = l(l + 1)

.

Therefore, uEl(r) ∼ rl+1 near the origin.

Limiting Behaviour Rewriting 90

d2uEl(r)

dr2
+

2µ

~2
[E − Veff (r)]uEl(r) = 0 (92)

Veff → 0 when r → ∞ and uEl(r) will have oscillatory behaviour at infinity for E > 0. Therefore these are
scattering or unbound states.
uEl(r) will be an acceptable eigenfunction for any E > 0 and we have a continuous spectrum for E > 0.
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5.2 Solutions for Bound States

Bound states here mean E < 0. We know uEl(0) = 0. Introducing dimensionless quantities

ρ =

(
−8µE

~2

) 1
2

r (93)

λ =
Ze2

4πε0~

(
− µ

2E

) 1
2

(94)

Using λ and ρ in 90 we get

[
d2

dρ2
− l(l + 1)

ρ2
+
λ

ρ
− 1

4
]uEl(ρ) = 0 (95)

Asymptotic Analysis As ρ→∞, ρ−1, ρ−2 → 0 and we have

[
d2

dρ2
− 1

4
]uEl(ρ) = 0

Therefore uEl(ρ) ∼ e±
ρ
2 . Discarding +ρ

2 we have

uEl(ρ) = f(ρ)e−
ρ
2 (96)

where f(ρ) does not affect the asymptotic behaviour of uEl(ρ).
Substituting 96 into 95 we get

[
d2

dρ2
− d

dρ
− l(l + 1)

ρ2
+
λ

ρ
]f(ρ) = 0 (97)

Series expansion of f(ρ)
f(ρ) = ρl+1g(ρ) (98)

where

g(ρ) =

∞∑
k=0

ckρ
k

Putting 98 into 97 we get

[ρ
d2

dρ2
+ (2l + 2− ρ)

d

dρ
+ (λ− l − 1)]g(ρ) = 0 (99)

Using the expression for g(ρ) we get

∞∑
k=0

[k(k + 1) + (2l + 2)(k + 1)]ck+1 + (λ− l − 1)ckρ
k = 0

and hence the recursion relation

ck+1 =
k + l + 1− λ

(k + 1)(k + 2l + 2)
ck (100)

For large k, ck+1

ck
∼ 1

k which are the coefficients of Taylor expansion of ρpeρ which makes uEl(ρ) ∼ ρl+1+pe
ρ
2 an

unacceptable solution(p is some constant).
Therefore, series must terminate and g(ρ) becomes a polynomial in ρ.

5.2.1 The Principal Quantum Number

Let the highest power of ρ appearing in g(ρ) be nr or the radial quantum number where nr = 0, 1, 2, ...(since
k = 0, 1, 2, ..). Therefore

cnr+1 = 0 =⇒ λ = nr + l + 1 (101)

We introduce the principal quantum number n as

n = nr + l + 1 n = 1, 2, 3... (102)

We know that l = 0, 1, 2, .... But now that we have a dependence of l on n and nr we have an upper bound (for
nr = 0).

l = 0, 1, 2, ..., n− 1 (103)
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5.2.2 Energy Eigenvalues

Putting n in place of λ

n =
Ze2

4πε0~

(
− µ

2E

)

En =
µ

2~2

(
Ze2

4πε0

)2
1

n2
(104)

= − e2

4πε0
aµ

Z2

2n2
(105)

where

aµ =
(4πε0)~2

µe2
=
me

µ
a0

is the modified Bohr radius while a0 is the Bohr radius.
From 102 we have n taking all integral values from 1 to ∞ and therefore, we have the bound state energy
spectrum extending from E1 (which is a finite non-zero value) to zero. Relate this fact with the magnitude of
Coulomb potential falling of slowly at larger r.

The energy eigenvalues also depend only on the principal quantum number n and are therefore, are degenerate
with respect to quantum numbers l and m. For each n, the orbital angular momentum quantum number may
take on values 0,1,...,n-1 (refer 103), and for each value of l the magnetic quantum number m may take (2l+ 1)
possible values −l,−l+1, ..., l (refer 74). The degree of degeneracy of En corresponding to eigenfunctions which
are solutions of 87 is therefore given by

n−1∑
l=0

(2l + 1) = 2
n(n− 1)

2
+ n = n2 (106)

Another interesting point to be noted is that degeneracy with respect to quantum number m is present for any
central potential V (r) (as concluded at the end of section 5.1.1) but degeneracy with respect to l is characteristic
of Coulomb potential.

5.2.3 Eigenfunctions for Bound States

Equation 99 is

[ρ
d2

dρ2
+ (2l + 2− ρ)

d

dρ
+ (λ− l − 1)]g(ρ) = 0

We know the solutions to this equation are polynomials. To figure out how these polynomials look we first
define the q th Laguerre Polynomial as

Lq(x) = ex(
d

dx
)q(e−xxq) (107)

which satisfies the differential equation

[ρ
d2

dρ2
+ (1− ρ)

d

dρ
+ q]Lq(ρ) = 0 (108)

Define Associated Laguerre Polynomials as

Lpq(ρ) =
dp

dρp
Lq(ρ) (109)

Differentiating 108 p times, we find that Lpq satisfies the differential equation

[ρ
d2

dρ2
+ (p+ 1− ρ)

d

dρ
+ (q − p)]Lpq = 0

Comparing with equation 99 we realize that

g(ρ) = L2l+1
n+l (ρ) (110)

where p = 2l + 1 and q = λ− l − 1 + 2l + 1 = λ+ l.
This makes sense since the highest power of the Associated Laguerre Polynomial then becomes

q − p = λ− l − 1 = nr

which agrees with our foregoing discussion.
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5.2.4 Laguerre and Associated Laguerre Polynomials

Figure 6: Laguerre Polynomials

For Laguerre Polynomials:

1 Generating Function Laguerre Polynomials may also be obtained using

U(ρ, s) =
e
−ρs
1−s

1− s
=

∞∑
q=0

Lq(ρ)

q!
sq, |s| < 1

2 Recursion Relation Differentiating U with respect to s yields

Lq+1(ρ)− (ρ− 1− 2q)Lq(ρ) + q2Lq−1(ρ) = 0∗∗ (111)

3 Orthogonality The polynomials are orthogonal with respect to the weight function(measure) w(x) =
e−x.Thus, we have ∫ ∞

0

e−xLn(x)Lm(x)dx = 0, m 6= n

For Associated Laguerre Polynomials:

1 Generating Function for Associated Laguerre Polynomials may be obtained by differentiating U(ρ, s)
p times with respect to ρ

Up(ρ, s) = (−s)p e
−ρs
1−s

(1− s)p
=
∞∑
q=0

Lpq(ρ)

q!
sq, |s| < 1

2 Orthogonality The polynomials are orthogonal with respect to the weight function(measure) w(x) =
xpe−x.Thus, we have ∫ ∞

0

xpe−xLpmL
p
ndx = 0, m 6= n

3 Relation to Hermite Polynomials (Here Generalized Laguerre Polynomials L
(α)
n have been used)

H2n(x) = (−1)n22nn!L(−1/2)
n (x2)

H2n+1(x) = (−1)n22n+1n!xL(1/2)
n (x2) (112)

5.3 The Radial Functions: Finally!

We can now to write
Rnl = Ne

−ρ
2 ρlL2l+1

n+l (ρ) (113)

The normalization constant can be determined using the normalization condition and the generating function
for Associated Laguerre polynomials. It comes out as

Nnl = [

(
2Z

naµ

)3
(n− l − 1)!

2n[(n+ l)!]3
]
1
2

(Note: Here we have Associated Laguerre Polynomials according to our definition in 109)
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Figure 7: Radial Function Shapes of Hydrogen Atom
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5.4 The Radial Distribution Functions

Figure 8: Radial Distribution Function Shapes of Hydrogen Atom

6 Addition of Angular Momenta and Clebsch-Gordon Coefficients

If you are unfamiliar with angular momentum algebra please refer to section 3 before proceeding.
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6.1 General definition of Angular Momentum

A vector operator J is an angular momentum if its components are Hermitian operators satisfying commutation
relations

[Jx, Jy] = i~Jz, [Jy, Jz] = i~Jx, [Jz, Jx] = i~Jy (114)

6.2 Ladder Operators and Commutator Relations

The relations can be derived in a very similar manner to section 3.

• [J2, J ] = 0

• Define the ladder operators as
J± = Jx ± Jy

• [Jz, J±] = ±~J±

• [J+, J−] = 2~Jz

6.3 Clebsch-Gordon Coefficients

Consider two sets of angular momemtum operators J1 and J2.They can be say the angular momentum and spin
angular momentum of an electron.
(We haven’t talked about spin yet, but don’t worry, it’s just an angular momentum too!) By the previous
definition

[J1i , J1j ] = i~εijkJ1k , [J2i , J2j ] = i~εijkJ2k
Similar to section 3, the eigenvalue equations for J1 and J2 are

J2
1 |j1,m1〉 = j1(j1 + 1)~2 |j1,m1〉 , J1z |j1,m1〉 = m1~ |j1,m1〉 , −j1 ≤ m1 ≤ j1 (115)

J2
2 |j2,m2〉 = j2(j2 + 1)~2 |j2,m2〉 , J2z |j2,m2〉 = m2~ |j2,m2〉 , −j2 ≤ m2 ≤ j2 (116)

Define total angular momentum vector J as
J = J1 + J2

Therefore, we get the operator
J2 = J2

x + J2
y + J2

z = J2
1 + J2

2 + 2J1 · J2
Few points to note:

• Each component of J1 commutes with each component of J2.

[J1i , J2j ] = 0

• So, we have
[Ji, Jj ] = i~εijkJk, [J2, Jz] = 0 (117)

proving that J is also an angular momentum.

• [Jz, J
2
1 ] = [Jz, J

2
2 ] = 0

• [J2, J2
1 ] = [J2, J2

2 ] = 0

• But,
[J2, J1z ] 6= 0

and
[J2, J2z ] 6= 0
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So, we cannot measure the quantum numbers m1 and m2 simultaneously with j. As we know m1,m2 can
be measured simultaneously with j1, j2 and m1,m2 with j,m. These are two alternate groups of mutually
commuting operators.

The first group is (J2
1 , J

2
2 , J1z , J2z ) and the second group is (J2

1 , J
2
2 , J

2, Jz).The eigenvectors of each group can
be denoted as |j1, j2;m1,m2〉 and |j1, j2, j,m〉.

For the first group (J2
1 , J

2
2 , J1z , J2z ) we have

J2
1 |j1, j2;m1,m2〉 = j1(j1 + 1)~2 |j1, j2;m1,m2〉 (118)

J2
2 |j1, j2;m1,m2〉 = j2(j2 + 1)~2 |j1, j2;m1,m2〉 (119)

J1z |j1, j2;m1,m2〉 = m1~ |j1, j2;m1,m2〉 (120)

J2z |j1, j2;m1,m2〉 = m2~ |j1, j2;m1,m2〉 (121)

and for the second group (J2
1 , J

2
2 , J

2, Jz):

J2
1 |j1, j2, j,m〉 = j1(j1 + 1)~2 |j1, j2, j,m〉 (122)

J2
2 |j1, j2, j,m〉 = j2(j2 + 1)~2 |j1, j2, j,m〉 (123)

J2 |j1, j2, j,m〉 = j(j + 1)~2 |j1, j2, j,m〉 (124)

Jz |j1, j2, j,m〉 = m~ |j1, j2, j,m〉 (125)

From (117), we can say that m can take 2j + 1 values from −j to j. Each set of eigenvectors are complete and
mutually orthogonal,

∑
m1,m2

|j1, j2;m1,m2〉 〈j1, j2;m1,m2| = 1 (126)

∑
j,m

|j1, j2; j,m〉 〈j1, j2; j,m| = 1 (127)

Using |j1, j2;m1,m2〉 as basis we can write

|j1, j2; j,m〉 =
∑
m1,m2

〈j1, j2; j,m|j1, j2;m1,m2〉 |j1, j2;m1,m2〉 (128)

The problem of adding angular momenta reduces to finding 〈j1, j2; j,m|j1, j2;m1,m2〉 which are the Clebsch-
Gordon coefficients denoted as C(j1, j2, j,m;m1,m2).

We know Jz = J1z + J2z .

(Jz − J1z − J2z ) |j1, j2; j,m〉 = 0

=⇒ 〈j1, j2;m1,m2|Jz − J1z − J2z |j1, j2; j,m〉 = 0

=⇒ (m−m1 −m2) 〈j1, j2;m1,m2|j1, j2; j,m〉 = 0 (129)

Therefore, 〈j1, j2;m1,m2|j1, j2; j,m〉 is zero unless m = m1 +m2

Two more useful and standard results related to the CG coefficients are stated without proof.

1 Range of j The maximum value of m is max(m1 +m2) and so jmax is m1 +m2 too. The value of jmin
turns out to be |j1 − j2|.

|j1 − j2| ≤ j ≤ j1 + j2 (130)

2 Recursion Relation The CG coefficients obey√
(j ±m)(j ∓m+ 1) 〈j1, j2;m1,m2|j1, j2; j,m∓ 1〉 =

√
(j1 ∓m1)(j1 ±m1 + 1) 〈j1, j2;m1 ± 1,m2|j1, j2; j,m〉

+
√

(j2 ∓m2)(j2 ±m2 + 1) 〈j1, j2;m1,m2 ± 1|j1, j2; j,m〉(131)

It is useful to work out a simple example say when j1 = 1/2, j2 = 1/2 before proceeding.
(Hint: Use any or all of the previous results and raising-lowering operator algebra when required)
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7 Time Independent Perturbation Theory

The problems outlined in the previous section are very few of the problems in quantum mechanics that we
can solve exactly. Approximation methods are used in nearly all the applications of the theory. We first
address the problem of modifications in energy levels and eigenfunctions of a time-independent Hamiltonian
when perturbation is applied.

7.1 Non-Degenerate Perturbation Theory

We are going to look at the Rayleigh-Schrödinger Perturbation Theory applied to systems with discreet energy
levels.

H = H0 + λH ′ (132)

where H0 is the unperturbed Hamiltonian and λH
′

is a small perturbation. Therefore,

H0ψ
0
n = E0

nψ
0
n (133)

where the set of eigenfunctions ψ0
n is orthogonal and complete. The underlying assumption is of course that we

do know the eigenvalues and eigenfunctions of the unperturbed Hamiltonian at least.

We would like to find the new eigenfunctions and eigenvalues that satisfy

Hψn = Enψn (134)

The basic idea of perturbation theory is to assume that both the eigenvalues and eigenfunctions of H can be
expanded in powers of the perturbation parameter λ.

En =

∞∑
j=0

λjEjn (135)

ψn =

∞∑
j=0

λjEjn (136)

where j can be called the order of perturbation while Ejn and ψjn are called the jth-order corrections to nth
eigenvalue and eigenfunction respectively.
Substituting 135 and 136 into the Schrödinger equation 134 we have

(H0 + λH
′
)(ψ0

n + λψ1
n + λ2ψ2

n + ...) = (E0
n + λ1n + λ2E2

n + ...)(ψ0
n + λψ1

n + λ2ψ2
n) (137)

Equating the powers of λ on both sides we get

H0ψ
0
n = E0

nψ
0
n (138)

H
′
ψ0
n +H0ψ

1
n = E0

nψ
1
n + E1

nψ
0
n (139)

H
′
ψ1
n +H0ψ

2
n = E0

nψ
2
n + E1

nψ
1
n + E2

nψ
0
n (140)

and so on.

7.1.1 First Order Theory

For E1
n, we premultiply 139 by ψ0∗

n and integrate over all coordinates which gives

〈ψ0
n|H0|ψ1

n〉+ 〈ψ0
n|H

′
|ψ0
n〉 = E0

n 〈ψ0
n|ψ1

n〉+ E1
n 〈ψ0

n|ψ0
n〉 (141)

Since H0 is Hermitian

〈ψ0
n|H0|ψ1

n〉 = 〈H0ψ
0
n|ψ1

n〉 = E0
n 〈ψ0

n|ψ1
n〉 (142)

and thus we can cancel terms.

∴ 〈ψ0
n|H

′
|ψ0
n〉 = E1

n (143)

Remark: First order correction to the energy for non-degenerate energy level is just the expectation value of
perturbation in the unperturbed state.
For wave-function ψ1

n, we re-arrange 139 as

(H0 − E0
n)ψ1

n = −(H
′
− E1

n)ψ0
n (144)
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Since the set of ψ0
n’s are complete we can write

ψ1
n =

∑
m 6=n

cnmψ
0
m (145)

There wasn’t a need to include m = n in the sum, for if ψ1
n satisfies 145 then ψ1

n+αψ0
n does too for any constant

α and we ca use this freedom to subtract the ψ0
n term.

Substituting 145 into 144 and using the fact that ψ0
n satisfies the unperturbed Schrödinger equation we have∑

m6=n

(E0
m − E0

n)cnmψ
0
m = −(H

′
− E1

n)ψ0
n (146)

Taking inner product with ψ0
l ,∑

m6=n

(E0
m − E0

n)cnm 〈ψ0
l |ψ0

m〉 = −〈ψ0
l |H

′
|ψ0
n〉+ E1

n 〈ψ0
l |ψ0

n〉 (147)

If l = n then 〈ψ0
l |ψ0

m〉 = 0 and we recover 143.

If l 6= n then
(E0

m − E0
n)cnl = −〈ψ0

l |H
′
|ψ0
n〉 (148)

∴ cnm =
〈ψ0
l |H

′ |ψ0
n〉

(E0
n − E0

m)
(149)

From this result and 145 we see that the sufficient condition for the applicability of Rayleigh-Schrödinger
Perturbation Theory is ∣∣∣∣∣ 〈ψ0

l |H
′ |ψ0

n〉
(E0

n − E0
m)

∣∣∣∣∣ << 1, l 6= n (150)

Notice that if two unperturbed states share the same energy we cannot use 149 and in that case we will need
’Degenerate Perturbation Theory’ which we won’t cover in this text. Also, first order theory gives surprisingly
accurate energies but wave-functions shapes are very poor.

7.1.2 Second-Order Energies

Taking a similar approach as before, the inner product of second-order equation with ψ0
n

〈ψ0
n|H0ψ

2
n〉+ 〈ψ0

n|H
′
ψ1
n〉 = E0

n 〈ψ0
n|ψ2

n〉+ E1
n 〈ψ0

n|ψ1
n〉+ E2

n 〈ψ0
n|ψ0

n〉

Again since H0 is Hermitian:
〈ψ0
n|H0ψ

2
n〉 = 〈H0ψ

0
n|ψ2

n〉 = E0
n 〈ψ0

n|ψ2
n〉

we can cancel terms and we are left with:

E2
n = 〈ψ0

n|H
′
|ψ1
n〉 − E1

n 〈ψ0
n|ψ1

n〉 (151)

But 〈ψ0
n|ψ1

n〉 = 0 so

E2
n = 〈ψ0

n|H
′
|ψ1
n〉 =

∑
m6=n

cm 〈ψ0
n|H

′
|ψ0
m〉 (152)

Finally,

E2
n =

∑
m 6=n

| 〈ψ0
n|H

′ |ψ0
m〉 |2

(E0
n − E0

m)
(153)

We can calculate second-order correction to wave-function, the third-order correction to energy and so on but
this is as far as it is useful to pursue this method.

31



7.2 Non-linear Oscillator Problem

As an example let us consider a non-linear oscillator whose Hamiltonian is

H =
p2x
2m

+
1

2
kx2 + ax3 + bx4 (154)

where
H
′

= ax3 + bx4 (155)

and assumption is b > 0.
The first order correction in the nth state is therefore

E1
n =

∫ ∞
−∞

(ax3 + bx4)|ψ0
n(x)|2dx (156)

We know from section 2.6 that the first term in integral vanishes while the second term can be found by replacing
x in terms of the raising and lowering operators (refer to equation 20). We get after some algebra:

〈ψ0
n|x4|ψ0

n〉 = 〈n|x4|n〉 =
3

4α4
(2n2 + 2n+ 1) (157)

(Hint: You may need to use 23, orthogonality of distinct eigenfunctions and 18)

So the first order energy shift is

E1
n =

3

4
b

(
~
mω

)2

(2n2 + 2n+ 1) (158)

Note that for a fixed value of b we have E1
n growing rapidly with n. To ensure the validity of the perturbation

method, we need the magnitude of the correction term to be small compared to the spacing between energy
levels so higher the value of n, smaller the value of parameter b for which reliable results may be obtained.
The question that can probably be addressed next is whether we can obtain these energy levels through a
purely numerical approach rather than the use of perturbation theory.
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