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Introduction

An analysis of the mechanism of tire contact force generation under 

transient conditions is presented. The model consists of independent 

bristles, in which the state of each bristle at any instant of time depends on 

the state of the same bristle at a previous time step. Friction between the 

tire and the ground follows an experimentally verified stick–slip law. 

Simulation results reveal show how transient friction force generation may 

differ substantially from steady state predictions.



CAD Model of vehicle





CAD Model of Tire



Terminology

Mass distribution along tread, 𝐶 =
𝑑𝑚

𝑑𝑥
Longitudinal velocity of bristle base w.r.t. ground, 𝑉𝑠𝑥

Stiffness coefficients per unit tread length, Kxx =
𝑑𝐹

𝑑𝑥
/𝑑𝑥 Lateral velocity of bristle base w.r.t. ground, 𝑉𝑠𝑦

Stiffness coefficients per unit tread length, K𝑦𝑥 =
𝑑𝐹

𝑑𝑦
/𝑑𝑥 Sliding velocity of the mass, 𝑢

Stiffness coefficients per unit tread length, Dx𝑥 =
𝑑𝐹

𝑑𝑢𝑥
/𝑑𝑥 Rate of change in deformation of bristles, 𝑢𝑥 and uy

Stiffness coefficients per unit tread length, D𝑦𝑥 =
𝑑𝐹

𝑑𝑢𝑦
/𝑑𝑥



Methodology

• There is evidence  that the length of the contact patch does not 

change significantly with an increase in the forward velocity.

• If a constant forward velocity is considered, the use of a model 

with a constant contact patch length and parabolic pressure 

distribution can serve as a good starting point for the analysis.

• Tire tread is modelled as a one-dimensional series of bristles 

distributed on the tire periphery. The bristles incorporate 

anisotropic stiffness and damping in the lateral and longitudinal 

directions, and the distributed tread mass on the tire periphery 

is also taken into account by attaching an infinitesimal mass to 

the end of each bristle.



• The bristle, connecting the mass to the wheel periphery, is deformed 

laterally, as well as longitudinally, and the mass may or may not be 

sliding on the ground, depending on the viscoelastic restoring forces 

applied by the bristle, the normal force at the specific position, and 

the coefficient of friction. The normal force distribution throughout 

the length of the contact patch is given by the parabolic equation –

𝐹𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
3𝐹𝑧
4𝛼

1 −
𝑥

𝑎

2

where, 𝐹𝑧 is the total vertical force applied on the wheel hub 

and 2𝑎 is the total length of the contact patch.

• The global frame of reference (OXYZ) is attached to the ground, while 

a second frame of reference (oxyz) has its origin on the point in the 

contact patch where the vertical line from the center of the wheel 

plane meets the ground.



• Point b, where the bristle is connected to the tire periphery (i.e. the bristle base), 

enters the contact patch at coordinates 

𝑥, 𝑦, 𝑧 = (𝑎, 0,0)
on the moving frame of reference and travels throughout the contact patch with 

velocity, 

𝑉𝑑 = 𝜔𝑅𝑑
where 𝑅𝑑is the radius of the vertically loaded tire under pure rolling condition. 

• When the vertical force results in the generation of a high enough frictional force, the 

infinitesimal mass dm sticks on the ground. In any other case, the mass moves with 

respect to the ground with a sliding velocity 𝑢.

• Irrespective of whether the tire is slipping or not, the velocity of travel of point 𝑏
throughout the length of the contact patch is 𝑉𝑑. Thus, the vertical force on point 𝑏 varies 

according to following  relationship

𝐹𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
3𝐹𝑧
4𝛼

1 −
𝑥𝑑
𝑎

2

ሶ𝑥𝑑 = 𝑉𝑑



During simulation, the stick–slip conditions described by above relations are checked using a velocity 

transition threshold. For velocities below the value of the threshold, the infinitesimal mass is considered 

to be stationary, while sliding occurs for velocities greater than the threshold. 

If the sticking condition is satisfied, then the magnitude of the friction force equates to the magnitude of 

the forces applied by the bristle. When the mass is sliding on the ground, the magnitude of the friction 

force becomes –

𝑓 = 𝜇𝑘
3𝐹𝑧
4𝛼

1 −
𝑥𝑑
𝑎

2

𝑑𝑥

Friction between the tread and the road follows a

simplified stick–slip law derived from experimental

Fig. 2 Top plan view of the basic bristle model measurements 

by Braghin et al. 

Here, 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 denotes force applied by bristle on mass,

𝜇𝑘 is the coefficient of kinetic friction,

𝐹𝑚𝑎𝑥 is the maximum friction force.



The components of 𝑓 in the longitudinal and lateral

directions are –

𝑓𝑥 =
𝑢𝑥

𝑢𝑥
2 + 𝑢𝑦

2

𝜇𝑘
3𝐹𝑧
4𝛼

1 −
𝑥𝑑
𝑎

2

𝑑𝑥

𝑓𝑦 =
𝑢𝑦

𝑢𝑥
2 + 𝑢𝑦

2

𝜇𝑘
3𝐹𝑧
4𝛼

1 −
𝑥𝑑
𝑎

2

𝑑𝑥

The differential equations, describing the motion of the mass in longitudinal and lateral directions are written as -

ሶ𝒖𝒙𝑪𝒅𝒙 = 𝒙𝒔 − 𝒙 𝑲𝒙𝒙𝒅𝒙 + 𝑽𝒔𝒙 − 𝒖𝒙 𝑫𝒙𝒅𝒙 − 𝒇𝒙

ሶ𝒖𝒚𝑪𝒅𝒙 = 𝒚𝒔 − 𝒚 𝑲𝒚𝒙𝒅𝒙 + 𝑽𝒔𝒚 − 𝒖𝒚 𝑫𝒚𝒙𝒅𝒙 − 𝒇𝒚

ሶ𝒙𝒔 = 𝑽𝒔𝒙

ሶ𝒙𝒔 = 𝑽𝒔𝒚



Simulation
In the steady state model, the motion of the infinitesimal mass is followed throughout the contact patch and is 

representative of the motion of all such elements in contact with the ground. The transient model is run for purely 

cornering conditions, so that 𝑉𝑠𝑥 vanishes. While 𝑉𝑠𝑦 is constant in the steady state model, it changes in each time step 

in the transient model. the state of a mass 𝑑𝑚 at 𝑡 + 𝑑𝑡 results from the state of the same mass at 𝑡.

In order to solve the problem, the vectors of the state variables, positions, and velocities of all infinitesimal masses 

forming the contact patch have to be defined. If the length of the contact patch is 2𝑎 = 𝑛𝑑𝑥, then n infinitesimal 

masses are involved in the problem. At a random operating point, for example at time t, each mass is characterized by 

its velocity and position in the oxy plane. At time 𝑡 + 𝑑𝑡, every mass has moved one place towards the end of the 

contact patch, travelling a distance of 𝑑𝑥 = 𝑉𝑑𝑡. This sequential switching is also reflected in the state vectors, so that 

the state of the 𝑖 + 1 𝑡ℎ mass at time 𝑡 + 𝑑𝑡 can be calculated by using the state of the 𝑖𝑡ℎ mass at time t. In order for 

each mass exactly to take the place of the one adjacent to it, the time step has to be constant and the number of 

masses has to be set according to the relationship –

𝑛 =
2𝑎

𝑉𝑑𝑡





The transient response of a tire in a lateral maneuver is chosen as the case 

study for this paper. The wheel is moving forward with a constant velocity of 10
𝑚/𝑠, while an increasing lateral velocity is imposed on the wheel rim. The result 

is a transient increase in lateral slip at a constant rate of 30.96 deg/𝑠. 

Practically, this maneuver is approximately equivalent to the transient increase 

in slip angle of the rear tires of a car as a result of oversteering behavior, when 

the driver ceases upon acceleration mid-way through a tight corner.



Results & Discussion

• Fluctuations in self-aligning moment are not only 

evident, but also magnified.

• While, in the beginning, steady state and transient 

responses are almost identical, multiplication of the 

lateral force distribution with the corresponding 

distances from the vertical axis results in more 

intense oscillations, which are even more 

pronounced after the peak value of self-aligning 

moment in the range of slip ratios between 0.045 

and 0.14.

• The transient curve smoothens out towards the end 

of the graph, inside the region of saturated 

operation.



• As clear from the figure, both models yield similar 

results in the low, linear range of the force–slip 

diagram.

• As the slip ratio increases and the graphs enter 

the non-linear region of operation, microscopic 

stick–slip action between the tread elements and 

the road leads to minor fluctuations, captured by 

the transient model. With a further increase in the 

slip ratio, higher amplitudes of oscillation are 

predicted by the transient model (about 10% of 

the total lateral force).

• The three sequential drops in lateral force 

predicted by the transient model could alter the 

response of a vehicle significantly.

• As the slip ratio increases further, the period and 

amplitude of oscillations decrease continually, 

and finally the response smoothens completely at 

the saturated area of operation.



Model Integration Using MSC Adams

• MSC ADAMS can be used for driver input and can be integrated with MATLAB using 

ADAMS/Control and resultant forces and moments can be sent back to ADAMS.

• A general procedure for such a control integration is shown here.

• Another tire model, namely Pacejka 89 is used to demonstrate the results obtained for such 

transient maneuvers.



Vehicle and Tire 

Parameters in ADAMS



MATLAB Proposed Integration 
with Adams using ADAMS/Control
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