


Introduction

An analysis of the mechanism of tire contact force generation under
transient conditions is presented. The model consists of independent
bristles, in which the state of each bristle at any instant of time depends on
the state of the same bristle at a previous time step. Friction between the
tire and the ground follows an experimentally verified stick-slip law.
Simulation results reveal show how transient friction force generation may
differ substantially from steady state predictions.




CAD Model of vehicle







CAD Model of Tire
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Terminology

Mass distribution along tread, C = dd—zl
: - : dF
Stiffness coefficients per unit tread length, Ky, = (E) /dx

Stiffness coefficients per unit tread length, K,,,, = (d—F> /dx

Stiffness coefficients per unit tread length, Dy, = (ﬂ) /dx

Stiffness coefficients per unit tread length, D,,,, = (d—F) /dx

Longitudinal velocity of bristle base w.r.t. ground, V;,

Lateral velocity of bristle base w.r.t. ground, Vs,

Sliding velocity of the mass, u

Rate of change in deformation of bristles, u, and uy,




Methodology

* There is evidence that the length of the contact patch does not

change significantly with an increase in the forward velocity.
Infinitesimal _ N o 11 o Pl Side View

« If a constant forward velocity is considered, the use of a model i PR O B S

with a constant contact patch length and parabolic pressure

distribution can serve as a good starting point for the analysis. 2 2

M| / ' |15 Anicotropic

* Tire tread is modelled as a one-dimensional series of bristles %—.f 1 ﬁfgsbfr'f ;'"_ Bééii"i
distributed on the tire periphery. The bristles incorporate W Dtmu N AT o
anisotropic stiffness and damping in the lateral and longjtudinal — ::E: {i' i'L
directions, and the distributed tread mass on the tire periphery s Do bt x
is also taken into account by attaching an infinitesimal mass to :

the end of each bristle.




* The bristle, connecting the mass to the wheel periphery, is deformed
laterally, as well as longitudinally, and the mass may or may not be
sliding on the ground, depending on the viscoelastic restoring forces
applied by the bristle, the normal force at the specific position, and
the coefficient of friction. The normal force distribution throughout

the length of the contact patch is given by the parabolic equation - L @ . e Top View
= Vr .
3F, X\ 2 | N [ Sl
Foertical = E <1 - (a) ) i vey | v
1 Vsx 0 b Vx S
where, F, is the total vertical force applied on the wheel hub 0 : S =

and 2a is the total length of the contact patch.

* The global frame of reference (OXYZ) is attached to the ground, while
a second frame of reference (oxyz) has its origin on the point in the
contact patch where the vertical line from the center of the wheel
plane meets the ground.




* Point b, where the bristle is connected to the tire periphery (i.e. the bristle base),
enters the contact patch at coordinates
(x’ y’ Z) — (a’ O’O)
on the moving frame of reference and travels throughout the contact patch with
velocity,
Vd = (l)Rd
where R;is the radius of the vertically loaded tire under pure rolling condition.

* When the vertical force results in the generation of a high enough frictional force, the
infinitesimal mass dm sticks on the ground. In any other case, the mass moves with
respect to the ground with a sliding velocity u.

* |rrespective of whether the tire is slipping or not, the velocity of travel of point b
throughout the length of the contact patch is V,;. Thus, the vertical force on point b varies
according to following relationship

3E Xd z
Fyerticalr = 4__; (1 - (;) >

x:d:Vd




Friction between the tread and the road follows a f = —Fexema for =0 AND

simplified stick-slip law derived from experimental Fexternat < Fnax = factor - . - Foeicat = pFvertical
Fig. 2 Top plan view of the basic bristle model measurements
by Braghin et al. =ty Frosion for |u| > 0 OR

Here, F,.t0erngq denotes force applied by bristle on mass,
U is the coefficient of kinetic friction,
F 05 1S the maximum friction force.

|F:::r.1cmajl = »'-“-F‘Iﬂ:rlical

During simulation, the stick-slip conditions described by above relations are checked using a velocity
transition threshold. For velocities below the value of the threshold, the infinitesimal mass is considered
to be stationary, while sliding occurs for velocities greater than the threshold.

If the sticking condition is satisfied, then the magnitude of the friction force equates to the magnitude of
the forces applied by the bristle. When the mass is sliding on the ground, the magnitude of the friction

force becomes -
3FZ Xd 2
|f| Uk Aot ( 0 ) X




The components of f in the longitudinal and lateral
directions are -

Uy 3FZ< xd>2
= 1-—| d
uy + uj
B (1 3F, (1 xd)z p
fy = - ; U Aot q X
Uy + Uy

The differential equations, describing the motion of the mass in longitudinal and lateral directions are written as -
u,Cdx = (x; —x)K,, dx + Vg, —u,)D, dx — f,
U, Cdx = (ys — y)K,dx + (Vsy — uy)Dyxdx —fy
Xs = Viy




Simulation

In the steady state model, the motion of the infinitesimal mass is followed throughout the contact patch and is
representative of the motion of all such elements in contact with the ground. The transient model is run for purely
cornering conditions, so that I, vanishes. While I%,, is constant in the steady state model, it changes in each time step

in the transient model. the state of a mass dm at t + dt results from the state of the same mass at t.

In order to solve the problem, the vectors of the state variables, positions, and velocities of all infinitesimal masses
forming the contact patch have to be defined. If the length of the contact patch is 2a = ndx, then n infinitesimal
masses are involved in the problem. At a random operating point, for example at time t, each mass is characterized by
its velocity and position in the oxy plane. At time t + dt, every mass has moved one place towards the end of the
contact patch, travelling a distance of dx = Vdt. This sequential switching is also reflected in the state vectors, so that
the state of the (i + 1) mass at time t + dt can be calculated by using the state of the i'® mass at time t. In order for
each mass exactly to take the place of the one adjacent to it, the time step has to be constant and the number of
masses has to be set according to the relationship -

2a
vdt




Integration procedure for the Mew entry with initial

_ transient tyre model conditions (0,7, *l
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The transient response of a tire in a lateral maneuver is chosen as the case
study for this paper. The wheel is moving forward with a constant velocity of 10
m/s, while an increasing lateral velocity is imposed on the wheel rim. The result
IS a transient increase in lateral slip at a constant rate of 30.96 deg/s.
Practically, this maneuver is approximately equivalent to the transient increase
in slip angle of the rear tires of a car as a result of oversteering behavior, when
the driver ceases upon acceleration mid-way through a tight corner.

I K b F:. 'F'-.r'. IF'-.I-inlrr Ll_'.' LIinlrr
(m) (m) (m) (N (N/m?) (N/m?) (N s/m”) (N s/m”) m 1
0.065 0.29 0.18 4150 9 x 10° 3.6 = 10° B w107 3.2 = 107 0.9 1.17

Time step = 1 = 107" s, velocity transition threshold = 0.012 m/s.




Results & Discussion

* Fluctuations in self-aligning moment are not only | st Dogan
evident, but also magnified. |

* While, in the beginning, steady state and transient
responses are almost identical, multiplication of the
lateral force distribution with the corresponding
distances from the vertical axis results in more
intense oscillations, which are even more
pronounced after the peak value of self-aligning
moment in the range of slip ratios between 0.045
and 0.14.

* The transient curve smoothens out towards the end
of the graph, inside the region of saturated | | | l l
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* As clear from the figure, both models yield similar
results in the low, linear range of the force-slip
diagram.

* Asthe slip ratio increases and the graphs enter Transient Lateral Tire Force Diagarm
the non-linear region of operation, microscopic 01 keakagbadl—]
stick-slip action between the tread elements and 3500
the road leads to minor fluctuations, captured by
the transient model. With a further increase in the
slip ratio, higher amplitudes of oscillation are
predicted by the transient model (about 10% of
the total lateral force).

 The three sequential drops in lateral force
predicted by the transient model could alter the
response of a vehicle significantly. 500

* As the slip ratio increases further, the period and S S S
amplitude of oscillations decrease continually, ekl ™ T
and finally the response smoothens completely at
the saturated area of operation.
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Model Integration Using MSC Adams

* MSC ADAMS can be used for driver input and can be integrated with MATLAB using
ADAMS/Control and resultant forces and moments can be sent back to ADAMS.

* A general procedure for such a control integration is shown here.

* Another tire model, namely Pacejka 89 is used to demonstrate the results obtained for such
transient maneuvers.




Vehicle and Tire

Parameters in ADAMS

Components
Total vehicle mass
Wheelbase

Gravity center height

Rear axle to gravity center

Tire radius
Tire width

Units

B |3

mm
mm

Value
980

2443
0.53
1.460
340.6
235

) Modify Wheel and Tire

Name

Side

Cm Offset

Mass

boc yy

lzz

Wheel Center Offset
Tire Property File
Longitudinal Velocity
Spin Velocity

Road

Wheel Center Location and Orientation

Location
QOnent using
Euler Angles

&

| .modelo_carro_rear left |
© left  right

10.0

| 7.411179

| 2.86114868E+005

| 5.3846092E+005

10.0

Iupf adams/adams_tire/TR_front_pac89.tir
10.0

0.0

| .modelo_carro.road

1-300.0, 326.0, 693.5

+ Euler Angles © Direction Vectors
10.0,0.0,0.0

1.0.0.0,0.0

0.0,0.0,1.0

ok | Apply | Cancel

¥




MATLAB Proposed Integration
with Adams using ADAMS /Control

| ‘. Matlab/ "
| Simulink ‘

Normal Force - Longitudinal force
Longitudinal Velocity Lateral Force
Lateral Velocity Self-Aligning Moment

Wheel rotation
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