

Project Review: Torque Vectoring in Electric vehicles

Course: ME5670 Vehicle Dynamics

Instructor: Dr. Ashok Pandey

Team:

- 1. Sunrit Samanta (me19mtech11009)
- 2. Adireddy Balaji (me19resch11002)
- 3. Dwaraknath Reddy (me19mtech11007)
- 4. Thani Aswanth (me19mtech11025)

Team Contribution:

- 1. Sunrit Samanta MATLAB and Simulink, Report
- 2. Adireddy Balaji Mathematical modeling, CAD
- 3. Dwaraknath Reddy Mathematical modeling, CAD
- 4. Thani Aswanth MATLAB and Simulink, Presentation

Background

Undesirable vehicle steering dynamics:

- Understeer(Ku>0)
- Oversteer (Ku<0) Where Ku = Steer gradient.

Torque Vectoring:

The vehicle yaw moment is stabilized by the additional yaw moment generated by the difference in the vehicle torque distribution.

Advantages of Torque Vectoring:

- Improved handling.
- Traction when turning.
- Better overall performance in poor road conditions

Torque vectoring

CAD Model

Equilibrium conditions:

$$\sum F_x = ma_x = F_{x,fl} + F_{x,rl} + F_{x,rl} + F_{x,rr} - (F_{xroll,fl} + F_{xroll,rr} + F_{xroll,rl} + F_{xroll,rr}) - F_{drag}$$

$$\sum F_y = ma_y = F_{y,fl} + F_{y,fr} + F_{y,rl} + F_{y,rr} + -(F_{yroll,fl} + F_{yroll,fr})$$

$$\sum M_z = I_{zz} \ddot{\psi} = t_r(-F_{x,fl} + F_{x,fr} - F_{x,rl} + F_{x,rr}) + l_f(F_{y,rr} + F_{y,rl})$$

$$F_{roll,ij}$$

$$F_{drag}$$

Linearized Model:

Assumptions:

- 1. Velocity of the vehicle's center of gravity is considered constant along the longitude of it's trajectory.
- 2. All lifting, rolling and pitching motion will be neglected.
- 3. The mass of the vehicle is assumed to be at the center of gravity
- 4. Front and rear tires will be represented as one single tire, one each axle.
- 5. Aligning torque resulting from the side slip angle will be neglected.
- 6. The wheel-load distribution between front and rear axles is assumed to be constant.
- 7. The longitudinal forces on the tires, resulting from the assumption of a constant longitudinal velocity, will be neglected

Linearized Model:

Without Torque vectoring:

With Torque vectoring:

$$\begin{bmatrix} \dot{v}_{y} \\ \ddot{\psi} \end{bmatrix} = \begin{bmatrix} -\frac{C_{y,f} + C_{y,r}}{mv_{x0}} & \frac{-l_{f}C_{y,f} + l_{r}C_{y,r}}{mv_{x0}} - v_{x0} \\ \frac{-l_{f}C_{y,f} + l_{r}C_{y,r}}{l_{zz}v_{x0}} & \frac{l_{f}^{2}C_{y,f} + l_{r}^{2}C_{y,r}}{l_{zz}v_{x0}} \end{bmatrix} \begin{bmatrix} v_{y} \\ \dot{\psi} \end{bmatrix} + \begin{bmatrix} \frac{C_{y,f}}{mv_{x0}} \\ \frac{l_{f}C_{y,f}}{l_{zz}} \end{bmatrix} \delta + \begin{bmatrix} 0 \\ 1 \\ 0.05 * I_{zz} \end{bmatrix} \Delta T$$

Under steer gradient:

$$K_u = \frac{l_r m}{C_{y,f}(l_r + l_f)} - \frac{l_f m}{C_{y,r}(l_r + l_f)}$$

Turning radius:

 $\frac{1}{R} = \frac{\delta}{\left(l_r + l_f\right) + K_u V C G^2}$

Desired yaw rate:

 $\dot{\psi}_{desired} = \frac{VCG}{R}$

Term	Symbol	Value
Yaw rate		$\dot{\psi}$
Longitudinal velocity		V _{xo}
Cornering Stiffness at Rear wheel	745	C _{y,r}
Cornering Stiffness at Front wheel	546	C _{y,f}
Inertia Moment	120	I _{zz}
Mass	356	m
Front wheel base	0.873	۱ _f
Rear Wheel base	0.717	۱ _r
Steering angle	70 degrees	δ
Torque diff between rear wheels		ΔΤ
Lateral Velocity		Vy
Vehicle velocity		VCG

Simulink Model: Without Torque Vectoring

▼

hinearModelwithoutTVPID

Simulink Model: With Torque Vectoring

भारतीय औधोरिकी सम्मान हैन्द्रामान् Indian Institute of Technology Hyderabad

Results: Tuning for optimal PID Gains

Results:

Results: Comparision

- 1. Torque Vectoring for a Formula Student Prototype, João Pedro Marques Antunes
- 2. Independent control of all-wheel-drive torque distribution, Russell P. Osborn a & Taehyun Shim b
- 3. Active torque vectoring systems for electric drive vehicles, Martin Mondek